CN112801073B - 基于深度神经网络的声发射初至信号分类与识别方法 - Google Patents

基于深度神经网络的声发射初至信号分类与识别方法 Download PDF

Info

Publication number
CN112801073B
CN112801073B CN202110403214.3A CN202110403214A CN112801073B CN 112801073 B CN112801073 B CN 112801073B CN 202110403214 A CN202110403214 A CN 202110403214A CN 112801073 B CN112801073 B CN 112801073B
Authority
CN
China
Prior art keywords
data
neural network
acoustic emission
network model
original data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110403214.3A
Other languages
English (en)
Other versions
CN112801073A (zh
Inventor
马孜卓
王一博
薛清峰
常旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Geology and Geophysics of CAS
Original Assignee
Institute of Geology and Geophysics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Geology and Geophysics of CAS filed Critical Institute of Geology and Geophysics of CAS
Priority to CN202110403214.3A priority Critical patent/CN112801073B/zh
Publication of CN112801073A publication Critical patent/CN112801073A/zh
Application granted granted Critical
Publication of CN112801073B publication Critical patent/CN112801073B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/12Classification; Matching

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • Computing Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Signal Processing (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本发明公开了基于深度神经网络的声发射初至信号分类与识别方法,该方法包括以下步骤:S1、对采集得到的声发射原始数据进行清洗处理;S2、对声发射原始数据进行预处理,并将预处理后的数据分为主动源数据、被动源数据及噪声数据三类,定义数据类型作为标签信息;S3、进行多层神经网络模型构建与训练;S4、向训练完毕的神经网络模型中输入全新声发射数据,及对应的标签,实现发射信号的识别与分类。有益效果:通过神经网络模型对不同类型数据的波形特征进行学习;输出不同类型数据的标签,从而实现连续声发射数据有效声发射信号与噪声的区分,主动源信号与被动源信号波形的识别与分类,进而大大提高声发射信号识别与分类的效率与精确度。

Description

基于深度神经网络的声发射初至信号分类与识别方法
技术领域
本发明涉及声发射初至信号分类与识别领域,具体来说,涉及基于深度神经网络的声发射初至信号分类与识别方法。
背景技术
声发射监测技术作为一种动态无损检测技术,被广泛应用于材料内部缺陷的检测。在待检测材料或者物体表面布设一定数量的声发射探测器组成阵列,利用监测过程中采集所得的声发射信号可以分析材料内部缺陷的分布位置、产生过程和材料内部其他物理特性的变化。声发射监测技术已经广泛应用于岩石水力压裂实验或渗流驱替等岩石物理实验中,用以分析实验过程中岩石内部结构的变化和岩石力学参数的变化。
声发射监测主要分为两大类,分别是主动源监测方法与被动源监测方法。主动源监测方法是利用监测阵列中某个探测器作为震源,该探测器激发脉冲信号,阵列中的其他探测器作为接收器接收信号。通过分析阵列中其他探测器接收到的信号波形从而得到待测物体内部速度结构或者其他物理特性。被动源监测是将阵列中所有探测器都作为信号接收器,当待测物体内部结构发生变化时所释放的能量会转化成弹性波被探测器接收到,通过分析接收器所接收到的声发射信号进行声发射事件定位,可以得到待测物体内部发生结构变化的损伤部位。
主动源监测与被动源监测方式不同,所得信号类型不同,信号波形也不相同。通常,在进行声发射监测的时候,采取主动源监测与被动源监测相结合的方法。所以,在进行数据处理的时候也需要将两类信号进行单独分析。由于实验室岩石物理实验时间较长,声发射监测也是一个不间断的连续过程,故监测数据量巨大,通过人工将两类数据进行分类并拾取的效率较为低下。
近年来,随着计算能力与计算技术的不断发展,基于机器学习的图像识别与分类方法已经在图像或者语音处理等诸多领域发展成熟。深度神经网络在地震信号识别、震相分类等问题上已得到了较好的应用。深度神经网络是一种基本的机器学习方法,旨在模拟人类大脑学习过程。在构建样本数据集后,利用彼此互联的非线性“神经元”按照一定的组合方式形成复杂网状结构,可以对输入特征集合(即地震波形)与预测输出值(震相类型或初至到时等)之间复杂的非线性关系进行学习和训练,并能对全新的输入数据进行分析处理。
在声发射监测过程中,监测时间长,采样频率很高,所以数据量非常大。并且由于声发射监测技术中采用主动源监测与被动源监测相结合这一特点,所以采集所得的声发射数据类型丰富,人工进行主动源声发射信号与被动源声发射信号的区分的工作量很大。
针对相关技术中的问题,目前尚未提出有效的解决方案。
发明内容
针对相关技术中的问题,本发明提出基于深度神经网络的声发射初至信号分类与识别方法,以克服现有相关技术所存在的上述技术问题。
为此,本发明采用的具体技术方案如下:
基于深度神经网络的声发射初至信号分类与识别方法,该方法包括以下步骤:
S1、对采集得到的声发射原始数据进行清洗处理;
S2、对声发射原始数据进行预处理,并将预处理后的数据分为主动源数据、被动源数据及噪声数据三类,定义数据类型作为标签信息;
S3、进行多层神经网络模型构建与训练;
S4、向训练完毕的神经网络模型中输入全新声发射数据,及对应的标签,实现发射信号的识别与分类。
进一步的,所述对采集得到的声发射原始数据进行清洗处理包括以下步骤:
S11、评估声发射原始数据的数据量,分析原始数据的整体质量;
S12、对原始数据中存在的缺失值进行处理;
S13、采用平均值来代替原始数据中的存在的异常值;
S14、对多通道原始数据进行归一化处理;
S15、检查原始数据道头字段,并删除道头字段中不完整的数据。进一步的,所述对原始数据中存在的缺失值进行处理包括以下步骤:
S121、当数据中多个通道均存在大量缺失值,则删除该数据;
S122、当某个数据中只存在个别通道中的某些时刻出现缺失值,则取平均值来填充。
进一步的,所述多通道原始数据由声发射监测阵列所包含的多个探测器监测得到。
进一步的,所述道头字段中包含时间信息。
进一步的,所述对声发射原始数据进行预处理,并将预处理后的数据分为主动源数据、被动源数据及噪声数据三类,定义数据类型作为标签信息包括以下步骤:
S21、针对待测物体建立空间直角坐标系,确定声发射监测阵列中每个探测器的坐标位置,并将三维坐标位置对应写入多通道数据的道头文件中;
S22、筛选出原始数据中的主动数据源,同时将震源激发位置坐标写入对应的数据道头中;
S23、区分出原始数据中的被动源数据与噪声数据;
S24、将筛选与区分完毕后的数据分为主动数据源、被动源数据及噪声数据三类,并在数据道头中分别对三类数据类型进行标记;
S25、对主动源数据与被动源数据中的初至信息进行拾取,并将拾取所得的到时信息写入对应的数据道头字段中;
S26、根据比例对数据进行随机抽取并划分为训练集与测试集。
进一步的,所述训练集与测试集的比例为8:2。
进一步的,所述进行多层神经网络模型构建与训练包括以下步骤:
S31、构建有若干隐藏层的深度神经网络模型,并输入数据集中的数据;
S32、计算神经网络模型的输入与输出标签的误差来更新网络参数;
S33、用验证集来验证神经网络模型,当验证训练达到预设准确率后,完成神经网络模型训练。
进一步的,所述计算神经网络模型的输入与输出标签的误差来更新网络参数包括以下步骤;
S321、使用自适应参数的优化方法实现神经网络参数更新;
S322、采用交叉熵作为损失函数计算神经网络的误差。
进一步的,所述神经网络模型中通过采用线性整流函数作为神经元的激活函数,神经网络模型末端的输出层使用归一化植树函数。
本发明的有益效果为:通过构建声发射数据标记数据集,构建多层深度神经网络模型;将经过标记的主动源声发射信号与被动源声发射信号的初至波形作为神经网络的输入;神经网络模型对不同类型数据的波形特征进行学习;输出不同类型数据的标签,从而准确实现连续声发射数据有效声发射信号与噪声的区分,及主动源信号与被动源信号波形的识别与分类,大大提高声发射信号的识别效率与精确度。
此外,在深度神经网络模型训练过程中采用应用最广泛的线性整流函数(ReLU)函数作为神经元的激活函数,神经网络输出层使用归一化指数函数(Softmax)函数计算输入数据归为各类的概率。在进行神经网络模型训练中,使用自适应参数的优化方法实现神经网络模型参数更新,使用交叉熵作为损失函数来评估神经网络预测结果从而计算网络误差,使用dropout算法防止过拟合从而提升网络的容错能力。
本方法运算效率高,准确度高,算法结构复杂度低,计算成本低。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明实施例的基于深度神经网络的声发射初至信号分类与识别方法的流程框图。
具体实施方式
为进一步说明各实施例,本发明提供有附图,这些附图为本发明揭露内容的一部分,其主要用以说明实施例,并可配合说明书的相关描述来解释实施例的运作原理,配合参考这些内容,本领域普通技术人员应能理解其他可能的实施方式以及本发明的优点,图中的组件并未按比例绘制,而类似的组件符号通常用来表示类似的组件。
根据本发明的实施例,提供了基于深度神经网络的声发射初至信号分类与识别方法。
现结合附图和具体实施方式对本发明进一步说明,如图1所示,根据本发明实施例的基于深度神经网络的声发射初至信号分类与识别方法,该方法包括以下步骤:
S1、对采集得到的声发射原始数据进行清洗处理;
S2、对声发射原始数据进行预处理,并将预处理后的数据分为主动源数据、被动源数据及噪声数据三类,定义数据类型作为标签信息;
S3、进行多层神经网络模型构建与训练;
S4、向训练完毕的神经网络模型中输入全新声发射数据,及对应的标签,实现发射信号的识别与分类。
在一个实施例中,所述对采集得到的声发射原始数据进行清洗处理包括以下步骤:
S11、评估声发射原始数据的数据量,分析原始数据的整体质量;
S12、对原始数据中存在的缺失值进行处理;
S13、采用平均值来代替原始数据中的存在的异常值;
S14、对多通道原始数据进行归一化处理;
S15、检查原始数据道头字段,并删除道头字段中不完整的数据。
从而保证深度神经网络模型训练的成功率。
在一个实施例中,所述对原始数据中存在的缺失值进行处理包括以下步骤:
S121、当数据中多个通道均存在大量缺失值,则删除该数据;
S122、当某个数据中只存在个别通道中的某些时刻出现缺失值,则取平均值来填充。
在一个实施例中,所述多通道原始数据由声发射监测阵列所包含的多个探测器监测得到。
在一个实施例中,所述道头字段中包含时间信息。
在一个实施例中,所述对声发射原始数据进行预处理,并将预处理后的数据分为主动源数据、被动源数据及噪声数据三类,定义数据类型作为标签信息包括以下步骤:
S21、针对待测物体建立空间直角坐标系,确定声发射监测阵列中每个探测器的坐标位置,并将三维坐标位置对应写入多通道数据的道头文件中;
S22、筛选出原始数据中的主动数据源,并且在进行主动源监测时,震源激发时间和震源激发位置已知,故可以将震源激发位置坐标写入对应的数据道头中;
S23、筛选完主动源数据后,根据能否识别出基本波形为特征区分出原始数据中的被动源数据与噪声数据;
S24、将筛选与区分完毕后的数据分为主动数据源、被动源数据及噪声数据三类,并在数据道头中分别对三类数据类型进行标记;
S25、对主动源数据与被动源数据中的初至信息进行拾取,并将拾取所得的到时信息写入对应的数据道头字段中;
S26、根据比例对数据进行随机抽取并划分为训练集与测试集。
其中,在数据道头中将这这三数据类型进行标记,将主动源数据的类型字段定义为1,将被动源数据的类型字段定义为2,将噪声数据的类型字段定义为3。
在一个实施例中,所述训练集与测试集的比例为8:2。
在一个实施例中,所述进行多层神经网络模型构建与训练包括以下步骤:
S31、构建有若干隐藏层的深度神经网络模型,并输入数据集中的数据;
S32、计算神经网络模型的输入与输出标签的误差来更新网络参数;
S33、用验证集来验证神经网络模型,当验证训练达到预设准确率后,完成神经网络模型训练。
其中,根据数据标签对神经网络进行有监督训练,设置主动源信号的标签为[1,0,0];设置被动源信号的标签为[0,1,0];设置噪声的标签为[0,0,1],并将不同类型数据的标签作为神经网络的输出值。
在一个实施例中,所述计算神经网络模型的输入与输出标签的误差来更新网络参数包括以下步骤;
S321、使用自适应参数的优化方法实现神经网络参数更新;
S322、采用交叉熵作为损失函数计算神经网络的误差。
此外,还采用dropout算法提升网络的容错能力。
在一个实施例中,所述神经网络模型中通过采用线性整流函数作为神经元的激活函数,神经网络模型末端的输出层使用归一化植树函数。
此外,在神经网络训练结束后,利用验证集中的数据来验证神经网络的性能。查看 网络输出的三维向量
Figure 631279DEST_PATH_IMAGE002
。其中,第k个向量
Figure 614278DEST_PATH_IMAGE004
表示待验证数 据属于第k类的概率。这3个分两种的最大值对应的类型为经过神经网络判断出的数据类别 n,
Figure 681591DEST_PATH_IMAGE006
综上所述,借助于本发明的上述技术方案,通过构建声发射数据标记数据集,构建多层深度神经网络模型;将经过标记的主动源声发射信号与被动源声发射信号的初至波形作为神经网络的输入;神经网络模型对不同类型数据的波形特征进行学习;输出不同类型数据的标签,从而准确实现连续声发射数据有效声发射信号与噪声的区分,及主动源信号与被动源信号波形的识别与分类,大大提高声发射信号的识别效率与精确度。
此外,在深度神经网络模型训练过程中采用应用最广泛的线性整流函数(ReLU)函数作为神经元的激活函数,神经网络输出层使用归一化指数函数(Softmax)函数计算输入数据归为各类的概率。在进行神经网络模型训练中,使用自适应参数的优化方法实现神经网络模型参数更新,使用交叉熵作为损失函数来评估神经网络预测结果从而计算网络误差,使用dropout算法防止过拟合从而提升网络的容错能力。
本方法运算效率高,准确度高,算法结构复杂度低,计算成本低。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.基于深度神经网络的声发射初至信号分类与识别方法,其特征在于,该方法包括以下步骤:
S1、对采集得到的声发射原始数据进行清洗处理;
S2、对声发射原始数据进行预处理,并将预处理后的数据分为主动源数据、被动源数据及噪声数据三类,定义数据类型作为标签信息;
S3、进行多层神经网络模型构建与训练;
S4、向训练完毕的神经网络模型中输入全新声发射数据,及对应的标签,实现发射信号的识别与分类;
其中,所述对采集得到的声发射原始数据进行清洗处理包括以下步骤:
S11、评估声发射原始数据的数据量,分析原始数据的整体质量;
S12、对原始数据中存在的缺失值进行处理;
S13、采用平均值来代替原始数据中的存在的异常值;
S14、对多通道原始数据进行归一化处理;
S15、检查原始数据道头字段,并删除道头字段中不完整的数据;
其中,所述对原始数据中存在的缺失值进行处理包括以下步骤:
S121、当数据中多个通道均存在大量缺失值,则删除该数据;
S122、当某个数据中只存在个别通道中的某些时刻出现缺失值,则取平均值来填充;
所述对声发射原始数据进行预处理,并将预处理后的数据分为主动源数据、被动源数据及噪声数据三类,定义数据类型作为标签信息包括以下步骤:
S21、针对待测物体建立空间直角坐标系,确定声发射监测阵列中每个探测器的坐标位置,并将三维坐标位置对应写入多通道数据的道头文件中;
S22、筛选出原始数据中的主动数据源,同时将震源激发位置坐标写入对应的数据道头中;
S23、区分出原始数据中的被动源数据与噪声数据;
S24、将筛选与区分完毕后的数据分为主动数据源、被动源数据及噪声数据三类,并在数据道头中分别对三类数据类型进行标记;
S25、对主动源数据与被动源数据中的初至信息进行拾取,并将拾取所得的到时信息写入对应的数据道头字段中;
S26、根据比例对数据进行随机抽取并划分为训练集与测试集;
所述进行多层神经网络模型构建与训练包括以下步骤:
S31、构建有若干隐藏层的深度神经网络模型,并输入数据集中的数据;
S32、计算神经网络模型的输入与输出标签的误差来更新网络参数;
S33、用验证集来验证神经网络模型,当验证训练达到预设准确率后,完成神经网络模型训练;
所述计算神经网络模型的输入与输出标签的误差来更新网络参数包括以下步骤;
S321、使用自适应参数的优化方法实现神经网络参数更新;
S322、采用交叉熵作为损失函数计算神经网络的误差;
其中,所述神经网络模型中通过采用线性整流函数作为神经元的激活函数,神经网络模型末端的输出层使用归一化植树函数。
2.根据权利要求1所述的基于深度神经网络的声发射初至信号分类与识别方法,其特征在于,所述多通道原始数据由声发射监测阵列所包含的多个探测器监测得到。
3.根据权利要求2所述的基于深度神经网络的声发射初至信号分类与识别方法,其特征在于,所述道头字段中包含时间信息。
4.根据权利要求3所述的基于深度神经网络的声发射初至信号分类与识别方法,其特征在于,所述训练集与测试集的比例为8:2。
CN202110403214.3A 2021-04-15 2021-04-15 基于深度神经网络的声发射初至信号分类与识别方法 Active CN112801073B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110403214.3A CN112801073B (zh) 2021-04-15 2021-04-15 基于深度神经网络的声发射初至信号分类与识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110403214.3A CN112801073B (zh) 2021-04-15 2021-04-15 基于深度神经网络的声发射初至信号分类与识别方法

Publications (2)

Publication Number Publication Date
CN112801073A CN112801073A (zh) 2021-05-14
CN112801073B true CN112801073B (zh) 2021-11-16

Family

ID=75811423

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110403214.3A Active CN112801073B (zh) 2021-04-15 2021-04-15 基于深度神经网络的声发射初至信号分类与识别方法

Country Status (1)

Country Link
CN (1) CN112801073B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114896468B (zh) * 2022-04-24 2024-02-02 北京月新时代科技股份有限公司 基于神经网络的文件类型匹配方法和数据智能录入方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102242871B (zh) * 2011-07-07 2013-10-09 中国船舶重工集团公司第七○二研究所 深海运载器液压管道泄漏声发射源定位方法
JP2017505444A (ja) * 2013-10-30 2017-02-16 テクタス・ドリームラブ・プライベート・リミテッドTectus Dreamlab Pte Ltd 対象物、特に建造物を検査するための構成および方法
CN111507048B (zh) * 2020-04-23 2022-11-08 中国石油大学(北京) 一种致密砂岩储层含气性的预测方法、装置、设备及系统

Also Published As

Publication number Publication date
CN112801073A (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
CN106407649B (zh) 基于时间递归神经网络的微震信号到时自动拾取方法
CN109635461B (zh) 一种应用随钻参数来自动识别围岩级别的方法和系统
CN110213244A (zh) 一种基于时空特征融合的网络入侵检测方法
CN109858509A (zh) 基于多层随机神经网络单分类器异常检测方法
CN108932480A (zh) 基于1d-cnn的分布式光纤传感信号特征学习与分类方法
CN109408389A (zh) 一种基于深度学习的代码缺陷检测方法及装置
CN111562612B (zh) 一种基于注意力机制的深度学习微震事件识别方法及系统
CN110247910A (zh) 一种异常流量的检测方法、系统及相关组件
CN111832432B (zh) 一种基于小波包分解和深度学习的刀具磨损实时预测方法
CN108897975A (zh) 基于深度信念网络的煤层气测井含气量预测方法
CN112183643B (zh) 基于声发射的硬岩拉剪破裂识别方法及装置
CN111738044A (zh) 一种基于深度学习行为识别的校园暴力评估方法
CN111126820A (zh) 反窃电方法及系统
CN112147221B (zh) 基于超声波探伤仪数据的钢轨螺孔裂纹识别方法及系统
CN112799130A (zh) 一种基于深度学习的地震波振幅预测方法
CN112801073B (zh) 基于深度神经网络的声发射初至信号分类与识别方法
CN117034143B (zh) 一种基于机器学习的分布式系统故障诊断方法及装置
CN111783616B (zh) 一种基于数据驱动自学习的无损检测方法
CN112836075A (zh) 基于深度学习和迁移学习的岩层结构智能检测分类方法
CN110956543A (zh) 异常交易检测的方法
CN113593605B (zh) 一种基于深度神经网络的工业音频故障监测系统和方法
CN115643153A (zh) 基于图神经网络的报警关联分析方法
CN113592028A (zh) 多专家分类委员会机器测井流体识别的方法及系统
Nadagouda et al. Switched hawkes processes
Cai et al. Automatic arrival-time picking of P-and S-waves of micro-seismic events based on relative standard generative adversarial network and GHRA

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant