CN112794856A - Organic compounds, mixtures, compositions and uses thereof - Google Patents
Organic compounds, mixtures, compositions and uses thereof Download PDFInfo
- Publication number
- CN112794856A CN112794856A CN202011139370.5A CN202011139370A CN112794856A CN 112794856 A CN112794856 A CN 112794856A CN 202011139370 A CN202011139370 A CN 202011139370A CN 112794856 A CN112794856 A CN 112794856A
- Authority
- CN
- China
- Prior art keywords
- group
- atoms
- compound
- organic compound
- organic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 150000002894 organic compounds Chemical class 0.000 title claims abstract description 59
- 239000000203 mixture Substances 0.000 title claims abstract description 56
- 239000000463 material Substances 0.000 claims abstract description 109
- 125000003118 aryl group Chemical group 0.000 claims abstract description 44
- 125000006413 ring segment Chemical group 0.000 claims description 52
- SPKSOWKQTVDRTK-UHFFFAOYSA-N 2-hydroxy-4-(4-methyl-1,3-dioxoisoindol-2-yl)benzoic acid Chemical group O=C1C=2C(C)=CC=CC=2C(=O)N1C1=CC=C(C(O)=O)C(O)=C1 SPKSOWKQTVDRTK-UHFFFAOYSA-N 0.000 claims description 39
- 125000001072 heteroaryl group Chemical group 0.000 claims description 31
- -1 cyano, carbamoyl Chemical group 0.000 claims description 28
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 claims description 28
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 18
- 125000003545 alkoxy group Chemical group 0.000 claims description 17
- UFWIBTONFRDIAS-UHFFFAOYSA-N naphthalene-acid Natural products C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 claims description 16
- 229910052717 sulfur Inorganic materials 0.000 claims description 13
- 230000000903 blocking effect Effects 0.000 claims description 12
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 12
- 150000002790 naphthalenes Chemical class 0.000 claims description 12
- 125000005309 thioalkoxy group Chemical group 0.000 claims description 12
- 125000000217 alkyl group Chemical group 0.000 claims description 11
- 125000004122 cyclic group Chemical group 0.000 claims description 10
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 10
- XSCHRSMBECNVNS-UHFFFAOYSA-N quinoxaline Chemical compound N1=CC=NC2=CC=CC=C21 XSCHRSMBECNVNS-UHFFFAOYSA-N 0.000 claims description 9
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 8
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 claims description 8
- 125000005067 haloformyl group Chemical group 0.000 claims description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims description 8
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 claims description 8
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M thiocyanate group Chemical group [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 claims description 8
- 125000004453 alkoxycarbonyl group Chemical group 0.000 claims description 7
- 125000005161 aryl oxy carbonyl group Chemical group 0.000 claims description 7
- 125000004104 aryloxy group Chemical group 0.000 claims description 7
- 229910052794 bromium Inorganic materials 0.000 claims description 7
- 125000006165 cyclic alkyl group Chemical group 0.000 claims description 7
- 229910052731 fluorine Inorganic materials 0.000 claims description 7
- 125000005553 heteroaryloxy group Chemical group 0.000 claims description 7
- 229910052740 iodine Inorganic materials 0.000 claims description 7
- 125000000468 ketone group Chemical group 0.000 claims description 7
- 239000003960 organic solvent Substances 0.000 claims description 7
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 claims description 7
- 229910052801 chlorine Inorganic materials 0.000 claims description 5
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N hydrogen thiocyanate Natural products SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 claims description 5
- VINBVOMNIBDIPH-UHFFFAOYSA-N isocyanoimino(oxo)methane Chemical compound O=C=N[N+]#[C-] VINBVOMNIBDIPH-UHFFFAOYSA-N 0.000 claims description 5
- 150000002540 isothiocyanates Chemical class 0.000 claims description 5
- 125000006574 non-aromatic ring group Chemical group 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 229930194542 Keto Natural products 0.000 claims description 4
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 4
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 claims description 3
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 claims description 3
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 3
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 claims description 3
- 125000002462 isocyano group Chemical group *[N+]#[C-] 0.000 claims description 3
- ZBKFYXZXZJPWNQ-UHFFFAOYSA-N isothiocyanate group Chemical group [N-]=C=S ZBKFYXZXZJPWNQ-UHFFFAOYSA-N 0.000 claims description 3
- AFYPFACVUDMOHA-UHFFFAOYSA-N chlorotrifluoromethane Chemical compound FC(F)(F)Cl AFYPFACVUDMOHA-UHFFFAOYSA-N 0.000 claims 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims 1
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 abstract description 6
- 230000002035 prolonged effect Effects 0.000 abstract description 2
- 150000001875 compounds Chemical class 0.000 description 137
- 239000000543 intermediate Substances 0.000 description 137
- 230000015572 biosynthetic process Effects 0.000 description 112
- 238000003786 synthesis reaction Methods 0.000 description 112
- 238000010189 synthetic method Methods 0.000 description 71
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 45
- 238000006243 chemical reaction Methods 0.000 description 43
- 239000010410 layer Substances 0.000 description 35
- 238000000034 method Methods 0.000 description 21
- 229920000642 polymer Polymers 0.000 description 20
- 239000000243 solution Substances 0.000 description 20
- 238000006069 Suzuki reaction reaction Methods 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- BMIBJCFFZPYJHF-UHFFFAOYSA-N 2-methoxy-5-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine Chemical compound COC1=NC=C(C)C=C1B1OC(C)(C)C(C)(C)O1 BMIBJCFFZPYJHF-UHFFFAOYSA-N 0.000 description 16
- 238000007639 printing Methods 0.000 description 16
- 238000001308 synthesis method Methods 0.000 description 16
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 15
- 125000004429 atom Chemical group 0.000 description 15
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 14
- 239000012043 crude product Substances 0.000 description 14
- 239000000758 substrate Substances 0.000 description 14
- 239000002904 solvent Substances 0.000 description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 12
- 239000000976 ink Substances 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 238000002347 injection Methods 0.000 description 10
- 239000007924 injection Substances 0.000 description 10
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 10
- 239000012074 organic phase Substances 0.000 description 10
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 10
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 8
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 8
- 238000001035 drying Methods 0.000 description 8
- 238000001914 filtration Methods 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- IVDFJHOHABJVEH-UHFFFAOYSA-N pinacol Chemical compound CC(C)(O)C(C)(C)O IVDFJHOHABJVEH-UHFFFAOYSA-N 0.000 description 8
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 7
- 235000019341 magnesium sulphate Nutrition 0.000 description 7
- 125000001424 substituent group Chemical group 0.000 description 7
- 238000005406 washing Methods 0.000 description 7
- DIRRKLFMHQUJCM-UHFFFAOYSA-N (2-aminophenyl)boronic acid Chemical compound NC1=CC=CC=C1B(O)O DIRRKLFMHQUJCM-UHFFFAOYSA-N 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 6
- 230000005669 field effect Effects 0.000 description 6
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthene Chemical compound C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 6
- 238000004770 highest occupied molecular orbital Methods 0.000 description 6
- 230000005525 hole transport Effects 0.000 description 6
- 229910000027 potassium carbonate Inorganic materials 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 5
- 238000010898 silica gel chromatography Methods 0.000 description 5
- NQMUGNMMFTYOHK-UHFFFAOYSA-N 1-methoxynaphthalene Chemical compound C1=CC=C2C(OC)=CC=CC2=C1 NQMUGNMMFTYOHK-UHFFFAOYSA-N 0.000 description 4
- OJVAMHKKJGICOG-UHFFFAOYSA-N 2,5-hexanedione Chemical compound CC(=O)CCC(C)=O OJVAMHKKJGICOG-UHFFFAOYSA-N 0.000 description 4
- IYTXKIXETAELAV-UHFFFAOYSA-N Aethyl-n-hexyl-keton Natural products CCCCCCC(=O)CC IYTXKIXETAELAV-UHFFFAOYSA-N 0.000 description 4
- DUMCJLOQCGZZBQ-UHFFFAOYSA-N C1=CC=C2C=C(B(O)O)C(N)=CC2=C1 Chemical compound C1=CC=C2C=C(B(O)O)C(N)=CC2=C1 DUMCJLOQCGZZBQ-UHFFFAOYSA-N 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- 238000003775 Density Functional Theory Methods 0.000 description 4
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical group CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 4
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 4
- 125000000753 cycloalkyl group Chemical group 0.000 description 4
- ZAJNGDIORYACQU-UHFFFAOYSA-N decan-2-one Chemical compound CCCCCCCCC(C)=O ZAJNGDIORYACQU-UHFFFAOYSA-N 0.000 description 4
- MHDVGSVTJDSBDK-UHFFFAOYSA-N dibenzyl ether Chemical compound C=1C=CC=CC=1COCC1=CC=CC=C1 MHDVGSVTJDSBDK-UHFFFAOYSA-N 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 125000000623 heterocyclic group Chemical group 0.000 description 4
- 239000002346 layers by function Substances 0.000 description 4
- IVSZLXZYQVIEFR-UHFFFAOYSA-N m-xylene Chemical group CC1=CC=CC(C)=C1 IVSZLXZYQVIEFR-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- VKCYHJWLYTUGCC-UHFFFAOYSA-N nonan-2-one Chemical compound CCCCCCCC(C)=O VKCYHJWLYTUGCC-UHFFFAOYSA-N 0.000 description 4
- 238000013086 organic photovoltaic Methods 0.000 description 4
- HFPZCAJZSCWRBC-UHFFFAOYSA-N p-cymene Chemical compound CC(C)C1=CC=C(C)C=C1 HFPZCAJZSCWRBC-UHFFFAOYSA-N 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 4
- 238000010992 reflux Methods 0.000 description 4
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 4
- ZUHZGEOKBKGPSW-UHFFFAOYSA-N tetraglyme Chemical compound COCCOCCOCCOCCOC ZUHZGEOKBKGPSW-UHFFFAOYSA-N 0.000 description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 4
- PBKONEOXTCPAFI-UHFFFAOYSA-N 1,2,4-trichlorobenzene Chemical compound ClC1=CC=C(Cl)C(Cl)=C1 PBKONEOXTCPAFI-UHFFFAOYSA-N 0.000 description 3
- APQSQLNWAIULLK-UHFFFAOYSA-N 1,4-dimethylnaphthalene Chemical compound C1=CC=C2C(C)=CC=C(C)C2=C1 APQSQLNWAIULLK-UHFFFAOYSA-N 0.000 description 3
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical class C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- YADYXHFWGAVBOC-UHFFFAOYSA-N CC1(C)OB(C2=CC3=CC=CC=C3C=C2N)OC1(C)C Chemical group CC1(C)OB(C2=CC3=CC=CC=C3C=C2N)OC1(C)C YADYXHFWGAVBOC-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 3
- 239000010405 anode material Substances 0.000 description 3
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 239000010406 cathode material Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000005401 electroluminescence Methods 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 238000007641 inkjet printing Methods 0.000 description 3
- 239000013067 intermediate product Substances 0.000 description 3
- 239000008204 material by function Substances 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 239000012265 solid product Substances 0.000 description 3
- 238000000967 suction filtration Methods 0.000 description 3
- 238000002207 thermal evaporation Methods 0.000 description 3
- NNWHUJCUHAELCL-SNAWJCMRSA-N trans-isomethyleugenol Chemical compound COC1=CC=C(\C=C\C)C=C1OC NNWHUJCUHAELCL-SNAWJCMRSA-N 0.000 description 3
- NKJOXAZJBOMXID-UHFFFAOYSA-N 1,1'-Oxybisoctane Chemical compound CCCCCCCCOCCCCCCCC NKJOXAZJBOMXID-UHFFFAOYSA-N 0.000 description 2
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- BFIMMTCNYPIMRN-UHFFFAOYSA-N 1,2,3,5-tetramethylbenzene Chemical compound CC1=CC(C)=C(C)C(C)=C1 BFIMMTCNYPIMRN-UHFFFAOYSA-N 0.000 description 2
- AGIQIOSHSMJYJP-UHFFFAOYSA-N 1,2,4-Trimethoxybenzene Chemical compound COC1=CC=C(OC)C(OC)=C1 AGIQIOSHSMJYJP-UHFFFAOYSA-N 0.000 description 2
- CSNIZNHTOVFARY-UHFFFAOYSA-N 1,2-benzothiazole Chemical class C1=CC=C2C=NSC2=C1 CSNIZNHTOVFARY-UHFFFAOYSA-N 0.000 description 2
- KVNYFPKFSJIPBJ-UHFFFAOYSA-N 1,2-diethylbenzene Chemical compound CCC1=CC=CC=C1CC KVNYFPKFSJIPBJ-UHFFFAOYSA-N 0.000 description 2
- QNLZIZAQLLYXTC-UHFFFAOYSA-N 1,2-dimethylnaphthalene Chemical compound C1=CC=CC2=C(C)C(C)=CC=C21 QNLZIZAQLLYXTC-UHFFFAOYSA-N 0.000 description 2
- DPZNOMCNRMUKPS-UHFFFAOYSA-N 1,3-Dimethoxybenzene Chemical compound COC1=CC=CC(OC)=C1 DPZNOMCNRMUKPS-UHFFFAOYSA-N 0.000 description 2
- AFZZYIJIWUTJFO-UHFFFAOYSA-N 1,3-diethylbenzene Chemical compound CCC1=CC=CC(CC)=C1 AFZZYIJIWUTJFO-UHFFFAOYSA-N 0.000 description 2
- DSNHSQKRULAAEI-UHFFFAOYSA-N 1,4-Diethylbenzene Chemical compound CCC1=CC=C(CC)C=C1 DSNHSQKRULAAEI-UHFFFAOYSA-N 0.000 description 2
- SPPWGCYEYAMHDT-UHFFFAOYSA-N 1,4-di(propan-2-yl)benzene Chemical compound CC(C)C1=CC=C(C(C)C)C=C1 SPPWGCYEYAMHDT-UHFFFAOYSA-N 0.000 description 2
- GDXHBFHOEYVPED-UHFFFAOYSA-N 1-(2-butoxyethoxy)butane Chemical compound CCCCOCCOCCCC GDXHBFHOEYVPED-UHFFFAOYSA-N 0.000 description 2
- JRRDISHSXWGFRF-UHFFFAOYSA-N 1-[2-(2-ethoxyethoxy)ethoxy]-2-methoxyethane Chemical compound CCOCCOCCOCCOC JRRDISHSXWGFRF-UHFFFAOYSA-N 0.000 description 2
