CN112802039A - 一种基于全局边缘注意力的全景分割方法 - Google Patents
一种基于全局边缘注意力的全景分割方法 Download PDFInfo
- Publication number
- CN112802039A CN112802039A CN202110100682.3A CN202110100682A CN112802039A CN 112802039 A CN112802039 A CN 112802039A CN 202110100682 A CN202110100682 A CN 202110100682A CN 112802039 A CN112802039 A CN 112802039A
- Authority
- CN
- China
- Prior art keywords
- segmentation
- edge
- mask
- global
- attention
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000011218 segmentation Effects 0.000 title claims abstract description 137
- 238000000034 method Methods 0.000 title claims abstract description 28
- 239000011159 matrix material Substances 0.000 claims abstract description 40
- 238000012549 training Methods 0.000 claims abstract description 33
- 238000001514 detection method Methods 0.000 claims abstract description 17
- 230000004927 fusion Effects 0.000 claims description 11
- 238000005457 optimization Methods 0.000 claims description 10
- 238000012937 correction Methods 0.000 claims description 5
- 238000000605 extraction Methods 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 4
- 230000006870 function Effects 0.000 description 19
- 238000012545 processing Methods 0.000 description 3
- 239000003086 colorant Substances 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000003708 edge detection Methods 0.000 description 1
- 238000011478 gradient descent method Methods 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/12—Edge-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
- G06F18/253—Fusion techniques of extracted features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/13—Edge detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/136—Segmentation; Edge detection involving thresholding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20016—Hierarchical, coarse-to-fine, multiscale or multiresolution image processing; Pyramid transform
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Evolutionary Biology (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
Abstract
Description
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110100682.3A CN112802039B (zh) | 2021-01-26 | 2021-01-26 | 一种基于全局边缘注意力的全景分割方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110100682.3A CN112802039B (zh) | 2021-01-26 | 2021-01-26 | 一种基于全局边缘注意力的全景分割方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112802039A true CN112802039A (zh) | 2021-05-14 |
CN112802039B CN112802039B (zh) | 2022-03-01 |
Family
ID=75811687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110100682.3A Active CN112802039B (zh) | 2021-01-26 | 2021-01-26 | 一种基于全局边缘注意力的全景分割方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112802039B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115908442A (zh) * | 2023-01-06 | 2023-04-04 | 山东巍然智能科技有限公司 | 一种无人机海洋监测用图像全景分割方法及模型搭建方法 |
CN116309067A (zh) * | 2023-03-21 | 2023-06-23 | 安徽易刚信息技术有限公司 | 一种光场图像空间超分辨率方法 |
CN117612164A (zh) * | 2024-01-19 | 2024-02-27 | 武汉互创联合科技有限公司 | 基于双重边缘检测的细胞分裂均衡度检测方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110276765A (zh) * | 2019-06-21 | 2019-09-24 | 北京交通大学 | 基于多任务学习深度神经网络的图像全景分割方法 |
CN111259809A (zh) * | 2020-01-17 | 2020-06-09 | 五邑大学 | 基于DANet的无人机海岸线漂浮垃圾巡检系统 |
CN111428726A (zh) * | 2020-06-10 | 2020-07-17 | 中山大学 | 基于图神经网络的全景分割方法、系统、设备及存储介质 |
CN111462126A (zh) * | 2020-04-08 | 2020-07-28 | 武汉大学 | 一种基于边缘增强的语义图像分割方法及系统 |
WO2020257812A2 (en) * | 2020-09-16 | 2020-12-24 | Google Llc | Modeling dependencies with global self-attention neural networks |
-
2021
- 2021-01-26 CN CN202110100682.3A patent/CN112802039B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110276765A (zh) * | 2019-06-21 | 2019-09-24 | 北京交通大学 | 基于多任务学习深度神经网络的图像全景分割方法 |
CN111259809A (zh) * | 2020-01-17 | 2020-06-09 | 五邑大学 | 基于DANet的无人机海岸线漂浮垃圾巡检系统 |
CN111462126A (zh) * | 2020-04-08 | 2020-07-28 | 武汉大学 | 一种基于边缘增强的语义图像分割方法及系统 |
CN111428726A (zh) * | 2020-06-10 | 2020-07-17 | 中山大学 | 基于图神经网络的全景分割方法、系统、设备及存储介质 |
WO2020257812A2 (en) * | 2020-09-16 | 2020-12-24 | Google Llc | Modeling dependencies with global self-attention neural networks |
Non-Patent Citations (4)
Title |
---|
CAI W 等: "Panoptic Segmentation-Based Attention for Image Captioning", 《APPLIED SCIENCES》 * |
QING ZHANG 等: "Attention and boundary guided salient object detection", 《PATTERN RECOGNITION》 * |
Y. LI 等: "Attention-Guided Unified Network for Panoptic Segmentation", 《2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR)》 * |
栗杰: "基于深度学习的现实交通场景下目标检测算法研究", 《中国优秀博硕士学位论文全文数据库(硕士) 工程科技Ⅱ辑》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115908442A (zh) * | 2023-01-06 | 2023-04-04 | 山东巍然智能科技有限公司 | 一种无人机海洋监测用图像全景分割方法及模型搭建方法 |
CN116309067A (zh) * | 2023-03-21 | 2023-06-23 | 安徽易刚信息技术有限公司 | 一种光场图像空间超分辨率方法 |
CN116309067B (zh) * | 2023-03-21 | 2023-09-29 | 安徽易刚信息技术有限公司 | 一种光场图像空间超分辨率方法 |
CN117612164A (zh) * | 2024-01-19 | 2024-02-27 | 武汉互创联合科技有限公司 | 基于双重边缘检测的细胞分裂均衡度检测方法 |
CN117612164B (zh) * | 2024-01-19 | 2024-04-30 | 武汉互创联合科技有限公司 | 基于双重边缘检测的细胞分裂均衡度检测方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112802039B (zh) | 2022-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112802039B (zh) | 一种基于全局边缘注意力的全景分割方法 | |
CN109299274B (zh) | 一种基于全卷积神经网络的自然场景文本检测方法 | |
CN109886121B (zh) | 一种遮挡鲁棒的人脸关键点定位方法 | |
CN110956185B (zh) | 一种图像显著目标的检测方法 | |
CN110111366B (zh) | 一种基于多级损失量的端到端光流估计方法 | |
CN110276765B (zh) | 基于多任务学习深度神经网络的图像全景分割方法 | |
WO2020062433A1 (zh) | 一种神经网络模型训练及通用接地线的检测方法 | |
CN113627228B (zh) | 一种基于关键点回归与多尺度特征融合的车道线检测方法 | |
CN113673338B (zh) | 自然场景文本图像字符像素弱监督自动标注方法、系统及介质 | |
CN112036231B (zh) | 一种基于车载视频的车道线和路面指示标志检测与识别方法 | |
CN110766020A (zh) | 一种面向多语种自然场景文本检测与识别的系统及方法 | |
CN114048822A (zh) | 一种图像的注意力机制特征融合分割方法 | |
CN114969405A (zh) | 一种跨模态图文互检方法 | |
CN115131797B (zh) | 一种基于特征增强金字塔网络的场景文本检测方法 | |
CN114266794B (zh) | 基于全卷积神经网络的病理切片图像癌症区域分割系统 | |
CN113393457B (zh) | 一种结合残差密集块与位置注意力的无锚框目标检测方法 | |
CN116645592B (zh) | 一种基于图像处理的裂缝检测方法和存储介质 | |
CN114898284B (zh) | 一种基于特征金字塔局部差异注意力机制的人群计数方法 | |
CN113393434A (zh) | 一种基于非对称双流网络架构的rgb-d显著性检测方法 | |
CN110866938A (zh) | 一种全自动视频运动目标分割方法 | |
CN114445620A (zh) | 一种改进Mask R-CNN的目标分割方法 | |
CN112200746A (zh) | 一种雾天交通场景图像的去雾方法和设备 | |
CN116129291A (zh) | 一种面向无人机畜牧的图像目标识别方法及其装置 | |
CN116596966A (zh) | 一种基于注意力和特征融合的分割与跟踪方法 | |
CN117351487A (zh) | 一种邻近区域与边缘信息融合的医学图像分割方法、系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20210514 Assignee: Guilin Sensing Material Technology Co.,Ltd. Assignor: GUILIN University OF ELECTRONIC TECHNOLOGY Contract record no.: X2023980046110 Denomination of invention: A Panoramic Segmentation Method Based on Global Edge Attention Granted publication date: 20220301 License type: Common License Record date: 20231107 Application publication date: 20210514 Assignee: Guilin Xingyuan Technology Co.,Ltd. Assignor: GUILIN University OF ELECTRONIC TECHNOLOGY Contract record no.: X2023980045835 Denomination of invention: A Panoramic Segmentation Method Based on Global Edge Attention Granted publication date: 20220301 License type: Common License Record date: 20231107 Application publication date: 20210514 Assignee: Guangxi Guilin Yunchen Technology Co.,Ltd. Assignor: GUILIN University OF ELECTRONIC TECHNOLOGY Contract record no.: X2023980045796 Denomination of invention: A Panoramic Segmentation Method Based on Global Edge Attention Granted publication date: 20220301 License type: Common License Record date: 20231108 |
|
EC01 | Cancellation of recordation of patent licensing contract |
Assignee: Guilin Sensing Material Technology Co.,Ltd. Assignor: GUILIN University OF ELECTRONIC TECHNOLOGY Contract record no.: X2023980046110 Date of cancellation: 20241012 Assignee: Guilin Xingyuan Technology Co.,Ltd. Assignor: GUILIN University OF ELECTRONIC TECHNOLOGY Contract record no.: X2023980045835 Date of cancellation: 20241012 |