CN112802016A - 基于深度学习的实时布匹缺陷检测方法及系统 - Google Patents
基于深度学习的实时布匹缺陷检测方法及系统 Download PDFInfo
- Publication number
- CN112802016A CN112802016A CN202110334060.7A CN202110334060A CN112802016A CN 112802016 A CN112802016 A CN 112802016A CN 202110334060 A CN202110334060 A CN 202110334060A CN 112802016 A CN112802016 A CN 112802016A
- Authority
- CN
- China
- Prior art keywords
- defect
- cloth
- real
- image
- representing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007547 defect Effects 0.000 title claims abstract description 163
- 239000004744 fabric Substances 0.000 title claims abstract description 108
- 238000001514 detection method Methods 0.000 title claims abstract description 69
- 238000013135 deep learning Methods 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 claims abstract description 5
- 238000012549 training Methods 0.000 claims description 17
- 238000009826 distribution Methods 0.000 claims description 12
- 230000006870 function Effects 0.000 claims description 9
- 230000004913 activation Effects 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 6
- 238000005457 optimization Methods 0.000 claims description 6
- 238000010276 construction Methods 0.000 claims description 3
- 238000002372 labelling Methods 0.000 claims description 3
- 238000013461 design Methods 0.000 abstract description 3
- 239000004753 textile Substances 0.000 abstract description 3
- 230000000694 effects Effects 0.000 description 6
- 206010027146 Melanoderma Diseases 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011897 real-time detection Methods 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 208000037170 Delayed Emergence from Anesthesia Diseases 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007477 logistic regression Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/213—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
- G06F18/2132—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on discrimination criteria, e.g. discriminant analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10004—Still image; Photographic image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30124—Fabrics; Textile; Paper
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Health & Medical Sciences (AREA)
- Software Systems (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Computational Linguistics (AREA)
- Mathematical Physics (AREA)
- Quality & Reliability (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110334060.7A CN112802016B (zh) | 2021-03-29 | 2021-03-29 | 基于深度学习的实时布匹缺陷检测方法及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110334060.7A CN112802016B (zh) | 2021-03-29 | 2021-03-29 | 基于深度学习的实时布匹缺陷检测方法及系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112802016A true CN112802016A (zh) | 2021-05-14 |
CN112802016B CN112802016B (zh) | 2023-08-08 |
Family
ID=75815934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110334060.7A Active CN112802016B (zh) | 2021-03-29 | 2021-03-29 | 基于深度学习的实时布匹缺陷检测方法及系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112802016B (zh) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113298190A (zh) * | 2021-07-05 | 2021-08-24 | 四川大学 | 一种基于大尺寸的不平衡样本的焊缝图像识别分类算法 |
CN113510700A (zh) * | 2021-05-19 | 2021-10-19 | 哈尔滨理工大学 | 一种机器人抓取任务的触觉感知方法 |
CN113686878A (zh) * | 2021-09-03 | 2021-11-23 | 太原理工大学 | 一种特钢棒材表面缺陷多级联合检测方法及系统 |
CN113888485A (zh) * | 2021-09-23 | 2022-01-04 | 浙江工业大学 | 一种基于深度学习的磁芯表面缺陷的检测方法 |
CN114119607A (zh) * | 2022-01-20 | 2022-03-01 | 广州易道智慧信息科技有限公司 | 基于深度神经网络的酒瓶缺陷样本生成方法及系统 |
CN114332084A (zh) * | 2022-03-11 | 2022-04-12 | 齐鲁工业大学 | 一种基于深度学习的pcb表面缺陷检测方法 |
CN114398818A (zh) * | 2021-06-02 | 2022-04-26 | 江苏盛邦纺织品有限公司 | 基于深度学习的纺织提花检测方法及系统 |
CN114973335A (zh) * | 2022-07-29 | 2022-08-30 | 深圳叮当科技技术有限公司 | 基于深度学习的工地安全行为监测方法、装置及电子设备 |
CN116484259A (zh) * | 2023-04-28 | 2023-07-25 | 北京建筑大学 | 一种城市管网缺陷位置定位分析方法和系统 |
CN117011289A (zh) * | 2023-09-27 | 2023-11-07 | 广州中浩控制技术有限公司 | 用于软胶囊生产的质量检验、系统、介质及计算机设备 |
CN118656597A (zh) * | 2024-08-16 | 2024-09-17 | 深圳市宝田精工科技有限公司 | 基于深度学习实现通讯模具组件的效果分析方法及系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110175988A (zh) * | 2019-04-25 | 2019-08-27 | 南京邮电大学 | 基于深度学习的布匹缺陷检测方法 |
CN110930470A (zh) * | 2019-11-18 | 2020-03-27 | 佛山市南海区广工大数控装备协同创新研究院 | 一种基于深度学习的布匹缺陷图像生成方法 |
CN111028204A (zh) * | 2019-11-19 | 2020-04-17 | 清华大学 | 一种基于多模态融合深度学习的布匹缺陷检测方法 |
CN111862059A (zh) * | 2020-07-25 | 2020-10-30 | 苏州臻识信息科技有限公司 | 一种基于深度学习多层特征融合的布匹缺陷检测方法 |
-
2021
- 2021-03-29 CN CN202110334060.7A patent/CN112802016B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110175988A (zh) * | 2019-04-25 | 2019-08-27 | 南京邮电大学 | 基于深度学习的布匹缺陷检测方法 |
CN110930470A (zh) * | 2019-11-18 | 2020-03-27 | 佛山市南海区广工大数控装备协同创新研究院 | 一种基于深度学习的布匹缺陷图像生成方法 |
CN111028204A (zh) * | 2019-11-19 | 2020-04-17 | 清华大学 | 一种基于多模态融合深度学习的布匹缺陷检测方法 |
CN111862059A (zh) * | 2020-07-25 | 2020-10-30 | 苏州臻识信息科技有限公司 | 一种基于深度学习多层特征融合的布匹缺陷检测方法 |
Non-Patent Citations (1)
Title |
---|
岳慧慧;白瑞林;: "基于改进YOLOv3的木结缺陷检测方法研究", 自动化仪表, no. 03 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113510700A (zh) * | 2021-05-19 | 2021-10-19 | 哈尔滨理工大学 | 一种机器人抓取任务的触觉感知方法 |
CN114398818A (zh) * | 2021-06-02 | 2022-04-26 | 江苏盛邦纺织品有限公司 | 基于深度学习的纺织提花检测方法及系统 |
CN114398818B (zh) * | 2021-06-02 | 2024-05-24 | 中科维卡(苏州)自动化科技有限公司 | 基于深度学习的纺织提花检测方法及系统 |
CN113298190A (zh) * | 2021-07-05 | 2021-08-24 | 四川大学 | 一种基于大尺寸的不平衡样本的焊缝图像识别分类算法 |
CN113686878A (zh) * | 2021-09-03 | 2021-11-23 | 太原理工大学 | 一种特钢棒材表面缺陷多级联合检测方法及系统 |
CN113686878B (zh) * | 2021-09-03 | 2024-02-09 | 太原理工大学 | 一种特钢棒材表面缺陷多级联合检测方法及系统 |
CN113888485A (zh) * | 2021-09-23 | 2022-01-04 | 浙江工业大学 | 一种基于深度学习的磁芯表面缺陷的检测方法 |
CN114119607A (zh) * | 2022-01-20 | 2022-03-01 | 广州易道智慧信息科技有限公司 | 基于深度神经网络的酒瓶缺陷样本生成方法及系统 |
CN114332084A (zh) * | 2022-03-11 | 2022-04-12 | 齐鲁工业大学 | 一种基于深度学习的pcb表面缺陷检测方法 |
CN114973335A (zh) * | 2022-07-29 | 2022-08-30 | 深圳叮当科技技术有限公司 | 基于深度学习的工地安全行为监测方法、装置及电子设备 |
CN116484259A (zh) * | 2023-04-28 | 2023-07-25 | 北京建筑大学 | 一种城市管网缺陷位置定位分析方法和系统 |
CN117011289A (zh) * | 2023-09-27 | 2023-11-07 | 广州中浩控制技术有限公司 | 用于软胶囊生产的质量检验、系统、介质及计算机设备 |
CN118656597A (zh) * | 2024-08-16 | 2024-09-17 | 深圳市宝田精工科技有限公司 | 基于深度学习实现通讯模具组件的效果分析方法及系统 |
CN118656597B (zh) * | 2024-08-16 | 2025-01-07 | 深圳市宝田精工科技有限公司 | 基于深度学习实现通讯模具组件的效果分析方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN112802016B (zh) | 2023-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112802016A (zh) | 基于深度学习的实时布匹缺陷检测方法及系统 | |
CN111402226A (zh) | 一种基于级联卷积神经网络的表面疵点检测方法 | |
CN108520114B (zh) | 一种纺织布疵点检测模型及其训练方法和应用 | |
CN112102224B (zh) | 一种基于深度卷积神经网络的布匹疵点识别方法 | |
CN114842019B (zh) | 一种电池板表面缺陷检测方法、系统、存储介质及设备 | |
CN111080691A (zh) | 一种光伏组件红外热斑检测方法、装置 | |
CN109509187A (zh) | 一种针对大分辨率布匹图像中的小瑕疵的高效检验算法 | |
CN115170475A (zh) | 一种基于深度学习方法的无纺布缺陷检测方法 | |
CN111951218A (zh) | 一种混合深度学习模型的口红质检系统 | |
Ma et al. | A hierarchical attention detector for bearing surface defect detection | |
CN111986145A (zh) | 一种基于Faster-RCNN的轴承滚子瑕疵检测方法 | |
Luo et al. | A lightweight detector based on attention mechanism for fabric defect detection | |
CN116703919A (zh) | 一种基于最优传输距离损失模型的表面杂质检测方法 | |
CN109975307A (zh) | 基于统计投影训练的轴承表面缺陷检测系统及检测方法 | |
CN115457026A (zh) | 一种基于改进YOLOv5的纸病检测方法 | |
CN114972246A (zh) | 一种基于深度学习的模切产品表面缺陷检测方法 | |
CN119067920A (zh) | 一种基于yolov8双目视觉的木板缺陷在线检测方法 | |
CN111709429A (zh) | 一种基于卷积神经网络的机织物结构参数识别方法 | |
CN112927222B (zh) | 一种基于混合改进Faster R-CNN实现多种类光伏阵列热斑检测方法 | |
Zhang et al. | Defect detection of bottled liquor based on deep learning | |
CN116630269A (zh) | 一种改进YOLOv5s的布匹瑕疵检测方法 | |
CN116645351A (zh) | 一种复杂场景的缺陷在线检测方法及系统 | |
CN115239615A (zh) | 基于ctpn的布匹缺陷检测方法 | |
CN114235810A (zh) | 一种基于面阵工业相机的布匹瑕疵自动检测方法 | |
CN111488785A (zh) | 基于窑内图像的回转窑工况检测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20210514 Assignee: Jinan Sihai Migu Network Technology Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980037683 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241219 Application publication date: 20210514 Assignee: Foshan Sihai Migu Network Technology Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980037682 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241219 Application publication date: 20210514 Assignee: Haikou Migu Network Technology Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980037681 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241219 Application publication date: 20210514 Assignee: Shenzhen Haisi Enterprise Management Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980037657 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241219 Application publication date: 20210514 Assignee: SHENZHEN MIGOU NETWORK TECHNOLOGY Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980037655 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241219 Application publication date: 20210514 Assignee: Shenzhen Bangqi Technology Innovation Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980037649 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241219 Application publication date: 20210514 Assignee: Shenzhen Tianqu XingKong Technology Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980039401 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241219 Application publication date: 20210514 Assignee: Shenzhen Manderson Investment Development Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980038695 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241219 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20210514 Assignee: Shenzhen Xiaochao Technology Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980040188 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241219 Application publication date: 20210514 Assignee: Shenzhen Zhuoya Automation Technology Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980040186 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241219 Application publication date: 20210514 Assignee: Shenzhen Qianhaiji Weiye Industrial Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980040185 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241219 Application publication date: 20210514 Assignee: Shenzhen Wan District Communication Technology Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980039393 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241219 Application publication date: 20210514 Assignee: Yimei Smart Technology (Shenzhen) Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980039386 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241219 Application publication date: 20210514 Assignee: Shenzhen kuaizun Design Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980039086 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241219 Application publication date: 20210514 Assignee: Shenzhen Kuaizhun Education Consulting Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980039080 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241219 Application publication date: 20210514 Assignee: Shenzhen Yijia Yizhuang Energy Technology Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980038986 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241219 Application publication date: 20210514 Assignee: Shenzhen Zhidian New Energy Technology Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980038984 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241219 Application publication date: 20210514 Assignee: Shenzhen Huashun Tiancheng Energy Technology Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980038708 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241219 Application publication date: 20210514 Assignee: Shenzhen Dexin Quan Technology Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980038655 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241219 Application publication date: 20210514 Assignee: Shenzhen Wengu Technology Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980038618 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241219 Application publication date: 20210514 Assignee: Shenzhen Daowei Technology Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980037692 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241219 Application publication date: 20210514 Assignee: SHENZHEN BOBEITE TECHNOLOGY DEVELOPMENT Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980037689 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241219 Application publication date: 20210514 Assignee: Shenzhen Touchu Technology Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980037688 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241219 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20210514 Assignee: Shenzhen Huashun Yunqi Technology Service Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980041967 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241224 Application publication date: 20210514 Assignee: Shenzhen Yueya'er Network Technology Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980041609 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241224 Application publication date: 20210514 Assignee: Zhiyun (Shenzhen) Industrial Technology Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980040607 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241224 Application publication date: 20210514 Assignee: Shenzhen Fengtang Technology Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980040519 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241223 Application publication date: 20210514 Assignee: Shenzhen Xinhao Industrial Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980040500 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241223 Application publication date: 20210514 Assignee: Shenzhen Guanbiao Technical Service Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980040467 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241223 Application publication date: 20210514 Assignee: Shenzhen Rongshi Network Technology Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980040201 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241219 Application publication date: 20210514 Assignee: Shenzhen Jingfeng Technology Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980040199 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241219 Application publication date: 20210514 Assignee: Shenzhen Juwuyou Technology Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980040198 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241219 Application publication date: 20210514 Assignee: Shenzhen shichuangsheng Electronic Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980040197 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241219 Application publication date: 20210514 Assignee: Shenzhen Xuanyu Technology Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980040196 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241223 Application publication date: 20210514 Assignee: Shenzhen Aokai Network Technology Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980040195 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241220 Application publication date: 20210514 Assignee: Shenzhen Yijia Technology Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980040194 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241219 Application publication date: 20210514 Assignee: Shenzhen Fenglin Information Technology Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980040193 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241220 Application publication date: 20210514 Assignee: Shaanxi Juliusanluwu Information Technology Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980040191 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241219 Application publication date: 20210514 Assignee: Shenzhen Bingchengtai Technology Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980040190 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241220 Application publication date: 20210514 Assignee: Chengdu Innovation Sanluwu Information Technology Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980040189 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241219 Application publication date: 20210514 Assignee: Shenzhen Lvyang Environmental Protection Technology Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980040187 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241219 Application publication date: 20210514 Assignee: Jiajingjie Environmental Technology Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980040177 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241223 Application publication date: 20210514 Assignee: Shenzhen city wall Creative Technology Ltd. Assignor: SHENZHEN University Contract record no.: X2024980040176 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241223 Application publication date: 20210514 Assignee: Shenzhen Mingji Agricultural Development Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980040174 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241223 Application publication date: 20210514 Assignee: Shenzhen Ruofei Culture Communication Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980040172 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241223 Application publication date: 20210514 Assignee: Shenzhen shengxin'an information consulting enterprise Assignor: SHENZHEN University Contract record no.: X2024980040171 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241223 Application publication date: 20210514 Assignee: Shenzhen Wenchuang Intellectual Property Service Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980040170 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241223 Application publication date: 20210514 Assignee: Shenzhen Yingqi Consulting Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980040168 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241223 Application publication date: 20210514 Assignee: Shenzhen Shanyi Culture Media Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980040167 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241224 Application publication date: 20210514 Assignee: Shenzhen yunduan smart IOT Culture Technology Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980040166 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241223 Application publication date: 20210514 Assignee: SHENZHEN SAIDIXING TECHNOLOGY Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980040163 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241223 Application publication date: 20210514 Assignee: Shenzhen Xinggongchang Technology Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980040158 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241223 Application publication date: 20210514 Assignee: Communication Infinite Software Technology (Shenzhen) Co.,Ltd. Assignor: SHENZHEN University Contract record no.: X2024980039405 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20241219 |
|
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20210514 Assignee: SHENZHEN SUPERWORKER TECHNOLOGY CO.,LTD. Assignor: SHENZHEN University Contract record no.: X2025980002233 Denomination of invention: Real time fabric defect detection method and system based on deep learning Granted publication date: 20230808 License type: Common License Record date: 20250120 |