- HYLLZXPMJRMUHH-UHFFFAOYSA-N 1-[2-(2-methoxyethoxy)ethoxy]butane Chemical compound CCCCOCCOCCOC HYLLZXPMJRMUHH-UHFFFAOYSA-N 0.000 description 2
- SNAQINZKMQFYFV-UHFFFAOYSA-N 1-[2-[2-(2-methoxyethoxy)ethoxy]ethoxy]butane Chemical compound CCCCOCCOCCOCCOC SNAQINZKMQFYFV-UHFFFAOYSA-N 0.000 description 2
- RRQYJINTUHWNHW-UHFFFAOYSA-N 1-ethoxy-2-(2-ethoxyethoxy)ethane Chemical compound CCOCCOCCOCC RRQYJINTUHWNHW-UHFFFAOYSA-N 0.000 description 2
- RERATEUBWLKDFE-UHFFFAOYSA-N 1-methoxy-2-[2-(2-methoxypropoxy)propoxy]propane Chemical compound COCC(C)OCC(C)OCC(C)OC RERATEUBWLKDFE-UHFFFAOYSA-N 0.000 description 2
- UDONPJKEOAWFGI-UHFFFAOYSA-N 1-methyl-3-phenoxybenzene Chemical compound CC1=CC=CC(OC=2C=CC=CC=2)=C1 UDONPJKEOAWFGI-UHFFFAOYSA-N 0.000 description 2
- QPUYECUOLPXSFR-UHFFFAOYSA-N 1-methylnaphthalene Chemical compound C1=CC=C2C(C)=CC=CC2=C1 QPUYECUOLPXSFR-UHFFFAOYSA-N 0.000 description 2
- LIWRTHVZRZXVFX-UHFFFAOYSA-N 1-phenyl-3-propan-2-ylbenzene Chemical group CC(C)C1=CC=CC(C=2C=CC=CC=2)=C1 LIWRTHVZRZXVFX-UHFFFAOYSA-N 0.000 description 2
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Chemical compound C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 2
- AVRPFRMDMNDIDH-UHFFFAOYSA-N 1h-quinazolin-2-one Chemical class C1=CC=CC2=NC(O)=NC=C21 AVRPFRMDMNDIDH-UHFFFAOYSA-N 0.000 description 2
- GFWVDQCGGDBTBS-UHFFFAOYSA-N 2,6,8-trimethylnonan-4-one Chemical compound CC(C)CC(C)CC(=O)CC(C)C GFWVDQCGGDBTBS-UHFFFAOYSA-N 0.000 description 2
- ZCJRWQDZPIIYLM-UHFFFAOYSA-N 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline Chemical group O1C(C)(C)C(C)(C)OB1C1=CC=CC=C1N ZCJRWQDZPIIYLM-UHFFFAOYSA-N 0.000 description 2
- CRWNQZTZTZWPOF-UHFFFAOYSA-N 2-methyl-4-phenylpyridine Chemical compound C1=NC(C)=CC(C=2C=CC=CC=2)=C1 CRWNQZTZTZWPOF-UHFFFAOYSA-N 0.000 description 2
- VQGHOUODWALEFC-UHFFFAOYSA-N 2-phenylpyridine Chemical compound C1=CC=CC=C1C1=CC=CC=N1 VQGHOUODWALEFC-UHFFFAOYSA-N 0.000 description 2
- HJKGBRPNSJADMB-UHFFFAOYSA-N 3-phenylpyridine Chemical compound C1=CC=CC=C1C1=CC=CN=C1 HJKGBRPNSJADMB-UHFFFAOYSA-N 0.000 description 2
- GNKZMNRKLCTJAY-UHFFFAOYSA-N 4'-Methylacetophenone Chemical compound CC(=O)C1=CC=C(C)C=C1 GNKZMNRKLCTJAY-UHFFFAOYSA-N 0.000 description 2
- ZPQAKYPOZRXKFA-UHFFFAOYSA-N 6-Undecanone Chemical compound CCCCCC(=O)CCCCC ZPQAKYPOZRXKFA-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- YNMZZHPSYMOGCI-UHFFFAOYSA-N Aethyl-octyl-keton Natural products CCCCCCCCC(=O)CC YNMZZHPSYMOGCI-UHFFFAOYSA-N 0.000 description 2
- FMMWHPNWAFZXNH-UHFFFAOYSA-N Benz[a]pyrene Chemical compound C1=C2C3=CC=CC=C3C=C(C=C3)C2=C2C3=CC=CC2=C1 FMMWHPNWAFZXNH-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- PWATWSYOIIXYMA-UHFFFAOYSA-N Pentylbenzene Chemical compound CCCCCC1=CC=CC=C1 PWATWSYOIIXYMA-UHFFFAOYSA-N 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- XBDYBAVJXHJMNQ-UHFFFAOYSA-N Tetrahydroanthracene Natural products C1=CC=C2C=C(CCCC3)C3=CC2=C1 XBDYBAVJXHJMNQ-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- SLGBZMMZGDRARJ-UHFFFAOYSA-N Triphenylene Natural products C1=CC=C2C3=CC=CC=C3C3=CC=CC=C3C2=C1 SLGBZMMZGDRARJ-UHFFFAOYSA-N 0.000 description 2
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- CWRYPZZKDGJXCA-UHFFFAOYSA-N acenaphthene Chemical compound C1=CC(CC2)=C3C2=CC=CC3=C1 CWRYPZZKDGJXCA-UHFFFAOYSA-N 0.000 description 2
- CUJRVFIICFDLGR-UHFFFAOYSA-N acetylacetonate Chemical compound CC(=O)[CH-]C(C)=O CUJRVFIICFDLGR-UHFFFAOYSA-N 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- RWZYAGGXGHYGMB-UHFFFAOYSA-M anthranilate Chemical compound NC1=CC=CC=C1C([O-])=O RWZYAGGXGHYGMB-UHFFFAOYSA-M 0.000 description 2
- RWZYAGGXGHYGMB-UHFFFAOYSA-N anthranilic acid Chemical group NC1=CC=CC=C1C(O)=O RWZYAGGXGHYGMB-UHFFFAOYSA-N 0.000 description 2
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 2
- 150000008378 aryl ethers Chemical class 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- OCKPCBLVNKHBMX-UHFFFAOYSA-N butylbenzene Chemical compound CCCCC1=CC=CC=C1 OCKPCBLVNKHBMX-UHFFFAOYSA-N 0.000 description 2
- 150000001716 carbazoles Chemical class 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- HHNHBFLGXIUXCM-GFCCVEGCSA-N cyclohexylbenzene Chemical compound [CH]1CCCC[C@@H]1C1=CC=CC=C1 HHNHBFLGXIUXCM-GFCCVEGCSA-N 0.000 description 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 2
- 229940019778 diethylene glycol diethyl ether Drugs 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- SQNZJJAZBFDUTD-UHFFFAOYSA-N durene Chemical compound CC1=CC(C)=C(C)C=C1C SQNZJJAZBFDUTD-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000005281 excited state Effects 0.000 description 2
- 238000003818 flash chromatography Methods 0.000 description 2
- RMBPEFMHABBEKP-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2C3=C[CH]C=CC3=CC2=C1 RMBPEFMHABBEKP-UHFFFAOYSA-N 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- HJOVHMDZYOCNQW-UHFFFAOYSA-N isophorone Chemical compound CC1=CC(=O)CC(C)(C)C1 HJOVHMDZYOCNQW-UHFFFAOYSA-N 0.000 description 2
- 239000005453 ketone based solvent Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- WSGCRAOTEDLMFQ-UHFFFAOYSA-N nonan-5-one Chemical compound CCCCC(=O)CCCC WSGCRAOTEDLMFQ-UHFFFAOYSA-N 0.000 description 2
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N o-biphenylenemethane Natural products C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 2
- 229940078552 o-xylene Drugs 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- YTZKOQUCBOVLHL-UHFFFAOYSA-N p-methylisopropylbenzene Natural products CC(C)(C)C1=CC=CC=C1 YTZKOQUCBOVLHL-UHFFFAOYSA-N 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 2
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 2
- RDOWQLZANAYVLL-UHFFFAOYSA-N phenanthridine Chemical compound C1=CC=C2C3=CC=CC=C3C=NC2=C1 RDOWQLZANAYVLL-UHFFFAOYSA-N 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- MTZWHHIREPJPTG-UHFFFAOYSA-N phorone Chemical compound CC(C)=CC(=O)C=C(C)C MTZWHHIREPJPTG-UHFFFAOYSA-N 0.000 description 2
- 229930193351 phorone Natural products 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- LFSXCDWNBUNEEM-UHFFFAOYSA-N phthalazine Chemical class C1=NN=CC2=CC=CC=C21 LFSXCDWNBUNEEM-UHFFFAOYSA-N 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- UOHMMEJUHBCKEE-UHFFFAOYSA-N prehnitene Chemical compound CC1=CC=C(C)C(C)=C1C UOHMMEJUHBCKEE-UHFFFAOYSA-N 0.000 description 2
- MHOZZUICEDXVGD-UHFFFAOYSA-N pyrrolo[2,3-d]imidazole Chemical class C1=NC2=CC=NC2=N1 MHOZZUICEDXVGD-UHFFFAOYSA-N 0.000 description 2
- RQGPLDBZHMVWCH-UHFFFAOYSA-N pyrrolo[3,2-b]pyrrole Chemical class C1=NC2=CC=NC2=C1 RQGPLDBZHMVWCH-UHFFFAOYSA-N 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 235000010288 sodium nitrite Nutrition 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- IFLREYGFSNHWGE-UHFFFAOYSA-N tetracene Chemical compound C1=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C21 IFLREYGFSNHWGE-UHFFFAOYSA-N 0.000 description 2
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 2
- 229930192474 thiophene Natural products 0.000 description 2
- 230000036962 time dependent Effects 0.000 description 2
- DQWPFSLDHJDLRL-UHFFFAOYSA-N triethyl phosphate Chemical compound CCOP(=O)(OCC)OCC DQWPFSLDHJDLRL-UHFFFAOYSA-N 0.000 description 2
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 description 2
- 125000005580 triphenylene group Chemical group 0.000 description 2
- 238000004402 ultra-violet photoelectron spectroscopy Methods 0.000 description 2
- ABDKAPXRBAPSQN-UHFFFAOYSA-N veratrole Chemical compound COC1=CC=CC=C1OC ABDKAPXRBAPSQN-UHFFFAOYSA-N 0.000 description 2
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- VWCLTWGYSRBKAI-UHFFFAOYSA-N 1,2,3-tripentylbenzene Chemical compound CCCCCC1=CC=CC(CCCCC)=C1CCCCC VWCLTWGYSRBKAI-UHFFFAOYSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- KTZQTRPPVKQPFO-UHFFFAOYSA-N 1,2-benzoxazole Chemical compound C1=CC=C2C=NOC2=C1 KTZQTRPPVKQPFO-UHFFFAOYSA-N 0.000 description 1
- NMUWSGQKPAEPBA-UHFFFAOYSA-N 1,2-dibutylbenzene Chemical compound CCCCC1=CC=CC=C1CCCC NMUWSGQKPAEPBA-UHFFFAOYSA-N 0.000 description 1
- GVSYDCGFYSVNAX-UHFFFAOYSA-N 1,2-dihexylbenzene Chemical compound CCCCCCC1=CC=CC=C1CCCCCC GVSYDCGFYSVNAX-UHFFFAOYSA-N 0.000 description 1
- FQYVVSNFPLKMNU-UHFFFAOYSA-N 1,2-dipentylbenzene Chemical compound CCCCCC1=CC=CC=C1CCCCC FQYVVSNFPLKMNU-UHFFFAOYSA-N 0.000 description 1
- UTFRNSPYRPYKDV-UHFFFAOYSA-N 1,3-dipropoxybenzene Chemical compound CCCOC1=CC=CC(OCCC)=C1 UTFRNSPYRPYKDV-UHFFFAOYSA-N 0.000 description 1
- GWTBXGSNWKXTPX-UHFFFAOYSA-N 1,3-dipropylbenzene Chemical compound CCCC1=CC=CC(CCC)=C1 GWTBXGSNWKXTPX-UHFFFAOYSA-N 0.000 description 1
- 239000005967 1,4-Dimethylnaphthalene Substances 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- IQISOVKPFBLQIQ-UHFFFAOYSA-N 1,4-dimethoxy-2-methylbenzene Chemical compound COC1=CC=C(OC)C(C)=C1 IQISOVKPFBLQIQ-UHFFFAOYSA-N 0.000 description 1
- FWWRTYBQQDXLDD-UHFFFAOYSA-N 1,4-dimethoxynaphthalene Chemical compound C1=CC=C2C(OC)=CC=C(OC)C2=C1 FWWRTYBQQDXLDD-UHFFFAOYSA-N 0.000 description 1
- NNHYAHOTXLASEA-UHFFFAOYSA-N 1-(dimethoxymethyl)-4-methoxybenzene Chemical compound COC(OC)C1=CC=C(OC)C=C1 NNHYAHOTXLASEA-UHFFFAOYSA-N 0.000 description 1
- JTPNRXUCIXHOKM-UHFFFAOYSA-N 1-chloronaphthalene Chemical compound C1=CC=C2C(Cl)=CC=CC2=C1 JTPNRXUCIXHOKM-UHFFFAOYSA-N 0.000 description 1
- BPIUIOXAFBGMNB-UHFFFAOYSA-N 1-hexoxyhexane Chemical compound CCCCCCOCCCCCC BPIUIOXAFBGMNB-UHFFFAOYSA-N 0.000 description 1
- NQVHSBDSEAYZOO-UHFFFAOYSA-N 1-methyl-2-pentylbenzene Chemical compound CCCCCC1=CC=CC=C1C NQVHSBDSEAYZOO-UHFFFAOYSA-N 0.000 description 1
- AOPDRZXCEAKHHW-UHFFFAOYSA-N 1-pentoxypentane Chemical compound CCCCCOCCCCC AOPDRZXCEAKHHW-UHFFFAOYSA-N 0.000 description 1
- KWSHGRJUSUJPQD-UHFFFAOYSA-N 1-phenyl-4-propan-2-ylbenzene Chemical group C1=CC(C(C)C)=CC=C1C1=CC=CC=C1 KWSHGRJUSUJPQD-UHFFFAOYSA-N 0.000 description 1
- MCUPBIBNSTXCPQ-UHFFFAOYSA-N 1-tert-butyl-4-methoxybenzene Chemical compound COC1=CC=C(C(C)(C)C)C=C1 MCUPBIBNSTXCPQ-UHFFFAOYSA-N 0.000 description 1
- XHLHPRDBBAGVEG-UHFFFAOYSA-N 1-tetralone Chemical compound C1=CC=C2C(=O)CCCC2=C1 XHLHPRDBBAGVEG-UHFFFAOYSA-N 0.000 description 1
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- YXWWHNCQZBVZPV-UHFFFAOYSA-N 2'-methylacetophenone Chemical compound CC(=O)C1=CC=CC=C1C YXWWHNCQZBVZPV-UHFFFAOYSA-N 0.000 description 1
- FQEVQRLHHLXZJQ-UHFFFAOYSA-N 2,3-dinitronaphthalene-1,4-diol Chemical compound C1=CC=C2C(O)=C([N+]([O-])=O)C([N+]([O-])=O)=C(O)C2=C1 FQEVQRLHHLXZJQ-UHFFFAOYSA-N 0.000 description 1
- GUMOJENFFHZAFP-UHFFFAOYSA-N 2-Ethoxynaphthalene Chemical compound C1=CC=CC2=CC(OCC)=CC=C21 GUMOJENFFHZAFP-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- XRXMNWGCKISMOH-UHFFFAOYSA-N 2-bromobenzoic acid Chemical compound OC(=O)C1=CC=CC=C1Br XRXMNWGCKISMOH-UHFFFAOYSA-N 0.000 description 1
- DDGPPAMADXTGTN-UHFFFAOYSA-N 2-chloro-4,6-diphenyl-1,3,5-triazine Chemical compound N=1C(Cl)=NC(C=2C=CC=CC=2)=NC=1C1=CC=CC=C1 DDGPPAMADXTGTN-UHFFFAOYSA-N 0.000 description 1
- BSMGLVDZZMBWQB-UHFFFAOYSA-N 2-methyl-1-phenylpropan-1-one Chemical compound CC(C)C(=O)C1=CC=CC=C1 BSMGLVDZZMBWQB-UHFFFAOYSA-N 0.000 description 1
- SHRDVLUJLDYXSO-UHFFFAOYSA-N 2-phenoxyoxane Chemical compound O1CCCCC1OC1=CC=CC=C1 SHRDVLUJLDYXSO-UHFFFAOYSA-N 0.000 description 1
- PBCTYXBHPFCNBB-UHFFFAOYSA-N 2-phenoxyoxolane Chemical compound C1CCOC1OC1=CC=CC=C1 PBCTYXBHPFCNBB-UHFFFAOYSA-N 0.000 description 1
- TVYVQNHYIHAJTD-UHFFFAOYSA-N 2-propan-2-ylnaphthalene Chemical compound C1=CC=CC2=CC(C(C)C)=CC=C21 TVYVQNHYIHAJTD-UHFFFAOYSA-N 0.000 description 1
- AQIIVEISJBBUCR-UHFFFAOYSA-N 4-(3-phenylpropyl)pyridine Chemical compound C=1C=NC=CC=1CCCC1=CC=CC=C1 AQIIVEISJBBUCR-UHFFFAOYSA-N 0.000 description 1
- SBUYFICWQNHBCM-UHFFFAOYSA-N 4-Ethyl-o-xylene Chemical compound CCC1=CC=C(C)C(C)=C1 SBUYFICWQNHBCM-UHFFFAOYSA-N 0.000 description 1
- KGYYLUNYOCBBME-UHFFFAOYSA-M 4-fluoro-2-phenyl-4-(4-propylcyclohexyl)cyclohexa-1,5-diene-1-carboxylate Chemical compound C1CC(CCC)CCC1C1(F)C=CC(C([O-])=O)=C(C=2C=CC=CC=2)C1 KGYYLUNYOCBBME-UHFFFAOYSA-M 0.000 description 1
- PATYHUUYADUHQS-UHFFFAOYSA-N 4-methylpropiophenone Chemical compound CCC(=O)C1=CC=C(C)C=C1 PATYHUUYADUHQS-UHFFFAOYSA-N 0.000 description 1
- AZZHCIXSZZXEAS-UHFFFAOYSA-N 5-phenylpentylbenzene Chemical compound C=1C=CC=CC=1CCCCCC1=CC=CC=C1 AZZHCIXSZZXEAS-UHFFFAOYSA-N 0.000 description 1
- MNALUTYMBUBKNX-UHFFFAOYSA-N 6-methoxy-3,4-dihydro-2h-naphthalen-1-one Chemical compound O=C1CCCC2=CC(OC)=CC=C21 MNALUTYMBUBKNX-UHFFFAOYSA-N 0.000 description 1
- SNFCXVRWFNAHQX-UHFFFAOYSA-N 9,9'-spirobi[fluorene] Chemical compound C12=CC=CC=C2C2=CC=CC=C2C21C1=CC=CC=C1C1=CC=CC=C21 SNFCXVRWFNAHQX-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 239000007818 Grignard reagent Substances 0.000 description 1
- 239000004890 Hydrophobing Agent Substances 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- UVJNTAZFVBBAPP-UHFFFAOYSA-N NC1=C(C2=CC=CC=C2C=2C=CC=CC12)B(O)O Chemical compound NC1=C(C2=CC=CC=C2C=2C=CC=CC12)B(O)O UVJNTAZFVBBAPP-UHFFFAOYSA-N 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical group [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- ABRVLXLNVJHDRQ-UHFFFAOYSA-N [2-pyridin-3-yl-6-(trifluoromethyl)pyridin-4-yl]methanamine Chemical compound FC(C1=CC(=CC(=N1)C=1C=NC=CC=1)CN)(F)F ABRVLXLNVJHDRQ-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229940111121 antirheumatic drug quinolines Drugs 0.000 description 1
- 150000008365 aromatic ketones Chemical class 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- YCOXTKKNXUZSKD-UHFFFAOYSA-N as-o-xylenol Natural products CC1=CC=C(O)C=C1C YCOXTKKNXUZSKD-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 229910001632 barium fluoride Inorganic materials 0.000 description 1
- RFRXIWQYSOIBDI-UHFFFAOYSA-N benzarone Chemical compound CCC=1OC2=CC=CC=C2C=1C(=O)C1=CC=C(O)C=C1 RFRXIWQYSOIBDI-UHFFFAOYSA-N 0.000 description 1
- 150000001556 benzimidazoles Chemical class 0.000 description 1
- 150000008316 benzisoxazoles Chemical class 0.000 description 1
- BNBQRQQYDMDJAH-UHFFFAOYSA-N benzodioxan Chemical compound C1=CC=C2OCCOC2=C1 BNBQRQQYDMDJAH-UHFFFAOYSA-N 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 description 1
- YFNONBGXNFCTMM-UHFFFAOYSA-N butoxybenzene Chemical compound CCCCOC1=CC=CC=C1 YFNONBGXNFCTMM-UHFFFAOYSA-N 0.000 description 1
- FFSAXUULYPJSKH-UHFFFAOYSA-N butyrophenone Chemical compound CCCC(=O)C1=CC=CC=C1 FFSAXUULYPJSKH-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 1
- 150000001717 carbocyclic compounds Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000002484 cyclic voltammetry Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 150000001987 diarylethers Chemical class 0.000 description 1
- 150000004826 dibenzofurans Chemical class 0.000 description 1
- IYYZUPMFVPLQIF-UHFFFAOYSA-N dibenzothiophene Chemical class C1=CC=C2C3=CC=CC=C3SC2=C1 IYYZUPMFVPLQIF-UHFFFAOYSA-N 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- CZZYITDELCSZES-UHFFFAOYSA-N diphenylmethane Chemical compound C=1C=CC=CC=1CC1=CC=CC=C1 CZZYITDELCSZES-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- KWKXNDCHNDYVRT-UHFFFAOYSA-N dodecylbenzene Chemical compound CCCCCCCCCCCCC1=CC=CC=C1 KWKXNDCHNDYVRT-UHFFFAOYSA-N 0.000 description 1
- 125000006575 electron-withdrawing group Chemical group 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 239000004210 ether based solvent Substances 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 150000002240 furans Chemical class 0.000 description 1
- ZTYYDUBWJTUMHW-UHFFFAOYSA-N furo[3,2-b]furan Chemical compound O1C=CC2=C1C=CO2 ZTYYDUBWJTUMHW-UHFFFAOYSA-N 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-M hexanoate Chemical compound CCCCCC([O-])=O FUZZWVXGSFPDMH-UHFFFAOYSA-M 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 150000002475 indoles Chemical class 0.000 description 1
- SNHMUERNLJLMHN-UHFFFAOYSA-N iodobenzene Chemical compound IC1=CC=CC=C1 SNHMUERNLJLMHN-UHFFFAOYSA-N 0.000 description 1
- 150000002537 isoquinolines Chemical class 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Inorganic materials [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000000504 luminescence detection Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- FSPSELPMWGWDRY-UHFFFAOYSA-N m-Methylacetophenone Chemical compound CC(=O)C1=CC=CC(C)=C1 FSPSELPMWGWDRY-UHFFFAOYSA-N 0.000 description 1
- HZVOZRGWRWCICA-UHFFFAOYSA-N methanediyl Chemical compound [CH2] HZVOZRGWRWCICA-UHFFFAOYSA-N 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 238000004776 molecular orbital Methods 0.000 description 1
- DYFFAVRFJWYYQO-UHFFFAOYSA-N n-methyl-n-phenylaniline Chemical compound C=1C=CC=CC=1N(C)C1=CC=CC=C1 DYFFAVRFJWYYQO-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 238000007649 pad printing Methods 0.000 description 1
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 1
- 150000005053 phenanthridines Chemical class 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- KRIOVPPHQSLHCZ-UHFFFAOYSA-N propiophenone Chemical compound CCC(=O)C1=CC=CC=C1 KRIOVPPHQSLHCZ-UHFFFAOYSA-N 0.000 description 1
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- JWVCLYRUEFBMGU-UHFFFAOYSA-N quinazoline Chemical compound N1=CN=CC2=CC=CC=C21 JWVCLYRUEFBMGU-UHFFFAOYSA-N 0.000 description 1
- 150000003246 quinazolines Chemical class 0.000 description 1
- 150000003248 quinolines Chemical class 0.000 description 1
- 150000003252 quinoxalines Chemical class 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000002390 rotary evaporation Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000007764 slot die coating Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 150000003536 tetrazoles Chemical class 0.000 description 1
- ONCNIMLKGZSAJT-UHFFFAOYSA-N thieno[3,2-b]furan Chemical compound S1C=CC2=C1C=CO2 ONCNIMLKGZSAJT-UHFFFAOYSA-N 0.000 description 1
- VJYJJHQEVLEOFL-UHFFFAOYSA-N thieno[3,2-b]thiophene Chemical compound S1C=CC2=C1C=CS2 VJYJJHQEVLEOFL-UHFFFAOYSA-N 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 150000003577 thiophenes Chemical class 0.000 description 1
- RUVINXPYWBROJD-ONEGZZNKSA-N trans-anethole Chemical compound COC1=CC=C(\C=C\C)C=C1 RUVINXPYWBROJD-ONEGZZNKSA-N 0.000 description 1
- 125000005259 triarylamine group Chemical group 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- WJKHJLXJJJATHN-UHFFFAOYSA-N triflic anhydride Chemical compound FC(F)(F)S(=O)(=O)OS(=O)(=O)C(F)(F)F WJKHJLXJJJATHN-UHFFFAOYSA-N 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/06—Peri-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/12—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
- C07D487/16—Peri-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/02—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
- C07D491/06—Peri-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/12—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains three hetero rings
- C07D491/16—Peri-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/22—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains four or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D495/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
- C07D495/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
- C07D495/06—Peri-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D495/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
- C07D495/12—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
- C07D495/16—Peri-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D495/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
- C07D495/22—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains four or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D519/00—Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F5/00—Compounds containing elements of Groups 3 or 13 of the Periodic Table
- C07F5/02—Boron compounds
- C07F5/027—Organoboranes and organoborohydrides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/15—Hole transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/16—Electron transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/654—Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6574—Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6576—Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
- C09K2211/1033—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
- C09K2211/1037—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1044—Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1044—Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
- C09K2211/1048—Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with oxygen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1044—Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
- C09K2211/1051—Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with sulfur
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1059—Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1059—Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
- C09K2211/1062—Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms with oxygen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1059—Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
- C09K2211/1066—Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms with sulfur
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1074—Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
- C09K2211/1077—Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms with oxygen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1088—Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1092—Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1096—Heterocyclic compounds characterised by ligands containing other heteroatoms
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
The invention relates to an organic compound, a mixture, a composition and application thereof, wherein the organic compound is selected from a structure shown in a general formula (1), according to the organic compound, an aromatic ring and two seven-membered rings on carbazole are fixed in the same molecular plane, so that the rigidity of material molecules is improved, the stability of the material is improved, and when a luminescent device is prepared by using the organic compound, the service life of the device can be prolonged. The organic compound can be used as a red and green phosphorescent host material, can improve the luminous efficiency and the service life of an electroluminescent device by matching with a proper guest material, and provides a technical scheme for preparing the luminescent device with low cost, high efficiency, long service life and low roll-off.
Description
The present application claims priority from the chinese patent application filed on 14/11/2019 under the name of "an organic compound containing a seven-membered ring and its use" by the chinese patent office under application No. 201911111644.7, the entire contents of which are incorporated herein by reference.
Technical Field
The invention relates to the field of electroluminescent materials, in particular to an organic compound, a polymer, a mixture, a composition and application thereof, especially application in an organic electroluminescent device.
Background
Organic light emitting materials have a variety of synthetic, relatively low manufacturing costs and excellent optical and electrical properties, and Organic Light Emitting Diodes (OLEDs) made from organic light emitting materials have great potential for applications in optoelectronic devices such as flat panel displays and lighting.
To date, a luminescent material system based on fluorescence and phosphorescence has been developed, and an organic light emitting diode using a fluorescent material has a high reliability, but its internal electroluminescence quantum efficiency under electrical excitation is limited to 25% because the branching ratio of the singlet excited state and the triplet excited state of excitons is 1: 3. In contrast, the organic light emitting diode using the phosphorescent material has achieved almost 100% internal electroluminescence quantum efficiency. However, the stability of phosphorescent OLEDs is still to be improved. The stability of OLEDs, in addition to the emitter itself, is critical for the host material.
For red and green phosphorescent light-emitting devices, the performance of a host material determines the efficiency and the service life of the red and green phosphorescent light-emitting devices, and currently, the commonly used host material is an organic compound containing a carbazole group, but the charge transport of the material is unbalanced and the stability is limited, so that the service life of the device is not high. Researchers have been working on developing organic light emitting materials with good stability, but the stability of the organic light emitting materials developed at present is still insufficient.
Therefore, the design and synthesis of the organic luminescent material with good stability are of great significance.
Disclosure of Invention
In view of the above-mentioned disadvantages of the prior art, the present invention aims to provide an organic compound, a polymer, a mixture, a composition, an organic electronic device and an application thereof, which are intended to solve the problems of insufficient stability and rigidity of the conventional host light-emitting material.
The technical scheme of the invention is as follows:
an organic compound represented by the general formula (1):
wherein:
Ar1-Ar4each independently selected from substituted or unsubstituted aromatic groups containing 6 to 60C atoms or substituted or unsubstituted heteroaromatic groups containing 5 to 60 ring atoms or substituted or unsubstituted non-aromatic ring systems containing 3 to 30 ring atoms;
X1~X3at each occurrence, is independently selected from none, or CR1R2,SiR1R2,NR1,C(=O),S,S(=O)2And O; wherein X1~X3At most one of which is selected from none;
R1-R2independently at each occurrence, H, D, or a straight-chain alkyl group having 1 to 20C atoms, a straight-chain alkoxy group having 1 to 20C atoms or a straight-chain thioalkoxy group having 1 to 20C atoms, or a branched or cyclic alkyl group having 3 to 20C atoms, a branched or cyclic alkoxy group having 3 to 20C atoms or a branched or cyclic thioalkoxy group having 3 to 20C atoms, or a silyl group, or a ketone group having 1 to 20C atoms, or an alkoxycarbonyl group having 2 to 20C atoms, or an aryloxycarbonyl group having 7 to 20C atoms, a cyano group, a carbamoyl group, a haloformyl group, a formyl group, an isocyano group, an isocyanate group, a thiocyanate group or an isothiocyanate group, a hydroxyl group, a nitro group, a CF group3Cl, Br, F, I, a crosslinkable group, or a substituted or unsubstituted aromatic or heteroaromatic group having 5 to 60 ring atoms, or an aryloxy or heteroaryloxy group having 5 to 60 ring atoms, or a combination of these systems.
The invention further relates to a mixture comprising an organic compound as described above, and at least one organic functional material, which may be selected from a hole injection material, a hole transport material, an electron injection material, an electron blocking material, a hole blocking material, a light emitting material, or a host material.
The invention also relates to a composition comprising an organic compound or mixture as described above, and at least one organic solvent.
The invention further relates to an organic electronic device comprising at least one organic compound or mixture or composition as described above.
Has the advantages that:
according to the organic compound, the aromatic ring and the two seven-membered rings on the carbazole are fixed in the same molecular plane, so that the rigidity of the molecule is improved, the stability of the material is improved, and the service life of the device can be prolonged when the organic compound is used for preparing a light-emitting device. The organic compound can be used as a red light phosphorescence host material, can improve the luminous efficiency and the service life of an electroluminescent device by matching with a proper guest material, and provides a technical scheme for preparing the luminescent device with low cost, high efficiency, long service life and low roll-off.
Detailed Description
The invention provides an organic compound, a polymer, a mixture, a composition and application thereof. In order to make the objects, technical solutions and effects of the present invention clearer and clearer, the present invention is described in further detail below. It should be understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
In the present invention, "substituted" means that a hydrogen atom in a substituent is substituted by a substituent.
In the present invention, "substituted or unsubstituted" means that the defined group may or may not be substituted. When a defined group is substituted, it is understood to be optionally substituted with art-acceptable groups including, but not limited to: c1-30An alkyl group, a cycloalkyl group having 3 to 20 ring atoms, a heterocyclic group having 3 to 20 ring atoms, an aryl group having 5 to 20 ring atoms, a heteroaryl group having 5 to 20 ring atoms, a silane group, a carbonyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a carbamoyl group, a haloformyl group, a formyl group, -NRR', a cyano group, an isocyano group, an isocyanate group, a thiocyanate group, an isothiocyanate group, a hydroxyl group, a trifluoromethyl group, a nitro group or a halogen, and the above groups may be further substituted by a substituent acceptable in the art; it is understood that R and R 'in-NRR' are each independently substituted with art-acceptable groups including, but not limited to, H, C1-6An alkyl group, a cycloalkyl group having 3 to 8 ring atoms, a heterocyclic group having 3 to 8 ring atoms, an aryl group having 5 to 20 ring atoms or a heteroaryl group having 5 to 10 ring atoms; said C is1-6Alkyl, cycloalkyl containing 3 to 8 ring atoms, heterocyclyl containing 3 to 8 ring atoms, aryl containing 5 to 20 ring atoms or heteroaryl containing 5 to 10 ring atoms are optionally further substituted by one or more of the following: c1-6Alkyl, cycloalkyl having 3 to 8 ring atoms, heterocyclyl having 3 to 8 ring atoms, halogen, hydroxy, nitro or amino.
In the present invention, the "number of ring atoms" represents the number of atoms among atoms constituting the ring itself of a structural compound (for example, a monocyclic compound, a condensed ring compound, a crosslinked compound, a carbocyclic compound, and a heterocyclic compound) in which atoms are bonded in a ring shape. When the ring is substituted with a substituent, the atoms contained in the substituent are not included in the ring-forming atoms. The "number of ring atoms" described below is the same unless otherwise specified. For example, the number of ring atoms of the benzene ring is 6, the number of ring atoms of the naphthalene ring is 10, and the number of ring atoms of the thienyl group is 5.
An aromatic group refers to a hydrocarbon group containing at least one aromatic ring. A heteroaromatic group refers to an aromatic hydrocarbon group that contains at least one heteroatom. The heteroatoms are preferably selected from Si, N, P, O, S and/or Ge, particularly preferably from Si, N, P, O and/or S. By fused ring aromatic group is meant that the rings of the aromatic group may have two or more rings in which two carbon atoms are shared by two adjacent rings, i.e., fused rings. The fused heterocyclic aromatic group means a fused ring aromatic hydrocarbon group containing at least one hetero atom. For the purposes of the present invention, aromatic or heteroaromatic radicals include not only aromatic ring systems but also non-aromatic ring systems.
Thus, for example, systems such as pyridine, thiophene, pyrrole, pyrazole, triazole, imidazole, oxazole, oxadiazole, thiazole, tetrazole, pyrazine, pyridazine, pyrimidine, triazine, carbene, and the like, are also considered aromatic or heterocyclic aromatic groups for the purposes of this invention. For the purposes of the present invention, fused-ring aromatic or fused-heterocyclic aromatic ring systems include not only systems of aromatic or heteroaromatic groups, but also systems in which a plurality of aromatic or heterocyclic aromatic groups may also be interrupted by short non-aromatic units (< 10% of non-H atoms, preferably less than 5% of non-H atoms, such as C, N or O atoms). Thus, for example, systems such as 9, 9' -spirobifluorene, 9, 9-diarylfluorene, triarylamines, diaryl ethers, etc., are also considered fused aromatic ring systems for the purposes of this invention.
In a certain preferred embodiment, said aromatic group is selected from: benzene, naphthalene, anthracene, fluoranthene, phenanthrene, triphenylene, perylene, tetracene, pyrene, benzopyrene, acenaphthene, fluorene, and derivatives thereof; the heteroaromatic group is selected from the group consisting of triazines, pyridines, pyrimidines, imidazoles, furans, thiophenes, benzothiophenes, indoles, carbazoles, pyrroloimidazoles, pyrrolopyrroles, thienopyrroles, thienothiophenes, furopyrroles, furofurans, thienofurans, benzisoxazoles, benzisothiazoles, benzimidazoles, quinolines, isoquinolines, phthalazines, quinoxalines, phenanthridines, primadines, quinazolines, quinazolinones, dibenzothiophenes, dibenzofurans, carbazoles, and derivatives thereof.
In the present invention, "+" attached to a single bond represents a connection site or a fusion site.
In the present invention, when the attachment site is not specified in the group, it means that an optional attachment site in the group is used as the attachment site.
In the present invention, when the condensed site is not specified in the group, it means that an optionally condensable site in the group is a condensed site, and preferably two or more sites at the ortho position in the group are condensed sites.
In the context of the present invention, a single bond to which a substituent is attached extends through the corresponding ring, meaning that the substituent may be attached at an optional position on the ring, for exampleWherein R is attached to any substitutable site of the phenyl ring.
In the embodiment of the present invention, the energy level structure of the organic material, the triplet state energy level ETHOMO, LUMO play a key role. These energy levels are described below.
The HOMO and LUMO energy levels can be measured by the photoelectric effect, for example XPS (X-ray photoelectron spectroscopy) and UPS (ultraviolet photoelectron spectroscopy) or by cyclic voltammetry (hereinafter referred to as CV). Recently, quantum chemical methods, such as the density functional theory (hereinafter abbreviated as DFT), have become effective methods for calculating the molecular orbital level.
Triplet energy level E of organic materialT1Can be measured by low temperature Time-resolved luminescence spectroscopy, or can be obtained by quantum simulation calculations (e.g., by Time-dependent DFT), such as by the commercial software Gaussian 03W (Gaussian Inc.), and specific simulation methods can be found inWO2011141110 or as described in the examples below.
Note that HOMO, LUMO, ET1The absolute value of (c) depends on the measurement method or calculation method used, and even for the same method, different methods of evaluation, for example starting point and peak point on the CV curve, can give different HOMO/LUMO values. Thus, a reasonably meaningful comparison should be made with the same measurement method and the same evaluation method. In the description of the embodiments of the present invention, HOMO, LUMO, ET1Is based on the simulation of the Time-dependent DFT but does not affect the application of other measurement or calculation methods.
In the present invention, (HOMO-1) is defined as the second highest occupied orbital level, (HOMO-2) is defined as the third highest occupied orbital level, and so on. (LUMO +1) is defined as the second lowest unoccupied orbital level, (LUMO +2) is the third lowest occupied orbital level, and so on.
The invention relates to an organic compound, which is shown as a general formula (1):
wherein:
Ar1-Ar4each independently selected from substituted or unsubstituted aromatic groups containing 6 to 60C atoms or heteroaromatic groups containing 5 to 60 ring atoms or non-aromatic ring systems containing 3 to 30 ring atoms;
X1~X3at each occurrence, is independently selected from none, or CR1R2,SiR1R2,NR1,C(=O),S,S(=O)2And O; wherein X1~X3At most one of which is selected from none;
R1-R2independently at each occurrence, H, D, or a straight chain alkyl group having 1 to 20C atoms, an alkoxy group having 1 to 20C atoms, or a thioalkoxy group having 1 to 20C atoms, or a branched or cyclic alkyl group having 3 to 20C atoms, a branched or cyclic alkoxy group having 3 to 20C atoms, or a branched or cyclic alkoxy group having 3 to 20C atomsBranched or cyclic thioalkoxy of atoms, or silyl, or keto with 1 to 20C atoms, or alkoxycarbonyl with 2 to 20C atoms, or aryloxycarbonyl with 7 to 20C atoms, cyano, carbamoyl, haloformyl, formyl, isocyano, isocyanate, thiocyanate or isothiocyanate, hydroxy, nitro, CF3A Cl, Br, F, I crosslinkable group, or a substituted or unsubstituted aromatic or heteroaromatic group having 5 to 60 ring atoms, or an aryloxy or heteroaryloxy group having 5 to 60 ring atoms, or a combination of these systems.
In a certain preferred embodiment, Ar1-Ar4Independently selected from substituted or unsubstituted aromatic groups containing 6 to 30C atoms or heteroaromatic groups containing 5 to 30 ring atoms.
In a certain preferred embodiment, Ar1-Ar4At least one of them is selected from substituted or unsubstituted fused ring aromatic groups containing 10 to 60C atoms or fused ring heteroaromatic groups containing 8 to 60 ring atoms.
In a certain preferred embodiment, Ar1-Ar4Wherein at least two groups are selected from substituted or unsubstituted fused ring aromatic groups containing 10-30C atoms or fused ring heteroaromatic groups containing 8-30 ring atoms; in a certain preferred embodiment, Ar1Selected from substituted or unsubstituted fused ring aromatic groups containing 10 to 30C atoms or fused ring heteroaromatic groups containing 8 to 30 ring atoms; in a certain preferred embodiment, Ar2Selected from substituted or unsubstituted fused ring aromatic groups containing 10 to 30C atoms or fused ring heteroaromatic groups containing 8 to 30 ring atoms; in a certain preferred embodiment, Ar3Selected from substituted or unsubstituted fused ring aromatic groups containing 10 to 30C atoms or fused ring heteroaromatic groups containing 8 to 30 ring atoms; in a certain preferred embodiment, Ar4Selected from substituted or unsubstituted fused ring aromatic groups containing 10 to 30C atoms or fused ring heteroaromatic groups containing 8 to 30 ring atoms.
In a certain preferred embodiment, Ar1And Ar3Selected from substituted or unsubstituted fused ring aromatic groups containing 10-30C atoms or fused rings of 8-30 ring atomsA cycloheteroaromatic group; in a certain preferred embodiment, Ar1And Ar4Selected from substituted or unsubstituted fused ring aromatic groups containing 10 to 30C atoms or fused ring heteroaromatic groups containing 8 to 30 ring atoms; in a certain preferred embodiment, Ar1And Ar2Selected from substituted or unsubstituted fused ring aromatic groups containing 10 to 30C atoms or fused ring heteroaromatic groups containing 8 to 30 ring atoms.
In a certain preferred embodiment, the above-mentioned fused ring aromatic groups are selected from, but not limited to: naphthalene, anthracene, fluoranthene, phenanthrene, triphenylene, perylene, tetracene, pyrene, benzopyrene, acenaphthene, fluorene, and derivatives thereof; the fused ring heteroaromatic group is selected from the group consisting of benzofuran, benzothiophene, indole, carbazole, pyrroloimidazole, pyrrolopyrrole, thienopyrrole, thienothiophene, furopyrrole, furofuran, thienofuran, benzisoxazole, benzisothiazole, benzimidazole, quinoline, isoquinoline, phthalazine, quinoxaline, phenanthridine, primadine, quinazoline, quinazolinone, and derivatives thereof.
In a preferred embodiment, Ar is1-Ar4Each independently selected from the group consisting of:
wherein:
each occurrence of Y is independently represented by CR3R4、NR3、O、S、SiR3R4、PR3、P(=O)R3、S=O、S(=O)2Or C ═ O;
x independently represents CR at each occurrence3Or N;
R3and R4Independently at each occurrence, H, D, or a straight chain alkyl group having 1 to 20C atoms, an alkoxy group having 1 to 20C atoms, or a thioalkoxy group having 1 to 20C atoms, or a branched or cyclic alkyl group having 3 to 20C atoms, a branched or cyclic alkoxy group having 3 to 20C atoms, or a branched or cyclic alkoxy group having 3 to 20C atomsThioalkoxy, or silyl, or keto with 1 to 20C atoms, or alkoxycarbonyl with 2 to 20C atoms, or aryloxycarbonyl with 7 to 20C atoms, cyano, carbamoyl, haloformyl, formyl, isocyano, isocyanate, thiocyanate or isothiocyanate, hydroxy, nitro, CF, a hydroxy group, a nitro group, a hydroxy group, a CF group, a hydroxy group3Cl, Br, F, I, a crosslinkable group, or a substituted or unsubstituted aromatic or heteroaromatic group having 5 to 60 ring atoms, or an aryloxy or heteroaryloxy group having 5 to 60 ring atoms, or a combination of these systems.
In one embodiment, each occurrence of Y is independently designated CR3R4、NR3O or S; x, at each occurrence, independently represents CR3Or N;
R3and R4Independently at each occurrence, H, D, or a straight chain alkyl, alkoxy or thioalkoxy group having 1 to 20C atoms, or a branched or cyclic alkyl, alkoxy or thioalkoxy group having 3 to 20C atoms.
Further, Ar1-Ar4Independently selected from the group consisting of:
in some of these embodiments, Ar1-Ar4Each independently selected from the group consisting of:
In some of these embodiments, Ar1-Ar4Wherein at least one is selected from substituted or unsubstituted naphthalene,Benzene, pyridine, quinoxaline, isoquinoline, phenanthroline or phenanthrene. Further, Ar1-Ar4Are selected from substituted or unsubstituted naphthalene, benzene, pyridine, quinoxaline, isoquinoline, phenanthroline or phenanthrene.
In a certain preferred embodiment, Ar1-Ar4At least one of them is selected from substituted or unsubstituted naphthalene or phenanthrene; in a certain preferred embodiment, Ar1-Ar4At least two of which are selected from substituted or unsubstituted naphthalene or phenanthrene; in a certain preferred embodiment, Ar1Selected from substituted or unsubstituted naphthalene or phenanthrene; in a certain preferred embodiment, Ar2Selected from substituted or unsubstituted naphthalene or phenanthrene; in a certain preferred embodiment, Ar3Selected from substituted or unsubstituted naphthalene or phenanthrene; in a certain preferred embodiment, Ar4Selected from substituted or unsubstituted naphthalene or phenanthrene; in a certain preferred embodiment, Ar1And Ar3Selected from substituted or unsubstituted naphthalene or phenanthrene; in a certain preferred embodiment, Ar1And Ar4Selected from substituted or unsubstituted naphthalene or phenanthrene; in a certain preferred embodiment, Ar1And Ar2Selected from substituted or unsubstituted naphthalene or phenanthrene.
In a certain preferred embodiment, Ar1-Ar4At least three of which are selected from benzene; in a certain preferred embodiment, Ar1-Ar4All selected from benzene.
In a certain preferred embodiment, formula (1) is selected from any one of formulae (2-1) to (2-4):
in one embodiment, Ar1-Ar4Independently selected from substituted or unsubstituted aromatic groups containing 6 to 60C atoms or heteroaromatic groups containing 5 to 60 ring atoms;
x in the formulae (2-1) to (2-4)1~X3Independently selected from CR1R2,SiR1R2,NR1,C(=O),S,S(=O)2Or O.
Further, the general formula (1) is selected from any one of formulae (3-1) to (3-27):
in a certain preferred embodiment, formula (1) is selected from any one of the following formulae:
in a certain preferred embodiment, X1~X3Independently at each occurrence is selected from CR1R2、NR1S, or O; in a certain preferred embodiment, X1~X3At least one selected from NR in each occurrence1(ii) a In a certain preferred embodiment, X1~X3When present, are all selected from NR1。
In a preferred embodiment, R1When present, at least one is selected from electron withdrawing groups, preferably R1When present, at least one structural unit selected from the group consisting of:
wherein:
W1–W8at each occurrence, each independently represents CR5Or N; preferably, W1–W8At least one is selected from N;
Z1-Z3is a single bond or CR6R7Or O or S or none;
r is selected from any integer from 1 to 3;
R5-R7each occurrence is independently selected from H, D, or a straight chain alkyl group having 1 to 20C atoms, having 1 to 20Alkoxy having 20C atoms or thioalkoxy having 1 to 20C atoms, or branched or cyclic alkyl having 3 to 20C atoms, branched or cyclic alkoxy having 3 to 20C atoms or branched or cyclic thioalkoxy having 3 to 20C atoms, or silyl, or keto having 1 to 20C atoms, or alkoxycarbonyl having 2 to 20C atoms, or aryloxycarbonyl having 7 to 20C atoms, cyano, carbamoyl, haloformyl, formyl, isocyano, isocyanate, thiocyanate or isothiocyanate, hydroxyl, nitro, CF3A Cl, Br, F, I crosslinkable group, or a substituted or unsubstituted aromatic or heteroaromatic group having 5 to 60 ring atoms, or an aryloxy or heteroaryloxy group having 5 to 60 ring atoms, or a combination of these systems.
In a preferred embodiment, R1At least one, when present, is selected from the group consisting of:
wherein: ar (Ar)5-Ar6Each independently selected from substituted or unsubstituted aromatic groups containing 6 to 60C atoms or heteroaromatic groups containing 5 to 60 ring atoms or non-aromatic ring systems containing 3 to 30 ring atoms.
Specifically, at least one R1Selected from the group consisting of:
are attachment sites.
In a more preferred embodiment, the organic compound according to the invention, formula (1) is selected from formula (4):
further, the general formula (4) is selected from the structures shown below:
wherein: r1The meaning is the same as above.
Specific structures of the organic compounds according to the present invention are listed below, but not limited thereto:
the compounds according to the invention can be used as functional materials in electronic devices, in particular in OLED devices. Organic functional materials may be classified into a Hole Injection Material (HIM), a Hole Transport Material (HTM), an Electron Transport Material (ETM), an Electron Injection Material (EIM), an Electron Blocking Material (EBM), a Hole Blocking Material (HBM), a light emitting material (Emitter), a Host material (Host), and an organic dye. In a preferred embodiment, the compounds according to the invention can be used as host materials, or electron-transport materials, or hole-transport materials.
In a preferred embodiment, the compounds according to the invention can be used as phosphorescent host materials or as co-host materials.
As a phosphorescent host material, it must have an appropriate triplet energy level, i.e., T1. In certain embodiments, the compounds according to the invention, T thereof1More preferably, it is not less than 1.5eV, still more preferably not less than 1.6eV, still more preferably not less than 2.0eV, particularly preferably not less than 2.1 eV.
Good thermal stability is desired as a phosphorescent host material. Generally, the compounds according to the invention have a glass transition temperature Tg of not less than 100 ℃, preferably not less than 140 ℃ and more preferably not less than 180 ℃.
In certain preferred embodiments, the compounds according to the invention, whose ((HOMO- (HOMO-1)). gtoreq.0.2 eV, preferably gtoreq.0.3 eV, more preferably gtoreq.0.4 eV, most preferably gtoreq.0.45 eV.
In further preferred embodiments, the compounds according to the invention (((LUMO +1) -LUMO) are ≥ 0.15eV, preferably ≥ 0.25eV, more preferably ≥ 0.30eV, most preferably ≥ 0.35 eV.
In some embodiments, the organic compounds according to the present invention have a light-emitting function with a light-emitting wavelength of between 300nm and 1000nm, preferably between 350nm and 900nm, and more preferably between 400nm and 800 nm. Luminescence as used herein refers to photoluminescence or electroluminescence.
In another preferred embodiment, the compounds according to the invention can be used as fluorescent host materials.
The present invention also relates to a polymer comprising at least one repeating unit selected from any of the organic compounds described above.
The invention also relates to a mixture comprising any one of the above organic compounds or any one of the above polymers and at least one organic functional material. The organic functional material comprises a hole injection material, a hole transport material, an electron injection material, an electron blocking material, a hole blocking material, a luminous body or a main body material. The luminophores are selected from singlet state luminophores (fluorescent luminophores) and triplet state luminophores (phosphorescent luminophores) grade organic thermal excitation delayed fluorescence materials (TADF materials). Various organic functional materials are described in detail, for example, in WO2010135519a1, US20090134784a1 and WO2011110277a1, the entire contents of this 3 patent document being hereby incorporated by reference. The organic functional material can be small molecule and high polymer material.
In certain embodiments, the mixture comprises at least one organic compound or polymer according to the invention and a fluorescent emitter. The compounds according to the invention can be used as fluorescent host materials in which the fluorescent emitters are present in an amount of < 10% by weight, preferably < 9% by weight, more preferably < 8% by weight, particularly preferably < 7% by weight, most preferably < 5% by weight.
In a particularly preferred embodiment, the mixture comprises at least one organic compound or polymer according to the invention and a phosphorescent emitter. The compounds according to the invention can be used as phosphorescent host materials in which the phosphorescent emitters are present in amounts of < 25% by weight, preferably < 20% by weight, more preferably < 15% by weight.
In a further preferred embodiment, the mixture comprises at least one organic compound or polymer according to the invention, and a phosphorescent emitter and a further host material (triplet host material). In such an embodiment, the compounds according to the invention can be used as auxiliary luminescent materials in a weight ratio of from 1:2 to 2:1 with respect to the phosphorescent emitter. In another preferred embodiment, the compounds or polymers according to the invention form exciplexes with another host material, the energy levels of said exciplexes being higher than said phosphorescent emitters.
In another preferred embodiment, the mixture comprises at least one organic compound or polymer according to the invention and a TADF material. The compounds according to the invention can be used as host materials for TADF phosphors, wherein the TADF materials are present in an amount of 15 wt.% or less, preferably 10 wt.% or less, more preferably 8 wt.% or less.
In a very preferred embodiment, the mixture comprises one organic compound or polymer according to the invention and another host material (triplet host material). The organic compound according to the invention can be used here as a second body in a proportion of 30 to 70% by weight, preferably 40 to 60% by weight.
Details of the host materials, phosphorescent emitter materials, fluorescent emitter materials and TADF materials are described in WO 2048095395.
It is an object of the present invention to provide a material solution for evaporation type OLEDs.
In certain embodiments, the compounds according to the invention have a molecular weight of 1100g/mol or less, preferably 1000g/mol or less, very preferably 950g/mol or less, more preferably 900g/mol or less, and most preferably 800g/mol or less.
It is another object of the present invention to provide a material solution for printing OLEDs.
In certain embodiments, the compounds according to the invention have a molecular weight of 700g/mol or more, preferably 900g/mol or more, preferably 1000g/mol or more, and most preferably 1100g/mol or more.
In other embodiments, the compounds according to the invention have a solubility in toluene of 10mg/ml or more, preferably 15mg/ml or more, most preferably 20mg/ml or more at 25 ℃.
The invention further relates to a composition or ink comprising any one of the organic compounds or polymers according to the invention and at least one organic solvent.
For the printing process, the viscosity of the ink, surface tension, is an important parameter. Suitable inks have surface tension parameters suitable for a particular substrate and a particular printing process.
In a preferred embodiment, the surface tension of the ink according to the invention at operating temperature or at 25 ℃ is in the range of about 19dyne/cm to about 50 dyne/cm; more preferably in the range of 22dyne/cm to 35 dyne/cm; preferably in the range of 25dyne/cm to 33 dyne/cm.
In another preferred embodiment, the viscosity of the ink according to the invention is in the range of about 1cps to about 100cps at the operating temperature or 25 ℃; preferably in the range of 1cps to 50 cps; more preferably in the range of 1.5cps to 20 cps; preferably in the range of 4.0cps to 20 cps. The composition so formulated will facilitate ink jet printing.
The viscosity can be adjusted by different methods, such as by appropriate solvent selection and concentration of the functional material in the ink. The inks according to the invention comprising the organometallic complexes or polymers described facilitate the adjustment of the printing inks to the appropriate range according to the printing process used. Generally, the composition according to the present invention comprises the functional material in a weight ratio ranging from 0.3% to 30% by weight, preferably ranging from 0.5% to 20% by weight, more preferably ranging from 0.5% to 15% by weight, still more preferably ranging from 0.5% to 10% by weight, and most preferably ranging from 1% to 5% by weight.
In some embodiments, the ink according to the invention, the at least one organic solvent is chosen from aromatic or heteroaromatic-based solvents, in particular aliphatic chain/ring-substituted aromatic solvents, or aromatic ketone solvents, or aromatic ether solvents.
Examples of solvents suitable for the present invention are, but not limited to: aromatic or heteroaromatic-based solvents p-diisopropylbenzene, pentylbenzene, tetrahydronaphthalene, cyclohexylbenzene, chloronaphthalene, 1, 4-dimethylnaphthalene, 3-isopropylbiphenyl, p-methylisopropylbenzene, dipentylbenzene, tripentylbenzene, pentyltoluene, o-xylene, m-xylene, p-xylene, o-diethylbenzene, m-diethylbenzene, p-diethylbenzene, 1,2,3, 4-tetramethylbenzene, 1,2,3, 5-tetramethylbenzene, 1,2,4, 5-tetramethylbenzene, butylbenzene, dodecylbenzene, dihexylbenzene, dibutylbenzene, p-diisopropylbenzene, 1-methoxynaphthalene, cyclohexylbenzene, dimethylnaphthalene, 3-isopropylbiphenyl, p-methylisopropylbenzene, 1-methylnaphthalene, 1,2, 4-trichlorobenzene, 1, 3-dipropoxybenzene, 4-difluorodiphenylmethane, 1, 2-dimethoxy-4- (1-propenyl) benzene, 1, 4-dimethoxynaphthalene, Diphenylmethane, 2-phenylpyridine, 3-phenylpyridine, N-methyldiphenylamine, 4-isopropylbiphenyl, α -dichlorodiphenylmethane, 4- (3-phenylpropyl) pyridine, benzyl benzoate, 1-bis (3, 4-dimethylphenyl) ethane, 2-isopropylnaphthalene, dibenzyl ether, and the like; ketone-based solvents 1-tetralone, 2- (phenylepoxy) tetralone, 6- (methoxy) tetralone, acetophenone, propiophenone, benzophenone, and derivatives thereof, such as 4-methylacetophenone, 3-methylacetophenone, 2-methylacetophenone, 4-methylpropiophenone, 3-methylpropiophenone, 2-methylpropiophenone, isophorone, 2,6, 8-trimethyl-4-nonanone, fenchyne, 2-nonanone, 3-nonanone, 5-nonanone, 2-decanone, 2, 5-hexanedione, phorone, di-n-amyl ketone; aromatic ether solvent: 3-phenoxytoluene, butoxybenzene, benzylbutylbenzene, p-anisaldehyde dimethylacetal, tetrahydro-2-phenoxy-2H-pyran, 1, 2-dimethoxy-4- (1-propenyl) benzene, 1, 4-benzodioxane, 1, 3-dipropylbenzene, 2, 5-dimethoxytoluene, 4-ethylbenylether, 1,2, 4-trimethoxybenzene, 4- (1-propenyl) -1, 2-dimethoxybenzene, 1, 3-dimethoxybenzene, glycidylphenyl ether, dibenzyl ether, 4-t-butylanisole, trans-p-propenylanisole, 1, 2-dimethoxybenzene, 1-methoxynaphthalene, diphenyl ether, 2-phenoxymethyl ether, 2-phenoxytetrahydrofuran, and the like, Ethyl-2-naphthyl ether, amyl ether c-hexyl ether, dioctyl ether, ethylene glycol dibutyl ether, diethylene glycol diethyl ether, diethylene glycol butyl methyl ether, diethylene glycol dibutyl ether, triethylene glycol dimethyl ether, triethylene glycol ethyl methyl ether, triethylene glycol butyl methyl ether, tripropylene glycol dimethyl ether, tetraethylene glycol dimethyl ether; ester solvent: alkyl octanoates, alkyl sebacates, alkyl stearates, alkyl benzoates, alkyl phenylacetates, alkyl cinnamates, alkyl oxalates, alkyl maleates, alkyl lactones, alkyl oleates, and the like.
Further, according to the ink of the present invention, the at least one organic solvent may be selected from: aliphatic ketones such as 2-nonanone, 3-nonanone, 5-nonanone, 2-decanone, 2, 5-hexanedione, 2,6, 8-trimethyl-4-nonanone, phorone, di-n-amyl ketone and the like; or aliphatic ethers such as amyl ether, hexyl ether, dioctyl ether, ethylene glycol dibutyl ether, diethylene glycol diethyl ether, diethylene glycol butyl methyl ether, diethylene glycol dibutyl ether, triethylene glycol dimethyl ether, triethylene glycol ethyl methyl ether, triethylene glycol butyl methyl ether, tripropylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, and the like.
In other embodiments, the printing ink further comprises another organic solvent. Examples of another organic solvent include (but are not limited to): methanol, ethanol, 2-methoxyethanol, methylene chloride, chloroform, chlorobenzene, o-dichlorobenzene, tetrahydrofuran, anisole, morpholine, toluene, o-xylene, m-xylene, p-xylene, 1, 4-dioxane, acetone, methyl ethyl ketone, 1, 2-dichloroethane, 3-phenoxytoluene, 1,1, 1-trichloroethane, 1,1,2, 2-tetrachloroethane, ethyl acetate, butyl acetate, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetrahydronaphthalene, decalin, indene, and/or mixtures thereof.
In a preferred embodiment, the composition according to the invention is a solution.
In another preferred embodiment, the composition according to the invention is a suspension.
The compositions of the embodiments of the present invention may comprise from 0.01% to 20% by weight of the organic compound or polymer or mixture according to the present invention, preferably from 0.1% to 15% by weight, more preferably from 0.2% to 10% by weight, most preferably from 0.25% to 5% by weight of the organic compound or mixture thereof.
The invention also relates to the use of said composition as a coating or printing ink for the production of organic electronic devices, particularly preferably by a printing or coating production process.
Suitable Printing or coating techniques include, but are not limited to, ink jet Printing, letterpress, screen Printing, dip coating, spin coating, doctor blade coating, roll Printing, twist roll Printing, lithographic Printing, flexographic Printing, rotary Printing, spray coating, brush or pad Printing, slot die coating, and the like. Ink jet printing, jet printing and gravure printing are preferred. The solution or suspension may additionally include one or more components such as surface active compounds, lubricants, wetting agents, dispersants, hydrophobing agents, binders, and the like, for adjusting viscosity, film forming properties, enhancing adhesion, and the like. For details on the printing technology and its requirements concerning the solutions, such as solvents and concentrations, viscosities, etc., reference is made to the Handbook of Print Media, technology and Production Methods, published by Helmut Kipphan, ISBN 3-540-67326-1.
Based on the above Organic compounds, the present invention also provides a use of the Organic compound or mixture or polymer or composition as described above, i.e. the Organic compound or mixture or polymer or composition is applied to an Organic electronic device, which can be selected from, but not limited to, Organic Light Emitting Diodes (OLEDs), Organic photovoltaic cells (OPVs), Organic light Emitting cells (OLEECs), Organic Field Effect Transistors (OFETs), Organic light Emitting field effect transistors (efets), Organic lasers, Organic spintronic devices, Organic sensors, and Organic Plasmon Emitting diodes (Organic plasma Emitting diodes), etc., and particularly preferred are Organic electroluminescent devices, such as OLEDs, OLEECs, Organic light Emitting field effect transistors. In the embodiment of the present invention, the organic compound is preferably used for a light emitting layer of an electroluminescent device.
The invention also relates to the use of any one of the above organic compounds or polymers or mixtures or compositions for the preparation of electronic devices; further, in the preparation of organic electronic devices.
The invention further relates to an organic electronic device comprising at least one organic compound or polymer or mixture or composition as described above. Generally, such an organic electronic device comprises at least a cathode, an anode and a functional layer disposed between the cathode and the anode, wherein the functional layer comprises at least one organic compound or polymer as described above. The Organic electronic device can be selected from, but not limited to, Organic Light Emitting Diodes (OLEDs), Organic photovoltaic cells (OPVs), Organic light Emitting cells (OLEECs), Organic Field Effect Transistors (OFETs), Organic light Emitting field effect transistors (fets), Organic lasers, Organic spintronic devices, Organic sensors, Organic Plasmon Emitting diodes (Organic Plasmon Emitting diodes), and the like, and particularly preferred are Organic electroluminescent devices such as OLEDs, OLEECs, Organic light Emitting field effect transistors.
In certain particularly preferred embodiments, the electroluminescent device comprises a light-emitting layer comprising any one of the organic compounds or polymers or mixtures or compositions described above; or comprises any of the organic compounds described above and a phosphorescent emitter, or comprises any of the organic compounds described above and a host material, or comprises any of the organic compounds described above, a phosphorescent emitter and a host material.
In the above-described electroluminescent device, in particular an OLED, comprising a substrate, an anode, at least one light-emitting layer, a cathode.
The substrate may be opaque or transparent. A transparent substrate may be used to fabricate a transparent light emitting device. See, for example, Bulovic et al Nature 1996,380, p29, and Gu et al, appl.Phys.Lett.1996,68, p 2606. The substrate may be rigid or flexible. The substrate may be plastic, metal, semiconductor wafer or glass. Preferably, the substrate has a smooth surface. A substrate free of surface defects is a particularly desirable choice. In a preferred embodiment, the substrate is flexible, and may be selected from polymeric films or plastics having a glass transition temperature Tg of 150 deg.C or greater, preferably greater than 200 deg.C, more preferably greater than 250 deg.C, and most preferably greater than 300 deg.C. Examples of suitable flexible substrates are poly (ethylene terephthalate) (PET) and polyethylene glycol (2, 6-naphthalene) (PEN).
The anode may comprise a conductive metal or metal oxide, or a conductive polymer. The anode can easily inject holes into a Hole Injection Layer (HIL) or a Hole Transport Layer (HTL) or an emission layer. In one embodiment, the absolute value of the difference between the work function of the anode and the HOMO level or valence band level of the emitter in the light emitting layer or the p-type semiconductor material acting as a HIL or HTL or Electron Blocking Layer (EBL) is less than 0.5eV, preferably less than 0.3eV, most preferably less than 0.2 eV. Examples of anode materials include, but are not limited to: al, Cu, Au, Ag, Mg, Fe, Co, Ni, Mn, Pd, Pt, ITO, aluminum-doped zinc oxide (AZO), and the like. Other suitable anode materials are known and can be readily selected for use by one of ordinary skill in the art. The anode material may be deposited using any suitable technique, such as a suitable physical vapor deposition method including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like. In certain embodiments, the anode is pattern structured. Patterned ITO conductive substrates are commercially available and can be used to prepare devices according to the present invention.
The cathode may comprise a conductive metal or metal oxide. The cathode can easily inject electrons into the EIL or ETL or directly into the light emitting layer. In one embodiment, the absolute value of the difference between the work function of the cathode and the LUMO level or conduction band level of the emitter in the light-emitting layer or of the n-type semiconductor material as Electron Injection Layer (EIL) or Electron Transport Layer (ETL) or Hole Blocking Layer (HBL) is less than 0.5eV, preferably less than 0.3eV, most preferably less than 0.2 eV. In principle, all materials which can be used as cathodes in OLEDs are possible as cathode materials for the device according to the invention. Examples of cathode materials include, but are not limited to: al, Au, Ag, Ca, Ba, Mg, LiF/Al, MgAg alloy, BaF2/Al, Cu, Fe, Co, Ni, Mn, Pd, Pt, ITO, etc. The cathode material may be deposited using any suitable technique, such as a suitable physical vapor deposition method, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
The OLED may also comprise further functional layers, such as a Hole Injection Layer (HIL), a Hole Transport Layer (HTL), an Electron Blocking Layer (EBL), an Electron Injection Layer (EIL), an Electron Transport Layer (ETL), a Hole Blocking Layer (HBL). Suitable materials for use in these functional layers are described in detail above and in WO2010135519a1, US20090134784a1 and WO2011110277a1, the entire contents of these 3 patent documents being hereby incorporated by reference.
In a preferred embodiment, the light-emitting device according to the invention has a light-emitting layer which is prepared from a composition according to the invention.
The light-emitting device according to the present invention emits light at a wavelength of 300nm to 1000nm, preferably 350nm to 900nm, more preferably 400nm to 800 nm.
The invention also relates to the use of the organic electronic device according to the invention for the preparation of electronic devices, including, but not limited to, display devices, lighting devices, light sources, sensors, etc.
The invention also relates to electronic devices including, but not limited to, display devices, lighting devices, light sources, sensors, etc., comprising the organic electronic device according to the invention.
DETAILED DESCRIPTION OF EMBODIMENT (S) OF INVENTION
The present invention will be described in connection with preferred embodiments, but the present invention is not limited to the following embodiments, and it should be understood that the appended claims outline the scope of the present invention and those skilled in the art, guided by the inventive concept, will appreciate that certain changes may be made to the embodiments of the invention, which are intended to be covered by the spirit and scope of the appended claims.
Example 1
The synthetic route of compound (2) is as follows:
synthesis of intermediate 2-1:
under the protection of nitrogen, respectively adding 250 g of 2, 3-dinitro-1, 4-naphthalenediol (100mmol) and 2.44 g of 4-Dimethylaminopyridine (DMAP) (20.0mmol) into a dry three-neck flask, adding 1500ml of dichloromethane to dissolve the dichloromethane, cooling the reaction solution to 0 ℃, slowly dropwise adding 62ml (444mmol) of Triethylamine (TEA), continuously stirring for 20min after dropwise adding is completed, continuously and slowly dropwise adding 62.6 g of trifluoromethyl sulfonic anhydride (222mmol) into the reaction solution at 0 ℃, continuously stirring for 1h after dropwise adding is completed, adding water to extract and kill the reaction until the reaction is completed, simultaneously extracting the organic phase by dichloromethane, combining and washing the organic phase for multiple times, drying by magnesium sulfate, filtering, drying by rotary evaporation to obtain a crude port, purifying by fast column chromatography to obtain 440g of an intermediate 2-1, wherein the yield is as follows: 85.8 percent. Ms (asap) ═ 514.1.
Synthesis of intermediate 2-2
A500 ml three-necked flask was charged with 20g, 100mmol of o-bromobenzoic acid, 25.7g, 50mmol of intermediate 2-1, 6.9g, 50mmol of sodium carbonate, 1.16g, 1mmol of Pd (PPh)3)4300ml of toluene, 75ml of water and 25ml of ethanol in N2Reacting at 110 ℃ in the atmosphere, tracking the reaction process by TLC, and cooling to room temperature after the reaction is finished. Pouring the reaction solution into water, washing to remove Na2CO3Then, the solid product was obtained by suction filtration, and washed with dichloromethane. Recrystallizing the crude product by using dichloromethane and methanol to obtain 22.4g of an intermediate 2-2, wherein the yield is as follows: 85.2 percent. Ms (asap) ═ 526.4.
Synthesis of intermediates 2-3
A500 ml three-necked flask was charged with 22g, 100mmol of pinacol o-aminobenzoate, 26.3g, 50mmol of intermediate 2-2, 6.9g, 50mmol of potassium carbonate, 1.16g, 1mmol of Pd (PPh)3)4300ml of toluene, 75ml of water and 25ml of ethanol in N2Reacting at 110 ℃ in the atmosphere, tracking the reaction process by TLC, and cooling to room temperature after the reaction is finished. Pouring the reaction solution into water, washing to remove K2CO3Then, the solid product was obtained by suction filtration, and washed with dichloromethane. The crude product was recrystallized from dichloromethane and ethanol to give 21.5g of intermediate 2-3, yield: 77.8 percent. Ms (asap) ═ 552.6.
Synthesis of intermediates 2 to 4
55.3g of intermediate 2-3 was dissolved in a mixture of 250ml of acetic acid and 25ml of sulfuric acid in a 500ml three-necked flask, cooled to 0 ℃ and slowly dropped into the reaction mixture 16.0g of sodium nitrite, followed by stirring for 40 min. And (3) when the reaction is complete, dripping the reaction solution into water, filtering the suspended crude product on the water surface, drying, and purifying by adopting a flash silica gel column chromatography to obtain 5g of an intermediate 2-4, wherein the yield is as follows: 9.6 percent. Ms (asap) ═ 518.2.
Synthesis of intermediates 2 to 5
Adding 51.8g of intermediate 2-4, 480ml of triethyl phosphate and 400ml of o-dichlorobenzene into a dry flask, heating and refluxing for 3 hours, extracting the reaction solution by using ethyl acetate after the reaction is completed, washing by using water for 3 times, combining organic phases, drying by using magnesium sulfate, filtering, and evaporating the solvent to obtain a crude product. Intermediate 2-5 was obtained by flash silica gel column chromatography with a mass of 34.5 g, yield: 76.0 percent. Ms (asap) 454.5.
Synthesis of intermediates 2 to 6
Adding 45.5g of intermediate 2-5, 20.5g of iodobenzene, 13.8g of dried potassium carbonate powder and 500ml of o-dichlorobenzene into a dry three-neck flask, heating to 140 ℃ for reacting for 8 hours, extracting a reaction solution by using dichloromethane after the reaction is completed, washing 3 times by using water, combining organic phases, drying by using magnesium sulfate, filtering, and evaporating a solvent to dryness to obtain a crude product. Intermediate 2-6 was obtained by flash silica gel column chromatography with a mass of 45.4 g, yield: 85.7 percent. Ms (asap) ═ 530.4.
Synthesis of Compound (2)
Under the protection of nitrogen, 53.0 g of intermediate 2-6(100mmol) and 12.2 g of 4-Dimethylaminopyridine (DMAP) (100.0mmol) are respectively added into a dry three-neck flask, 1500ml of tetrahydrofuran is added to dissolve the intermediate, the reaction solution is stirred for 30min to fully dissolve the intermediate, 24.0g of tetrahydrofuran solution of a compound 7 is slowly dripped, the mixture is continuously heated to 80 ℃ after the dripping is completed, the reaction is carried out for 4 hours, water is added to complete the reaction, meanwhile, dichloromethane is used for extracting an organic phase, the organic phase is combined and washed for multiple times, the mixture is dried by magnesium sulfate, filtered, the solvent is evaporated to dryness to obtain a crude product, and the crude product is purified by a flash column chromatography to obtain a compound (2), wherein the mass is 58.4g, and the yield: 79.5 percent. Ms (asap) ═ 734.1.
Example 2
The synthetic route of compound (11) is shown in the following figure:
synthesis of intermediate 11-2
A500 ml three-necked flask was charged with 22.0g, 100mmol of pinacol o-aminobenzoate, 33.3g, 50mmol of compound 1-1, 6.9g, 50mmol of potassium carbonate, 1.16g, 1mmol of Pd (PPh)3)4300ml of toluene, 75ml of water and 25ml of ethanol in N2Reacting at 110 ℃ in the atmosphere, tracking the reaction process by TLC, and cooling to room temperature after the reaction is finished. Pouring the reaction solution into water, washing to remove K2CO3Then, the solid product was obtained by suction filtration, and washed with dichloromethane. The crude product was recrystallized from dichloromethane, ethanol to yield 24.3g of intermediate 11-2, yield: 70.8 percent. Ms (asap) ═ 686.6.
Synthesis of intermediate 11-3
68.6g of intermediate 11-2 was dissolved in a mixture of 250ml of acetic acid and 25ml of sulfuric acid in a 500ml three-necked flask, cooled to 0 ℃ and slowly dropped into the reaction mixture 16.0g of sodium nitrite, followed by stirring for 40 min. After the reaction is completed, the reaction solution is dripped into water, the suspended crude product on the water surface is filtered, dried and purified by adopting a flash silica gel column chromatography to obtain 5.4g of an intermediate 11-3, wherein the yield is as follows: 8.3 percent. Ms (asap) ═ 651.7.
Synthesis of intermediate 11-4
Adding 51.8g of intermediate 11-3, 480ml of triethyl phosphate and 400ml of o-dichlorobenzene into a dry flask, heating and refluxing for 3 hours, extracting the reaction solution by using ethyl acetate after the reaction is completed, washing by using water for 3 times, combining organic phases, drying by using magnesium sulfate, filtering, and evaporating the solvent to obtain a crude product. Intermediate 11-4 was obtained by flash silica gel column chromatography with a mass of 47.5 g, yield: 76.0 percent. Ms (asap) ═ 618.5.
Synthesis of Compound (11)
Under the protection of nitrogen, 61.8 g of intermediate 11-4(100mmol), 26.8 g of 2, 4-diphenyl-6-chloro-1, 3, 5-triazine, 2.24 g of palladium acetate (1.0mmol) and 13.8g of potassium carbonate are respectively added into a dry three-neck flask, 1500ml of tetrahydrofuran is added for dissolution, the mixture is heated to 80 ℃ until the reaction liquid refluxes, the reaction is carried out for 12 hours, water is added for complete reaction, the reaction is quenched, meanwhile, dichloromethane is used for extracting an organic phase, the organic phases are combined and washed for multiple times, magnesium sulfate is used for drying, filtration is carried out, solvent is evaporated to dryness to obtain a crude product, and the crude product is purified by flash column chromatography to obtain 68.9g of compound (11), wherein the yield: 80.1 percent. Ms (asap) ═ 851.1.
Example 3
The synthetic route for compound (22) is shown below:
synthesis of intermediate 22-2:
the synthesis method is basically the same as that of the intermediate 2-3 in the compound (2), except that the dosage of the pinacol ester o-aminophenylboronic acid is halved, and the yield is as follows: 84.5 percent. Ms (asap) ═ 540.6.
Synthesis of intermediate 22-3:
method for the synthesis of intermediate 22-3 the synthesis of intermediate 22-2 was carried out by the classical SUZUKI reaction, except that pinacol ester of anthranilic acid was replaced by pinacol ester of 2-amino-3-naphthaleneboronic acid, with the following yields: 80.4 percent. Ms (asap) ═ 602.6.
Synthesis of intermediate 22-4:
synthetic methods reference was made to the synthetic methods of intermediates 2-4 in compound (2), yields: 8.5 percent. Ms (asap) ═ 568.6.
Synthesis of intermediate 22-5:
synthetic methods reference was made to the synthetic methods of intermediates 2-5 in compound (2), yields: 71.1 percent. Ms (asap) ═ 504.4.
Synthesis of intermediate 22-6:
synthetic methods reference was made to the synthetic methods of intermediates 2-6 in compound (2), yields: 80.3 percent. Ms (asap) ═ 580.7.
Synthesis of Compound (22):
synthesis of compound (22) reference to the synthesis of compound (2), yield: 80.4 percent. Ms (asap) ═ 784.9.
Example 4
The synthetic route for compound (27) is shown below:
synthesis of intermediate 27-2:
synthesis methods reference the synthesis of intermediate 2-3 in compound (2), synthesized using the classical SUZUKI reaction, except that the amount of pinacol ester o-aminobenzeneboronic acid was halved, yield: 85.8 percent. Ms (asap) ═ 540.4.
Synthesis of intermediate 27-3:
method for synthesizing intermediate 27-3 referring to the method for synthesizing intermediate 27-2, the classical SUZUKI reaction is adopted for synthesis, the pinacol ester o-aminobenzeneboronic acid is replaced by pinacol ester 2-amino-3-naphthaleneboronic acid, and the yield is as follows: 85.4 percent. Ms (asap) ═ 602.8.
Synthesis of intermediate 27-4:
synthetic methods reference was made to the synthetic methods of intermediates 2-4 in compound (2), yields: 6.5 percent. Ms (asap) ═ 568.4.
Synthesis of intermediates 27-5:
synthetic methods reference was made to the synthetic methods of intermediates 2-5 in compound (2), yields: 65.4 percent. Ms (asap) ═ 504.4.
Synthesis of intermediates 27-6:
synthetic methods reference was made to the synthetic methods of intermediates 2-6 in compound (2), yields: 85.3 percent. Ms (asap) ═ 580.4.
Synthesis of Compound (27):
synthesis Process of Compound (27) referring to the synthesis process of Compound (2), Compound 2-7 was replaced with phenyl-substituted chloroquinoxaline (27-7), yield: 74.4 percent. Ms (asap) ═ 784.8.
Example 5
The synthetic route for compound (36) is shown below:
synthesis of intermediate 36-2:
synthesis method referring to the synthesis method of intermediate 2-3 in compound (2), the o-aminobenzeneboronic acid pinacol ester was replaced with 2-amino-3-naphthaleneboronic acid pinacol ester using the classical SUZUKI reaction synthesis, yield: 80.4 percent. Ms (asap) ═ 652.4.
Synthesis of intermediate 36-3:
synthetic methods reference was made to the synthetic methods of intermediates 2-4 in compound (2), yields: 8.9 percent. Ms (asap) ═ 618.8.
Synthesis of intermediate 36-4:
synthetic methods reference was made to the synthetic methods of intermediates 2-5 in compound (2), yields: 69.4 percent. Ms (asap) ═ 554.6.
Synthesis of intermediate 36-5:
synthetic methods reference was made to the synthetic methods of intermediates 2-6 in compound (2), yields: 89.4 percent. Ms (asap) ═ 630.7.
Synthesis of Compound (36):
synthesis of compound (36) reference is made to the synthesis of compound (11), yield: 79.8 percent. Ms (asap) ═ 862.0.
Example 6
The synthetic route for compound (107) is shown below:
synthesis of intermediate 107-2
Synthesis method referring to the synthesis method of intermediate 11-2 in compound (11), the classical SUZUKI reaction synthesis is adopted, the o-aminophenylboronic acid pinacol ester is replaced by 2-amino-3-naphthaleneboronic acid pinacol ester, and the input amount is halved, and the yield is: 75.4 percent. Ms (asap) ═ 723.4.
Synthesis of intermediate 107-3
Synthetic methods reference the synthetic method for intermediate 11-2 in compound (11), synthesized using the classical SUZUKI reaction, except substituting pinacol ester of ortho-aminophenylboronic acid with pinacol ester of 2-amino-3-naphthaleneboronic acid, yield: 84.4 percent. Ms (asap) ═ 735.8.
Synthesis of intermediate 107-4:
synthetic method reference was made to the synthetic method of intermediate 11-3 in compound (11), yield: 5.4 percent. Ms (asap) ═ 701.8.
Synthesis of intermediate 107-5:
synthetic method reference was made to the synthetic method of intermediate 11-4 in compound (11), yield: 78.1 percent. Ms (asap) ═ 669.8.
Synthesis of Compound (107)
Synthesis of compound (107) compound (11) was synthesized according to the classical Hartwig reaction, yield: 88.3 percent. Ms (asap) ═ 914.0.
Example 7
The synthetic route for compound (109) is shown below:
synthesis of intermediate 109-2:
synthetic method the synthesis was identical to that of intermediate 27-2 in reference compound (27), using the classical SUZUKI reaction, except that pinacol ester o-aminophenylboronic acid was changed to pinacol ester o-aminonaphthalene boronic acid, the amount used was doubled, the yield: 78.8 percent. Ms (asap) ═ 652.4. Synthesis of intermediate 109-3:
synthetic methods reference was made to the synthetic methods of intermediates 2-4 in compound (2), yields: 5.8 percent. Ms (asap) ═ 618.4.
Synthesis of intermediate 109-4:
synthetic method and synthetic method of intermediates 2 to 5 in compound (2), yield: 67.6 percent. Ms (asap) ═ 554.4.
Synthesis of intermediate 109-5:
synthetic methods reference was made to the synthetic methods of intermediates 2-6 in compound (2), yields: 87.8 percent. Ms (asap) ═ 630.7.
Synthesis of compound (109):
synthesis of compound (109) reference was made to the synthesis of compound (11) using the classical Hartwig reaction, yield: 85.5 percent. Ms (asap) ═ 875.0.
Example 8
The synthetic route for compound (125) is as follows:
synthesis of intermediate 125-2
Synthesis method referring to the synthesis method of intermediate 11-2 in compound (11), the synthesis was performed using the classical SUZUKI reaction except that pinacol ester ortho-aminobenzeneboronic acid was changed to pinacol ester 9-amino-10-phenanthreneboronic acid, and the input was halved, yield: 76.5 percent. Ms (asap) ═ 823.8.
Synthesis of intermediate 125-3
Synthesis method reference was made to the synthesis method of intermediate 11-2 in compound (11), using the classical SUZUKI reaction, in which pinacol ester o-aminophenylboronic acid was halved in amount and in yield: 85.6 percent. Ms (asap) ═ 836.1.
Synthesis of intermediate 125-4:
synthetic method reference was made to the synthetic method of intermediate 11-3 in compound (11), yield: 4.4 percent. Ms (asap) ═ 801.8.
Synthesis of intermediate 125-5:
synthetic method reference was made to the synthetic method of intermediate 11-4 in compound (11), yield: 88.4 percent. Ms (asap) ═ 768.8.
Synthesis of compound (125):
synthesis of compound (125) compound (11) was synthesized according to the classical Hartwig reaction, yield: 84.4 percent. Ms (asap) ═ 950.1.
Example 9
The synthetic route for compound (200) is shown below:
synthesis of intermediate 200-2:
synthesis method referring to the synthesis method of intermediate 27-2 in compound (27), the amount of pinacol ester ortho-aminophenylboronic acid was doubled by using the classical SUZUKI reaction synthesis, yield: 80.2 percent. Ms (asap) ═ 552.6.
Synthesis of intermediate 200-3:
synthetic methods reference was made to the synthetic methods of intermediates 2-4 in compound (2), yields: 4.6 percent. Ms (asap) ═ 518.5.
Synthesis of intermediate 200-4:
synthetic methods reference was made to the synthetic methods of intermediates 2-5 in compound (2), yields: 71.2 percent. Ms (asap) ═ 454.3.
Synthesis of intermediate 200-5:
synthetic methods reference was made to the synthetic methods of intermediates 2-6 in compound (2), yields: 88.4 percent. Ms (asap) ═ 529.7.
Synthesis of compound (200):
synthesis of compound (200) compound (11) was synthesized according to the classical Hartwig reaction, yield: 84.7 percent. Ms (asap) ═ 760.9.
Example 10
The synthetic route for compound (220) is shown below:
synthesis of intermediate 220-2:
synthesis method referring to the synthesis method of intermediate 27-2 in compound (27), synthesized using the classical SUZUKI reaction, the substitution of pinacol ester o-aminobenzeneboronic acid to pinacol ester 2-amino-3-naphthaleneboronic acid, yield: 79.1 percent. Ms (asap) ═ 640.5.
Synthesis of intermediate 3:
method of synthesis of intermediate 220-3 the synthesis was performed using the classical SUZUKI reaction, with reference to the synthesis of intermediate 220-2, except that the 2-amino-3-naphthaleneboronic acid pinacol ester was replaced with anthranilic acid pinacol ester, yield: 88.1 percent. Ms (asap) ═ 652.8.
Synthesis of intermediate 220-4:
synthetic methods reference was made to the synthetic methods of intermediates 2-4 in compound (2), yields: 4.8 percent. Ms (asap) ═ 618.4.
Synthesis of intermediate 220-5:
synthetic methods reference was made to the synthetic methods of intermediates 2-5 in compound (2), yields: 80.4 percent. Ms (asap) ═ 554.4.
Synthesis of intermediate 220-6:
synthetic methods reference was made to the synthetic methods of intermediates 2-6 in compound (2), yields: 84.5 percent. Ms (asap) ═ 629.7.
Synthesis of compound (220):
synthesis of compound (220) reference is made to the synthesis of compound (2), yield: 80.1 percent. Ms (asap) ═ 834.8.
Example 11
The synthetic route of compound (241) is as follows:
synthesis of intermediate 241-2
Synthetic methods reference the synthetic method for intermediate 11-2 in compound (11), synthesized using the classical SUZUKI reaction, yield: 80.4 percent. Ms (asap) ═ 537.6.
Synthesis of intermediate 241-3:
synthetic method reference was made to the synthetic method of intermediate 11-3 in compound (11), yield: 6.5 percent. Ms (asap) ═ 503.4.
Synthesis of intermediate 241-4:
synthetic method reference was made to the synthetic method of intermediate 11-4 in compound (11), yield: 84.6 percent. Ms (asap) ═ 470.5.
Synthesis of compound (241):
synthesis of compound (241) referring to the synthesis of compound (2), yield: 68.9 percent. Ms (asap) ═ 751.9.
Example 12
The synthetic route for compound (246) is as follows:
synthesis of intermediate 246-2
Synthetic methods reference the synthetic method for intermediate 11-2 in compound (11), synthesized using the classical SUZUKI reaction, yield: 79.7 percent. Ms (asap) ═ 521.5.
Synthesis of intermediate 246-3:
synthetic method reference was made to the synthetic method of intermediate 11-3 in compound (11), yield: 5.5 percent. Ms (asap) ═ 487.5.
Synthesis of intermediate 246-4:
synthetic method reference was made to the synthetic method of intermediate 11-4 in compound (11), yield: 76.8 percent. Ms (asap) 454.5.
Synthesis of compound (246):
synthesis of compound (246) reference was made to the synthesis of compound (2), yield: 74.1 percent. Ms (asap) ═ 735.6.
Example 13
The synthetic route for compound (262) is shown below:
synthesis of intermediate 262-2:
synthetic methods reference the synthetic method for intermediate 27-2 in compound (27), synthesized using the classical SUZUKI reaction, yield: 84.1 percent. Ms (asap) ═ 553.5.
Synthesis of intermediate 262-3:
synthesis of intermediate 262-3 the synthesis was performed using the classical SUZUKI reaction, referring to the synthesis of intermediate 262-2, except substituting pinacol o-aminophenylborate for pinacol 9-amino-10 phenanthreneborate, yield: 84.5 percent. Ms (asap) ═ 665.8.
Synthesis of intermediate 262-4:
synthetic methods reference was made to the synthetic methods of intermediates 2-4 in compound (2), yields: 5.1 percent. Ms (asap) ═ 631.8.
Synthesis of intermediate 262-5:
adding 63.1g of intermediate 262-4 into a dry flask, adding THF at room temperature to completely stir and dissolve, cooling the temperature of a reaction solution to 0 ℃ in an ice bath, slowly dropping 200mmol of methyl magnesium bromide Grignard reagent under the protection of nitrogen, continuing stirring at room temperature for 1 hour after dropping is finished, adding water to quench the reaction, extracting the obtained mixed reaction solution with dichloromethane for 3 times, combining organic phases, drying with magnesium sulfate, filtering, evaporating the solvent to dryness to obtain a crude product, recrystallizing with dichloromethane and methanol to obtain an intermediate product, wherein the yield is as follows: 58.9%, ms (asap) ═ 631.7. And directly putting the obtained intermediate product into the next reaction, dissolving the intermediate product into THF, heating to a reflux state, dropwise adding concentrated hydrochloric acid for reaction, continuously heating for reaction for 1 hour after dropwise adding of the concentrated hydrochloric acid is finished, tracking the reaction by TLC, cooling to room temperature after the reaction is completed, adding alkaline solution to neutralize unreacted hydrochloric acid, filtering to obtain a crude product, and recrystallizing to obtain an intermediate 262-5 with yield: 75.4%, ms (asap) ═ 613.7.
Synthesis of intermediate 262-6:
synthetic methods reference was made to the synthetic methods of intermediates 2-5 in compound (2), yields: 82.4 percent. Ms (asap) ═ 581.7.
Synthesis of compound (262):
synthesis of compound (262) compound (11) was synthesized according to the classical Hartwig reaction, yield: 81.1 percent. Ms (asap) ═ 765.9.
Example 14
The synthetic route for compound (266) is shown below:
synthesis of intermediate 266-2:
synthetic methods reference the synthetic method for intermediate 27-2 in compound (27), synthesized using the classical SUZUKI reaction, yield: 80.7 percent. Ms (asap) 552.4.
Synthesis of intermediate 266-3:
synthesis of intermediate 266-3 synthesis of intermediate 266-2 was performed using the classical SUZUKI reaction, yield: 74.6 percent. Ms (asap) ═ 617.6.
Synthesis of intermediate 266-4:
synthetic methods reference was made to the synthetic methods of intermediates 2-4 in compound (2), yields: 4.3 percent. Ms (asap) ═ 583.8.
Synthesis of intermediate 266-5:
synthesis method reference is made to the synthesis method of intermediate 262-5 in compound (262), yield: 40.1%, ms (asap) ═ 565.6.
Synthesis of intermediate 266-6:
synthetic methods reference was made to the synthetic methods of intermediates 2-5 in compound (2), yields: 80.2 percent. Ms (asap) ═ 533.7.
Synthesis of Compound (266):
synthesis of compound (266) compound (11) was synthesized using the classical Hartwig reaction, yield: 78.1 percent. Ms (asap) ═ 764.9.
Comparative example
The procedure for the synthesis of REF material is described in the following documents: WO2018159964A 1.
Preparing an OLED device:
the device structure is as follows: ITO/NPD (35 nm)/Compound (2): 10% (btp)2The preparation steps of the OLED device of Ir (acac) (40nm)/TPBi (65nm)/LiF (1nm)/Al (150nm) are as follows:
HTL materials: NPD EML material: compound (2): 10% (btp)2Ir (acac) ETL material: TPBi
a. Cleaning the conductive glass substrate, namely cleaning the conductive glass substrate by using various solvents such as chloroform, ketone and isopropanol when the conductive glass substrate is used for the first time, and then carrying out ultraviolet ozone plasma treatment;
b. HTL (35nm), EML (40nm), ETL (65 nm): under high vacuum (1X 10)-6Mbar, mbar) by thermal evaporation;
c. cathode-LiF/Al (1nm/150nm) in high vacuum (1X 10)-6Millibar) hot evaporation;
d. encapsulation the devices were encapsulated with uv curable resin in a nitrogen glove box.
OLED 1: the host material of the luminescent layer of the organic electroluminescent device is the compound (2).
And an OLED 2: the host material of the light-emitting layer of the organic electroluminescent device is a compound (11).
And 3, OLED: the host material of the light-emitting layer of the organic electroluminescent device is a compound (22).
And an OLED 4: the host material of the light-emitting layer of the organic electroluminescent device is a compound (27).
And an OLED 5: the host material of the light-emitting layer of the organic electroluminescent device is a compound (36).
And an OLED 6: the host material of the light-emitting layer of the organic electroluminescent device is a compound (107).
And an OLED (7): the host material of the light-emitting layer of the organic electroluminescent device is a compound (109).
And an OLED 8: the host material of the light-emitting layer of the organic electroluminescent device is a compound (125).
An OLED 9: the host material of the light-emitting layer of the organic electroluminescent device is a compound (200).
An OLED 10: the host material of the light-emitting layer of the organic electroluminescent device is a compound (220).
An OLED 11: the main material of the light-emitting layer of the organic electroluminescent device is a compound (241).
The OLED 12: the host material of the light-emitting layer of the organic electroluminescent device is a compound (246).
The OLED 13: the host material of the light-emitting layer of the organic electroluminescent device is a compound (262).
The OLED 14: the host material of the light-emitting layer of the organic electroluminescent device is a compound (266).
OLED Ref: the main material of the light-emitting layer of the organic electroluminescent device is REF.
The current-voltage (J-V) characteristics of each OLED device were characterized by a characterization device, while recording important parameters such as efficiency, lifetime, and external quantum efficiency. As shown in table 2:
TABLE 2
The current-voltage (J-V) characteristics of each OLED device were characterized by a characterization device, while recording important parameters such as efficiency, lifetime, and external quantum efficiency. As can be seen from the test data in Table 1, the red OLED device prepared by using the host material of the invention has greatly improved luminous efficiency and service life, and the external quantum efficiency is also obviously improved.
It is to be understood that the invention is not limited to the examples described above, but that modifications and variations may be effected thereto by those of ordinary skill in the art in light of the foregoing description, and that all such modifications and variations are intended to be within the scope of the invention as defined by the appended claims.
Claims (14)
1. An organic compound represented by the general formula (1):
wherein:
Ar1-Ar4each independently selected from substituted or unsubstituted aromatic groups containing 6 to 60C atoms or substituted or unsubstituted heteroaromatic groups containing 5 to 60 ring atoms or substituted or unsubstituted non-aromatic ring systems containing 3 to 30 ring atoms;
X1~X3at each occurrence, is independently selected from none, or CR1R2,SiR1R2,NR1,C(=O),S,S(=O)2And O; wherein X1~X3At most one of which is selected from none;
R1-R2independently at each occurrence, is selected from H, D, or a straight-chain alkyl group having 1 to 20C atoms, an alkoxy group having 1 to 20C atoms or a thioalkoxy group having 1 to 20C atoms, or a branched or cyclic alkyl group having 3 to 20C atoms, a branched or cyclic alkoxy group having 3 to 20C atoms or a branched or cyclic thioalkoxy group having 3 to 20C atoms, or a silyl group, or a ketone group having 1 to 20C atoms, or an alkoxycarbonyl group having 2 to 20C atoms, or an aryloxycarbonyl group having 7 to 20C atoms, a cyano group, a carbamoyl group, a haloformyl group, a formyl group, an isocyano group, an isocyanate group, a thiocyanate group or an isothiocyanate group, a hydroxyl group, a nitro group, a CF group3Cl, Br, F, I, a crosslinkable group, or a substituted or unsubstituted aromatic or heteroaromatic group having 5 to 60 ring atoms, or an aryloxy or heteroaryloxy group having 5 to 60 ring atoms, or a combination of these systems.
2. The organic compound of claim 1, wherein Ar is Ar1-Ar4Each independently selected from the group consisting of:
wherein:
each occurrence of Y is independently CR3R4、NR3、O、S、SiR3R4、PR3、P(=O)R3、S=O、S(=O)2Or C ═ O;
x, at each occurrence, independently represents CR3Or N;
R3and R4Independently at each occurrence, H, D, or a straight chain alkyl group having 1 to 20C atoms, a straight chain alkoxy group having 1 to 20C atoms, or a straight chain thioalkoxy group having 1 to 20C atoms, or a branched or cyclic alkyl group having 3 to 20C atoms, a branched or cyclic alkoxy group having 3 to 20C atoms, or a branched or cyclic alkoxy group having 3 to 20C atomsBranched or cyclic thioalkoxy, or silyl, or keto having 1 to 20C atoms, or alkoxycarbonyl having 2 to 20C atoms, or aryloxycarbonyl having 7 to 20C atoms, cyano, carbamoyl, haloformyl, formyl, isocyano, isocyanate, thiocyanate or isothiocyanate, hydroxy, nitro, CF3Cl, Br, F, I, a crosslinkable group, or a substituted or unsubstituted aromatic or heteroaromatic group having 5 to 60 ring atoms, or an aryloxy or heteroaryloxy group having 5 to 60 ring atoms, or a combination of these systems.
4. the organic compound of claim 2, wherein Ar is Ar1-Ar4Independently selected from substituted or unsubstituted naphthalene, benzene, pyridine, quinoxaline, isoquinoline, phenanthroline or phenanthrene.
5. The organic compound according to claim 1, wherein the general formula (1) is selected from any one of formulae (2-1) to (2-4):
wherein:
Ar1-Ar4independently selected from substituted or unsubstituted aromatic hydrocarbons containing 6 to 60C atomsAn aromatic group or a heteroaromatic group of 5 to 60 ring atoms;
X1~X3independently at each occurrence is selected from CR1R2,SiR1R2,NR1,C(=O),S,S(=O)2Or O;
R1and R2The meaning is as defined in claim 1.
7. the organic compound of any one of claims 1 to 6, wherein X is1~X3At each occurrence, at least one is selected from NR1。
8. The organic compound of claim 7, wherein: r1When present, at least one structural unit selected from the group consisting of:
wherein:
W1–W8at each occurrence, each independently represents CR5Or N;
Z1-Z3is a single bond or CR6R7Or O or S or none;
r is selected from any integer from 1 to 3;
R5-R7independently at each occurrence H, D, or a straight chain alkyl, alkoxy or thioalkoxy group having from 1 to 20C atoms, or a branched or cyclic alkyl, alkoxy or thioalkoxy group having from 3 to 20C atoms, or a silyl group, or a keto group having from 1 to 20C atoms, or a cyano, carbamoyl, haloformyl, formyl, isocyano, isocyanate, thiocyanate or isothiocyanate, hydroxy, nitro, CF3Cl, Br, F, I, a crosslinkable group, or a substituted or unsubstituted aromatic or heteroaromatic group having 5 to 60 ring atoms, or an aryloxy or heteroaryloxy group having 5 to 60 ring atoms, or a combination of these systems.
11. a mixture comprising an organic compound according to any one of claims 1 to 10, and at least one organic functional material selected from a hole injecting material, a hole transporting material, an electron injecting material, an electron blocking material, a hole blocking material, a light emitting material or a host material.
12. A composition comprising an organic compound according to any one of claims 1 to 10 or a mixture according to claim 11, and at least one organic solvent.
13. An organic electronic device comprising at least one organic compound according to any one of claims 1 to 10 or a mixture according to claim 11 or a composition according to claim 12.
14. The organic electronic device according to claim 13, comprising a light-emitting layer comprising an organic compound according to any one of claims 1 to 10 or a mixture according to claim 11 or a composition according to claim 12.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911111644 | 2019-11-14 | ||
CN2019111116447 | 2019-11-14 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112794856A true CN112794856A (en) | 2021-05-14 |
CN112794856B CN112794856B (en) | 2022-10-04 |
Family
ID=75807391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011139370.5A Active CN112794856B (en) | 2019-11-14 | 2020-10-22 | Organic compounds, mixtures, compositions and uses thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112794856B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115536535A (en) * | 2022-09-30 | 2022-12-30 | 北京八亿时空液晶科技股份有限公司 | Fluorene derivative and organic light-emitting element containing same |
CN116082355A (en) * | 2021-10-26 | 2023-05-09 | 广州华睿光电材料有限公司 | Anthracene compound, mixture, composition and organic electronic device |
CN116162075A (en) * | 2021-11-20 | 2023-05-26 | 广州华睿光电材料有限公司 | Organic compounds, mixtures, compositions and organic electronic devices |
WO2024066619A1 (en) * | 2022-09-30 | 2024-04-04 | 华为技术有限公司 | Organic compound and preparation method therefor, and use of organic compound |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018154577A (en) * | 2017-03-16 | 2018-10-04 | 国立大学法人名古屋大学 | Water-soluble warped nano graphene compound and use therefor |
-
2020
- 2020-10-22 CN CN202011139370.5A patent/CN112794856B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018154577A (en) * | 2017-03-16 | 2018-10-04 | 国立大学法人名古屋大学 | Water-soluble warped nano graphene compound and use therefor |
Non-Patent Citations (1)
Title |
---|
SAI HO PUN,等: "A Dipleiadiene-Embedded Aromatic Saddle Consisting of 86 Carbon Atoms", 《ANGEW. CHEM. INT. ED.》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116082355A (en) * | 2021-10-26 | 2023-05-09 | 广州华睿光电材料有限公司 | Anthracene compound, mixture, composition and organic electronic device |
CN116162075A (en) * | 2021-11-20 | 2023-05-26 | 广州华睿光电材料有限公司 | Organic compounds, mixtures, compositions and organic electronic devices |
CN115536535A (en) * | 2022-09-30 | 2022-12-30 | 北京八亿时空液晶科技股份有限公司 | Fluorene derivative and organic light-emitting element containing same |
WO2024066619A1 (en) * | 2022-09-30 | 2024-04-04 | 华为技术有限公司 | Organic compound and preparation method therefor, and use of organic compound |
CN115536535B (en) * | 2022-09-30 | 2024-05-10 | 北京八亿时空液晶科技股份有限公司 | Fluorene derivative and organic light-emitting element comprising same |
Also Published As
Publication number | Publication date |
---|---|
CN112794856B (en) | 2022-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112794856B (en) | Organic compounds, mixtures, compositions and uses thereof | |
CN112794842B (en) | Polycyclic compound and use thereof | |
CN112430239B (en) | Seven-membered ring structure-based compound, high polymer, mixture, composition, and organic electronic device | |
CN112778309B (en) | N-containing condensed ring compound and application thereof in organic electronic device | |
CN110759925A (en) | Nitrogen-containing condensed ring organic compound and application thereof | |
CN115093333B (en) | Organic compounds, mixtures, compositions and organic electronic devices | |
CN114085228A (en) | Organic compound containing nitrogen heterocycle, mixture, composition and application | |
CN114380852B (en) | Pyrene organic compound and application thereof | |
CN112794824A (en) | Organic compound, mixture, composition and organic electronic device | |
CN110669048A (en) | Organic compound based on nitrogen-containing fused ring and application thereof | |
CN115651003A (en) | Azaborine heterocyclic compound and application thereof in organic electronic device | |
CN114341136B (en) | Organic compound and organic electronic device | |
CN114163461B (en) | Fused ring compound containing boron atom and nitrogen atom and application thereof | |
CN112979678B (en) | Organic compound, high polymer, mixture, composition and organic electronic device | |
CN115925719A (en) | Organic compound, composition and application of organic compound and composition in organic electronic device | |
CN114763361A (en) | Organic compound containing nitrogen heteroboron heteropyrene and application thereof | |
CN114685550A (en) | Silicon-containing organic compounds, mixtures, compositions and organic electronic devices | |
CN114085240A (en) | Organic compounds containing boron heterocycles, mixtures, compositions and organic electronic devices | |
CN112724152B (en) | Nitrogen-containing heterocyclic organic compound and application thereof | |
CN112724125B (en) | Nitrogen-containing organic compound and application thereof | |
CN115368247B (en) | Organic compound, and mixture, composition and organic electronic device using same | |
CN115403543B (en) | Organic compounds, mixtures, compositions and organic electronic devices | |
CN113024567B (en) | Polycyclic compound, polymer, mixture, composition and organic electronic device | |
CN114751940B (en) | Binuclear iridium complex of pyrazole auxiliary ligand and application thereof | |
CN114369121B (en) | Metal complexes, polymers, mixtures, compositions and organic electronic devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |