CN112788779A - 无线通信系统中用于上行链路准予覆盖的方法和设备 - Google Patents

无线通信系统中用于上行链路准予覆盖的方法和设备 Download PDF

Info

Publication number
CN112788779A
CN112788779A CN202011208981.0A CN202011208981A CN112788779A CN 112788779 A CN112788779 A CN 112788779A CN 202011208981 A CN202011208981 A CN 202011208981A CN 112788779 A CN112788779 A CN 112788779A
Authority
CN
China
Prior art keywords
grant
duration
symbol
pusch
rar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011208981.0A
Other languages
English (en)
Other versions
CN112788779B (zh
Inventor
林克强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asustek Computer Inc
Original Assignee
Asustek Computer Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asustek Computer Inc filed Critical Asustek Computer Inc
Publication of CN112788779A publication Critical patent/CN112788779A/zh
Application granted granted Critical
Publication of CN112788779B publication Critical patent/CN112788779B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开一种方法和设备。在从用户设备的角度的实例中,用户设备可以接收所配置准予。用户设备可以接收随机接入响应准予,其中随机接入响应准予的第一物理上行链路共享信道与所配置准予的第二物理上行链路共享信道重叠。用户设备可以基于所配置准予传送第二物理上行链路共享信道。

Description

无线通信系统中用于上行链路准予覆盖的方法和设备
相关申请的交叉引用
本申请要求2019年11月6日提交的第62/931,439号美国临时专利申请的权益,所述美国临时专利申请的整个公开内容以全文引用的方式并入本文中。
技术领域
本公开大体上涉及无线通信网络,且更确切地说,涉及一种无线通信系统中用于上行链路准予覆盖的方法和设备。
背景技术
随着往来移动通信装置的大量数据的通信需求的快速增长,传统的移动语音通信网络演进成与互联网协议(Internet Protocol,IP)数据包通信的网络。此类IP数据包通信可以为移动通信装置的用户提供IP承载语音、多媒体、多播和点播通信服务。
示例性网络结构是演进型通用陆地无线接入网(Evolved UniversalTerrestrial Radio Access Network,E-UTRAN)。E-UTRAN系统可以提供高数据吞吐量以便实现上述IP承载语音和多媒体服务。目前,3GPP标准组织正在讨论新下一代(例如,5G)无线电技术。因此,目前在提交和考虑对3GPP标准的当前主体的改变以使3GPP标准演进和完成。
发明内容
根据本公开,提供一个或多个装置和/或方法。在从用户设备(User Equipment,UE)的角度的实例中,所述UE可以接收所配置准予。所述UE可以接收随机接入响应(RandomAccess Response,RAR)准予,其中所述RAR准予的第一物理上行链路共享信道(PhysicalUplink Shared Channel,PUSCH)与所述所配置准予的第二PUSCH重叠。所述UE可以基于所述所配置准予传送所述第二PUSCH。
附图说明
图1示出根据一个示例性实施例的无线通信系统的图式。
图2是根据一个示例性实施例的传送器系统(也称为接入网络)和接收器系统(也称为用户设备或UE)的框图。
图3是根据一个示例性实施例的通信系统的功能框图。
图4是根据一个示例性实施例的图3的程序代码的功能框图。
图5是说明根据一个示例性实施例的上行链路-下行链路时序关系的图式。
图6是根据一个示例性实施例的流程图。
图7是根据一个示例性实施例的流程图。
图8是根据一个示例性实施例的流程图。
具体实施方式
下文描述的示例性无线通信系统和装置采用支持广播服务的无线通信系统。无线通信系统经广泛部署以提供各种类型的通信,例如,语音、数据等等。这些系统可以基于码分多址(code division multiple access,CDMA)、时分多址(time division multipleaccess,TDMA)、正交频分多址(orthogonal frequency division multiple access,OFDMA)、第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)长期演进(Long Term Evolution,LTE)无线接入、3GPP高级长期演进(Long Term EvolutionAdvanced,LTE-A或LTE-Advanced)、3GPP2超移动宽带(Ultra Mobile Broadband,UMB)、WiMax、用于5G的3GPP新无线电(New Radio,NR)无线接入,或一些其它调制技术。
具体来说,下文描述的示例性无线通信系统装置可以被设计成支持一个或多个标准,例如,由命名为“第三代合作伙伴计划”(在本文中称为3GPP)的协会提供的标准,包含:3GPP TS 38.211 V15.7.0,“NR物理信道和调制”;3GPP TS 38.214 V15.7.0,“用于数据的NR物理层过程”;3GPP TS 38.321 V15.7.0,“NR MAC协议规范”;3GPP TS 38.213 V15.7.0,“用于控制的NR物理层过程”。上文所列的标准和文献特此明确地以全文引用的方式并入。
图1呈现根据本公开的一个或多个实施例的多址无线通信系统。接入网络100(access network,AN)包含多个天线群组,一个天线群组包含104和106,另一天线群组包含108和110,并且另外的天线群组包含112和114。在图1中,每个天线群组仅示出两个天线,但是每个天线群组可以使用更多或更少的天线。接入终端116(Access terminal,AT)与天线112和114通信,其中天线112和114通过前向链路120向接入终端116传送信息,并通过反向链路118从接入终端116接收信息。AT 122与天线106和108通信,其中天线106和108通过前向链路126向AT 122传送信息,并通过反向链路124从AT 122接收信息。在频分双工(frequency-division duplexing,FDD)系统中,通信链路118、120、124和126可以使用不同频率以供通信。例如,前向链路120可以使用与反向链路118所使用频率不同的频率。
每一天线群组和/或所述天线群组被设计成在其中通信的区域常常被称为接入网络的扇区。在实施例中,天线群组各自可以被设计成与接入网络100所覆盖的区域的扇区中的接入终端通信。
在经由前向链路120和126的通信中,接入网络100的传送天线可利用波束成形以便改进不同接入终端116和122的前向链路的信噪比。并且,相比于通过单个天线传送到其所有接入终端的接入网络,使用波束成形以传送到在接入网络的整个覆盖范围中随机分散的接入终端的所述接入网络通常会对相邻小区中的接入终端产生更少的干扰。
接入网络(access network,AN)可以是用于与终端通信的固定站或基站,并且也可以被称为接入点、Node B、基站、增强型基站、eNodeB(eNB)、下一代NodeB(gNB)或某一其它术语。接入终端(Access terminal,AT)还可以被称为用户设备(user equipment,UE)、无线通信装置、终端、接入终端或某一其它术语。
图2呈现多输入多输出(multiple-input and multiple-output,MIMO)系统200中的传送器系统210(也被称为接入网络)和接收器系统250(也被称为接入终端(accessterminal,AT)或用户设备(user equipment,UE))的实施例。在传送器系统210处,可以将多个数据流的业务数据从数据源212提供到传送(transmit,TX)数据处理器214。
在一个实施例中,通过相应的传送天线传送每个数据流。TX数据处理器214基于针对每个数据流而选择的特定译码方案来格式化、译码及交错所述数据流的业务数据以提供译码后数据。
可以使用正交频分多路复用(orthogonal frequency-division multiplexing,OFDM)技术将每个数据流的译码后数据与导频数据多路复用。导频数据通常可以是以已知方式进行处理的已知数据模式,并且可以在接收器系统处用于估计信道响应。接着可以基于针对每个数据流选择的特定调制方案(例如,二进制相移键控(binary phase shiftkeying,BPSK)、正交相移键控(quadrature phase shift keying,QPSK)、M进制相移键控(M-ary phase shift keying,M-PSK),或M进制正交振幅调制(M-ary quadratureamplitude modulation,M-QAM)等)来调制(即,符号映射)所述数据流的多路复用后导频数据和译码后数据,以提供调制符号。可以通过由处理器230执行的指令来确定用于每个数据流的数据速率、译码和/或调制。
接着将数据流的调制符号提供给TX MIMO处理器220,所述TX MIMO处理器可以进一步处理所述调制符号(例如,用于OFDM)。TX MIMO处理器220接着将NT个调制符号流提供给NT个传送器(TMTR)222a至222t。在某些实施例中,TX MIMO处理器220可将波束成形权重应用于数据流的符号及从其传送所述符号的天线。
每个传送器222接收并处理相应符号流以提供一个或多个模拟信号,并且进一步调节(例如,放大、滤波和/或上变频)所述模拟信号以提供适合于通过MIMO信道传送的调制信号。接着,可以分别从NT个天线224a至224t传送来自传送器222a至222t的NT个调制信号。
在接收器系统250处,由NR个天线252a至252r接收所传送的调制信号,并且可以将从每个天线252接收到的信号提供到相应的接收器(RCVR)254a至254r。每个接收器254可以调节(例如,滤波、放大和下变频)相应的接收信号、数字化调节后信号以提供样本,和/或进一步处理所述样本以提供对应的“接收到的”符号流。
RX数据处理器260接着基于特定接收器处理技术从NR个接收器254接收和/或处理NR个接收到的符号流以提供NT个“检测到的”符号流。RX数据处理器260接着可以对每个检测到的符号流进行解调、解交错和/或解码以恢复用于数据流的业务数据。由RX数据处理器260进行的处理可以与由传送器系统210处的TX MIMO处理器220和TX数据处理器214执行的处理互补。
处理器270可以周期性地确定要使用哪个预译码矩阵(下文论述)。处理器270制定包括矩阵索引部分和秩值部分的反向链路消息。
反向链路消息可以包括与通信链路和/或接收到的数据流有关的各种类型的信息。反向链路消息随后可以由TX数据处理器238(所述TX数据处理器还接收来自数据源236的多个数据流的业务数据)处理,由调制器280调制,由传送器254a至254r调节,和/或被传送回到传送器系统210。
在传送器系统210处,来自接收器系统250的调制信号由天线224接收、由接收器222调节、由解调器240解调,并由RX数据处理器242处理,以提取由接收器系统250传送的反向链路消息。接着处理器230可以确定使用哪一预译码矩阵来确定波束成形权重,然后可以处理所提取的消息。
图3呈现根据所公开主题的一个实施例的通信装置的替代简化功能框图。如图3中所示,可以利用无线通信系统中的通信装置300来实现图1中的UE(或AT)116和122或图1中的基站(或AN)100,并且无线通信系统可以是LTE系统或NR系统。通信装置300可以包含输入装置302、输出装置304、控制电路306、中央处理单元(central processing unit,CPU)308、存储器310、程序代码312以及收发器314。控制电路306通过CPU 308执行存储器310中的程序代码312,由此控制通信装置300的操作。通信装置300可以接收由用户通过输入装置302(例如,键盘或小键盘)输入的信号,且可以通过输出装置304(例如,监视器或扬声器)输出图像和声音。收发器314用于接收和传送无线信号,将接收到的信号传递到控制电路306,且无线地输出由控制电路306产生的信号。也可以利用无线通信系统中的通信装置300来实现图1中的AN 100。
图4是根据所公开主题的一个实施例的图3中所示的程序代码312的简化框图。在此实施例中,程序代码312包含应用层400、层3部分402和层2部分404,且耦合到层1部分406。层3部分402可以执行无线电资源控制。层2部分404可以执行链路控制。层1部分406可以执行和/或实施物理连接。
对用于5G的新RAT(NR)中使用的帧结构进行研究,以适应对时间和频率资源的各种类型的要求,例如,从超低时延(约0.5毫秒)到机器类型通信(Machine TypeCommunications,MTC)延迟容忍业务,从增强型移动宽带(enhanced Mobile Broadband,eMBB)的高峰值速率到MTC的极低数据速率。本研究的重要焦点是低时延方面,例如短传送时间间隔(Transmission Time Interval,TTI),而在研究中也可以考虑混合/适配不同TTI的其它方面。除了不同的服务和要求之外,在初始NR帧结构设计中,前向兼容性也可以是重要的考虑因素,因为开始阶段/版本中可能并不包含所有NR特征。
协议的减少时延是不同代/版本之间的重要改进,这可以效率效率以及满足新的应用要求,例如实时服务。经常用来减少时延的有效方法是减小TTI的长度,例如从3G中的10毫秒减小到LTE中的1毫秒。
NR可以是不同的,因为可能不需要后向兼容性。可以调整参数集,使得减少TTI的符号数目将不是用于改变TTI长度的唯一工具。使用LTE参数集作为实例,其包括1毫秒中的14个OFDM符号以及15KHz的子载波间隔。当子载波间隔是30KHz时,在相同FFT尺寸和相同CP结构的假设下,1毫秒中将存在28个OFDM符号,并且如果TTI中的OFDM符号的数目保持相同,则TTI变成0.5毫秒。这意味着不同TTI长度之间的设计可以与在子载波间隔上执行的良好可缩放性可以共同地保持。对于子载波间隔选择,例如快速傅里叶变换(Fast FourierTransform,FFT)尺寸、物理资源块(Physical Resource Block,PRB)的定义/数目、循环前缀(Cyclic Prefix,CP)的设计、可支持系统带宽等可存在权衡。由于对于NR考虑较大系统带宽和较大相干带宽,因此包含较大子载波间隔可以是自然选择。在3GPP TS 38.211V15.7.0中提供NR帧结构、信道设计和参数集设计的更多细节。3GPP TS 38.211 V15.7.0的部分引述如下。值得注意的是,标题为“上行链路-下行链路定时关系”的3GPP TS 38.211V15.7.0的章节4.3.1的图4.3.1-1在本文中再现为图5。
4帧结构和物理资源
4.1通用
贯穿本说明书,除非另外指出,否则时域中的各个字段的大小以时间单位Tc=1/(Δfmax·Nf)表示,其中Δfmax=480·103Hz且Nf=4096。常数κ=Ts/Tc=64,其中Ts=1/(Δfref·Nf,ref),Δfref=15·103Hz且Nf,ref=2048。
4.2参数集
如表4.2-1给定支持多个OFDM参数集,其中μ和用于带宽部分的循环前缀分别从较高层参数subcarrierSpacing和cyclicPrefix获得。
表4.2-1:支持的传送参数集。
μ Δf=2<sup>μ</sup>·15[kHz] 循环前缀
0 15 标准
1 30 标准
2 60 标准,扩展
3 120 标准
4 240 标准
4.3帧结构
4.3.1帧和子帧
下行链路和上行链路传送组织成具有Tf=(ΔfmaxNf/100)·Tc=10ms持续时间的帧,每帧由Tsf=(ΔfmaxNf/1000)·Tc=1ms持续时间的十个子帧组成。每子帧的连续OFDM符号的数目是
Figure BDA0002758006580000071
每个帧划分成五个子帧的两个大小相等的半帧,各自具有由子帧0-4组成的半帧0和由子帧5-9组成的半帧1。
在载波上,上行链路中存在一组帧并且下行链路中存在一组帧。
用于从UE传送的上行链路帧号i将在UE处的对应下行链路帧开始之前开始TTA=(NTA+NTA,offset)Tc,其中NTA,offset由[5,TS 38.213]给定。
图4.3.1-1:上行链路-下行链路定时关系。
4.3.2时隙
对于子载波间隔配置,时隙在子帧内以递增次序编号为
Figure BDA0002758006580000072
Figure BDA0002758006580000073
并且在帧内以递增次序编号为
Figure BDA0002758006580000074
在时隙中存在
Figure BDA0002758006580000075
个连续OFDM符号,其中
Figure BDA0002758006580000076
取决于表4.3.2-1和4.3.2-2给定的循环前缀。子帧中时隙
Figure BDA0002758006580000077
的开始在时间上与同一子帧中OFDM符号
Figure BDA0002758006580000078
的开始对准。
时隙中的OFDM符号可以被分类为‘下行链路’、‘灵活’或‘上行链路’。在[5,TS38.213]的第11.1小节中描述了时隙格式的信令。
在下行链路帧中的时隙中,UE将假设下行链路传送仅在‘下行链路’或‘灵活’符号中发生。
在上行链路帧中的时隙中,UE将仅在‘上行链路’或‘灵活’符号中传送。
表4.3.2-1:用于标准循环前缀的每时隙OFDM符号、每帧时隙以及每子帧时隙的数目。
Figure BDA0002758006580000081
表4.3.2-2:用于扩展循环前缀的每时隙OFDM符号、每帧时隙以及每子帧时隙的数目。
Figure BDA0002758006580000082
表4.3.2-3:传送时间NRx-Tx和NTx-Rx
传送时间 FR1 FR2
N<sub>Tx-Rx</sub> 25600 13792
N<sub>Rx-Tx</sub> 25600 13792
UE可能需要来自基站的上行链路(UL)准予以将数据传送到基站。可能存在若干类型的上行链路准予。一种类型的上行链路准予是动态上行链路准予,例如,由物理下行链路控制信道(Physical Downlink Control Channel,PDCCH)用信号发送的上行链路准予。指示动态准予的PDCCH可以用于特定UE并且可以是用UE的ID,例如小区无线网络临时标识符(Cell Radio Network Temporary Identifier,C-RNTI)加扰的循环冗余校验和(CyclicRedundancy Checksum,CRC)。在一些实例中,动态上行链路准予是单次分配,例如,所分配资源在一个或多个所指示时隙中可用。另一类型的上行链路准予是所配置准予。所配置准予可以由无线电资源控制(Radio Resource Control,RRC)配置并且可以周期性地可用于上行链路。所配置准予可以用于特定UE。通过L1信令,例如PDCCH的激活可以用于起始所配置准予,例如所配置准予类型2。激活所配置准予的L1信号可以用UE的ID,例如配置调度无线网络临时标识符(Configured Scheduling Radio Network Temporary Identifier,CS-RNTI)加扰。激活所配置准予的PDCCH可以携载一些其它信息,例如,时域资源分配、频域资源分配,和/或所配置准予的其它相关信息。对于具有L1信号激活的所配置准予,初始物理上行链路共享信道(Physical Uplink Shared Channel,PUSCH)可以通过L1信号(例如,PDCCH)调度,并且可以在没有相关联PDCCH的情况下调度在初始PUSCH之后的PUSCH。替代地和/或另外,所配置准予可以在配置后,例如在不激活的情况下可用。一些和/或全部相关信息可以由用于所配置准予,例如所配置准予类型1的RRC配置。另一类型的上行链路准予是随机接入响应(Random Access Response,RAR)准予。在随机接入过程期间使用此准予。RAR准予将与一个或多个前导码资源(例如,时间域和/或频域资源)和/或前导码序列(例如,码域资源)相关联。在传送前导码之后,UE可以尝试用ID,例如随机接入无线网络临时标识符(Random Access Radio Network Temporary Identifier,RA-RNTI)对PDCCH进行解码,其中ID与用于传送前导码的资源(时间和/或频率资源)相关联。如果对对应于ID的PDCCH进行解码,则UE可以进一步对由PDCCH调度的物理下行链路共享信道(Physical DownlinkShared Channel,PDSCH)进行解码。PDSCH可以包括一个或多个RAR。PDSCH中的RAR(和/或每个RAR)可以包括上行链路准予以及其相关联的前导码ID。如果一个RAR包括与用于由UE执行前导码传送的前导码序列的前导码ID相同的前导码ID,则UE可以认为RAR针对其本身并且使用上行链路准予来执行PUSCH传送。然而,由于前导码序列可以专用于UE或由多于一个UE选择,则上行链路准予可以用于多个UE。当多于一个上行链路准予可用于服务小区并且由多于一个上行链路准予分配的资源重叠时,UE可能需要确定哪个上行链路准予应用于执行PUSCH传送。这是因为UE可能不能够在同一服务小区在同一符号上执行两个PUSCH传送。当PUSCH由PDCCH或RAR调度并且PUSCH与所配置准予PUSCH(例如,基于没有对应PDCCH的配置而调度的PUSCH)重叠时,UE可以传送PUSCH并且可以不传送所配置准予PUSCH。这称为所配置准予覆盖。动态准予或RAR准予可以覆盖所配置准予。为了处理所配置准予与动态准予之间的覆盖,可以定义处理时间表。如果足够早地传送动态准予,则动态准予将覆盖所配置准予。例如,当动态准予的调度资源与所配置准予的资源重叠时,如果载送动态准予的PDCCH的最后一个符号在基于所配置准予的PUSCH的起始符号之前至少N2个符号,则动态准予可以覆盖所配置准予。如果载送动态准予的PDCCH的最后一个符号不在基于所配置准予的PUSCH的起始符号之前至少N2个符号,则UE可能不期望动态准予将调度与所配置准予(在时域中)重叠的资源。换句话说,基站可以确保在覆盖的所配置准予之前足够早地传送覆盖动态准予。基站可以确保以下情况不会发生:动态准予调度资源与所配置准予重叠(在时域中),以及载送动态准予的PDCCH的最后一个符号不在基于所配置准予的PUSCH的起始符号之前至少N2个符号。在这种情况下不指定UE行为。基站应确保由未在所配置准予之前足够早地传送的动态准予调度的资源不会与所配置准予的资源重叠(在时域中)。更多细节可以在3GPP TS 38.214 V15.7.0和3GPP TS 38.321 V15.7.0中找到。3GPP TS 38.214 V15.7.0的部分引述如下:
6物理上行链路共享信道相关过程
6.1用于传送物理上行链路共享信道的UE过程
PUSCH传送可以由DCI中的UL准予动态地调度,或所述传送可以对应于所配置准予类型1或类型2。所配置准予类型1PUSCH传送被半静态地配置成在接收包含rrc-ConfiguredUplinkGrant的configuredGrantConfig的较高层参数时操作,而不检测DCI中的UL准予。在接收到不包含rrc-ConfiguredUplinkGrant的较高层参数configuredGrantConfig之后,所配置准予类型2PUSCH传送由有效激活DCI中的UL准予根据[6,TS 38.213]的第10.2小节半持久地调度。
对于对应于所配置准予的PUSCH传送,应用于传送的参数由configuredGrantConfig提供,除了由pusch-Config提供的dataScramblingIdentityPUSCH、txConfig、codebookSubset、maxRank,UCI-OnPUSCH的scaling之外。如果UE具备configuredGrantConfig中的transformPrecoder,则根据在用于对应于所配置准予的PUSCH传送的在第6.1.4小节中描述的过程,UE应用较高层参数tp-pi2BPSK(如果在pusch-Config中提供)。
对于具有由CS-RNTI通过NDI=1加扰的CRC的通过PDCCH调度的PUSCH重新传送,针对PUSCH传送应用pusch-Config中的参数,除[6,TS 38.213]的第7.1小节中描述的p0-NominalWithoutGrant、p0-PUSCH-Alpha、powerControlLoopToUse、pathlossReferenceIndex、第6.1.4.1小节中描述的mcs-Table、mcs-TableTransformPrecoder及第6.1.3小节中所描述的transformPrecoder之外。
对于在服务小区中配置有两个上行链路的UE,服务小区上的TB的PUSCH重新传送并不预期处于与用于所述TB的PUSCH初始传送的上行链路不同的上行链路上。
UE应在检测到具有配置的DCI格式0_0或0_1的PDCCH时,传送如由所述DCI指示的对应PDSCH。在接收到具有设定成“0”的“UL-SCH指标”以及非零“CSI请求”的DCI格式0_1,其中在此格式0_1中,对于由“CSI请求”触发的所有CSI报告,CSI-ReportConfig中的相关联“reportQuantity”设定成“无”后,UE忽略此DCI中除了“CSI请求”之外的所有字段并且UE不应传送如由此DCI格式0_1指示的对应PUSCH。对于给定调度小区中的任何HARQ进程ID,UE并不预期传送在时间上与另一PUSCH重叠的PUSCH。对于在给定调度单元中的任何两个HARQ进程ID,如果通过以符号i结尾的PDCCH将UE调度成开始以符号j开始的第一PUSCH传送,则并不预期将UE调度成通过迟于符号i结尾的PDCCH传送早于第一PUSCH的结尾开始的PUSCH。并不预期将UE调度成通过由用于给定HARQ进程的C-RNTI或MCS-C-RNTI加扰的DCI格式0_0或0_1传送另一PUSCH,直到在用于所述HARQ进程的最后一个PUSCH的预期传送结束之后。
并不预期通过以符号i结尾的PDCCH来调度UE,以在时间上与传送时机重叠的给定服务小区上传送PUSCH,其中如果符号i的结尾不在符号j的开始之前至少N2个符号,则允许UE在同一服务小区上传送以符号j开始的具有根据[10,TS38.321]的所配置准予的PUSCH。根据第6.4小节中定义的UE处理能力确定符号中的值N2,并且N2和符号持续时间是基于对应于具有所配置准予的PUSCH的子载波间隔以及调度PUSCH的PDCCH的子载波间隔的最小值。
如果存在允许UE在以符号i之后的符号j开始的同一服务小区上以相同HARQ进程传送具有根据[10,TS38.321]的所配置准予的PUSCH的传送时机,以及如果在PDCCH的结尾与符号j的开始之间的间隙小于N2个符号,则并不预期通过以符号i结尾的PDCCH来调度UE,以在用于给定HARQ进程的给定服务小区上传送PUSCH。根据第6.4小节中定义的UE处理能力确定符号中的值N2,并且N2和符号持续时间是基于对应于具有所配置准予的PUSCH的子载波间隔以及调度PUSCH的PDCCH的子载波间隔的最小值。对于在小区上由DCI格式0_0调度的PUSCH,UE应根据空间关系(如果适用)传送与具有小区的激活UL BWP内的最低ID的专用PUCCH资源相对应的PUSCH,如在[6,TS 38.213]的第9.2.1小节中所描述。
对于上行链路,UE支持每小区16个HARQ进程。
<...>
6.1.2资源分配
6.1.2.1时域中的资源分配
当将UE调度为传送传输块并且没有CSI报告时,或者将UE调度为通过DCI在PUSCH上传送传输块和CSI报告时,DCI的Time domain resource assignment字段值m提供分配表的行索引m+1。第6.1.2.1.1小节中定义了使用的资源分配表的确定。索引行定义时隙偏移K2、开始和长度指示符SLIV,或直接定义起始符号S和分配长度L,以及要应用于PDSCH传送中的PUSCH映射类型。
当将UE调度为通过DCI上的CSI request字段传送不具有传输块而具有CSI报告的PUSCH时,DCI的Time-domain resource assignment字段值m提供由pusch-Config中的较高层配置的pusch-TimeDomainAllocationList定义的分配表的行索引m+1。索引行定义开始和长度指示符SLIV,并且将应用于PUSCH传送的PUSCH映射类型和K2值确定为
Figure BDA0002758006580000121
其中Yj,j=0,...,NRep-1是用于NRep个触发CSI报告设定的CSI-ReportConfig中的较高层参数reportSlotOffsetList的对应列表表项,并且Yj(m+1)是Yj的第(m+1)项。
-UE将在其中传送PUSCH的时隙通过K2确定为
Figure BDA0002758006580000122
其中n是具有调度DCI的时隙,K2基于PUSCH的参数集,而μPUSCH和μPDCCH是分别用于PUSCH和PDCCH的子载波间隔配置,并且
-从索引行的开始和长度指示符SLIV确定相对于时隙开始的起始符号S,以及从为PDSCH分配的符号S开始计数的连续符号L的数量:
如果(L-1)≤7,则
SLIV=14·(L-1)+S
否则
SLIV=14·(14-L+1)+(14-1-S)
其中0<L≤14-S,并且
-如在由索引行给定的[4,TS 38.211]的第6.4.1.1.3小节中定义,将PUSCH映射类型设定成A型或B型。
UE应将表6.1.2.1-1中定义的S和L组合视为有效的PDSCH分配:
表6.1.2.1-1:有效S和L组合
Figure BDA0002758006580000131
当在具有用C-RNTI、MCS-C-RNTI或NDI=1的CS-RNTI加扰的CRC的PDCCH中通过DCI格式0_1调度的PUSCH时,如果UE配置有pusch-AggregationFactor,则跨越pusch-AggregationFactor个连续时隙应用相同符号分配并且PUSCH限于单个传送层。UE应跨越在每个时隙中应用相同符号分配的pusch-AggregationFactor个连续时隙重复TB。根据表6.1.2.1-2确定将应用于TB的第n个传送时机上的冗余版本,其中n=0、1、…pusch-AggregationFactor-1。
表6.1.2.1-2:当存在pusch-AggregationFactor时的冗余版本
Figure BDA0002758006580000132
根据在[6,TS38.213]的第11.1小节中的条件省略在多时隙PUSCH传送的时隙中的PUSCH传送。
6.1.2.1.1确定将用于PDSCH的资源分配表
表6.1.2.1.1-1定义要应用哪个PUSCH时域资源分配配置。应用根据表6.1.2.1.1-2的默认PUSCH时域分配A,或应用在pusch-ConfigCommon或pusch-Config中的较高层配置的pusch-TimeDomainAllocationList。
表6.1.2.1.1-4定义子载波间隔特定的值j。j用于结合用于标准CP的表6.1.2.1.1-2或用于扩展CP的表6.1.2.1.1.-3来确定K2,其中μPUSCH是PUSCH的子载波间隔配置。
表6.1.2.1.1-5定义用于通过RAR调度的PUSCH的第一传送的额外子载波间隔特定的时隙延迟值。当UE传送通过RAR调度的PUSCH时,除了K2值之外应用特定于PUSCH子载波间隔μPUSCH的Δ值。
表6.1.2.1.1-1:可适用的PUSCH时域资源分配
Figure BDA0002758006580000141
Figure BDA0002758006580000151
表6.1.2.1.1-2:用于标准CP的默认PUSCH时域资源分配A
行索引 PUSCH映射类型 K<sub>2</sub> S L
1 A型 j 0 14
2 A型 j 0 12
3 A型 j 0 10
4 B型 j 2 10
5 B型 j 4 10
6 B型 j 4 8
7 B型 j 4 6
8 A型 j+1 0 14
9 A型 j+1 0 12
10 A型 j+1 0 10
11 A型 j+2 0 14
12 A型 j+2 0 12
13 A型 j+2 0 10
14 B型 j 8 6
15 A型 j+3 0 14
16 A型 j+3 0 10
表6.1.2.1.1-3:用于扩展CP的默认PUSCH时域资源分配A
Figure BDA0002758006580000152
Figure BDA0002758006580000161
表6.1.2.1.1-4:值j的定义
μ<sub>PUSCH</sub> j
0 1
1 1
2 2
3 3
表6.1.2.1.1-5:值Δ的定义
μ<sub>PUSCH</sub> Δ
0 2
1 3
2 4
3 6
<...>
6.1.2.3.1用于具有所配置准予的上行链路传送的传输块重复
较高层配置参数repK和repK-RV定义将应用于所传送的传输块的K个重复以及将应用于重复的冗余版本模式。如果configuredGrantConfig中未提供参数repK-RV,则用于具有所配置准予的上行链路传送的冗余版本应设定成0。否则,对于K个重复中的第n个传送时机,n=1、2、…、K,其与配置RV序列中的第(mod(n-1,4)+1)个值相关联。传输块的初始传送可以开始于
-如果配置RV序列是{0,2,3,1},则K个重复的第一传送时机,
-如果配置RV序列是{0,3,0,3},则与RV=0相关联的K个重复的传送时机中的一个,
-如果配置RV序列是{0,0,0,0},则K个重复的传送时机中的一个,当K=8时除了最后一个传送时机之外。
对于任何RV序列,应在传送K个重复之后,或在时间段P内的K个重复中的最后一个传送时机处,或从通过由DCI格式0_0或0_1(无论哪个达到第一)调度的相同HARQ进程与PUSCH重叠重复的起始符号开始终止重复。并不预期UE配置有大于由周期性P导出的持续时间的用于传送K个重复的持续时间。如果UE确定对于传送时机,可用于时隙中的PUSCH传送的符号数目小于传送持续时间L,则UE不会在传送时机中传送PUSCH。
对于具有所配置准予的类型1和类型2PUSCH传送两者,当UE配置有repK>1时,UE应在每个时隙中应用相同符号分配的repK个连续时隙中重复TB。根据在[6,TS38.213]的第11.1小节中的条件省略具有时隙中的所配置准予的类型1或类型2PUSCH传送。
<...>
6.4UE PUSCH准备过程时间
如果如由时隙偏移K2和调度DCI的开始和长度指示符SLIV定义并且包含时序提前效果的用于传输块的PUSCH分配中的第一上行链路符号(包含DM-RS)不早于符号L2处,其中L2定义为下一上行链路符号,其具有在接收到载送调度PUSCH的DCI的PDCCH的最后一个符号结束后开始Tproc,2=max((N2+d2,1)(2048+144)·κ2·TC,d2,2)的CP,则UE应传送传输块。
-N2基于分别用于UE处理能力1和2的表6.4-1和表6.4-2中的μ,其中μ对应于导致最大Tproc,2的(μDL、μUL)中的一个,其中μDL对应于下行链路的子载波间隔,通过所述子载波间隔传送载送调度PUSCH的DCI的PDCCH,并且μUL对应于上行链路信道的子载波间隔,将通过所述子载波间隔传送PUSCH,并且κ在[4,TS 38.211]的第4.1小节中定义。
-如果PUSCH分配的第一符号仅由DM-RS组成,则d2,1=0,否则d2,1=1。
-如果UE配置有多个活动分量载波,则PUSCH分配中的第一上行链路符号进一步包含如在[11,TS 38.133]中给定的分量载波之间的时序差的效果。
-如果调度DCI触发BWP的切换,则d2,2等于如在[11,TS 38.133]中定义的切换时间,否则d2,2=0。
-对于在给定小区上支持能力2的UE,如果PUSCH-ServingCellConfig中的较高层参数processingType2Enabled配置用于小区并且设定成enable,则应用根据UE处理能力2的处理时间,
-如果由DCI指示的PUSCH与一个或多个PUCCH信道重叠,则在[9,TS 38.213]的第9.2.5小节中的过程之后多路复用传输块,否则在由DCI指示的PUSCH上传送传输块。
否则,UE可以忽略调度DCI。
在标准和扩展循环前缀的情况下,都使用Tproc,2的值。
表6.4-1:用于PUSCH时序能力1的PUSCH准备时间
μ PUSCH准备时间N<sub>2</sub>[符号]
0 10
1 12
2 23
3 36
表6.4-2:用于PUSCH时序能力2的PUSCH准备时间
μ PUSCH准备时间N<sub>2</sub>[符号]
0 5
1 5.5
2 用于频率范围1的11
3GPP TS 38.321 V15.7.0的部分引述如下:
5.4UL-SCH数据传递
5.4.1UL准予接收
上行链路准予在PDCCH上在随机接入响应中动态地接收,或由RRC半持久地配置。MAC实体将使上行链路准予在UL-SCH上传送。为了执行所请求传送,MAC层从较低层接收HARQ信息。
如果MAC实体具有C-RNTI、临时C-RNTI或CS-RNTI,则MAC实体将针对每一PDCCH时机且针对属于具有运行timeAlignmentTimer的TAG的每一服务小区且针对为此PDCCH时机接收的每一准予:
1>如果针对此服务小区的上行链路准予已在用于MAC实体的C-RNTI或临时C-RNTI的PDCCH上接收;或
1>如果上行链路准予已在随机接入响应中接收:
2>如果上行链路准予是针对MAC实体的C-RNTI且如果用于同一HARQ进程的传递到HARQ实体的先前上行链路准予是针对MAC实体的CS-RNTI接收的上行链路准予或所配置的上行链路准予,则:
3>无论NDI的值如何均将NDI视为已经切换以用于对应HARQ进程。
2>如果上行链路准予是针对MAC实体的C-RNTI,且所识别HARQ进程被配置成用于所配置上行链路准予,则:
3>开始或重新开始用于对应HARQ进程的configuredGrantTimer(如果经配置)。
2>将上行链路准予和相关联HARQ信息传递到HARQ实体。
1>否则如果用于此PDCCH时机的上行链路准予已在用于MAC实体的CS-RNTI的PDCCH上针对此服务小区接收:
2>如果接收到的HARQ信息中的NDI是1:
3>将用于对应HARQ进程的NDI视为尚未切换;
3>开始或重新开始用于对应HARQ进程的configuredGrantTimer(如果经配置);
3>将上行链路准予和相关联HARQ信息传递到HARQ实体。
2>否则,如果所接收HARQ信息中的NDI是0:
3>如果PDCCH内容指示所配置准予类型2撤销激活,则:
4>触发所配置上行链路准予确认。
3>否则如果PDCCH内容指示所配置准予类型2激活,则:
4>触发所配置上行链路准予确认;
4>存储用于此服务小区的上行链路准予和相关联HARQ信息作为所配置上行链路准予;
4>初始化或重新初始化用于此服务小区的所配置上行链路准予以在相关联PUSCH持续时间中开始且根据第5.8.2小节中的规则重新发生;
4>停止用于对应HARQ进程的configuredGrantTimer(如果在运行);
针对每一服务小区和每一所配置上行链路准予(如果经配置且被激活),MAC实体将:
1>如果所配置上行链路准予的PUSCH持续时间与在用于此服务小区的PDCCH上或随机接入响应中接收的上行链路准予的PUSCH持续时间不
重叠,则:
2>将HARQ进程ID设定成与此PUSCH持续时间相关联的HARQ进程ID;
2>如果用于对应HARQ进程的configuredGrantTimer不处于运行中,则:
3>将用于对应HARQ进程的NDI位视为已经切换;
3>将所配置上行链路准予和相关联HARQ信息传递到HARQ实体。
对于所配置上行链路准予,与UL传送的第一符号相关联的HARQ进程ID是从以下等式导出:
HARQ进程ID=[floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes其中CURRENT_symbol=(SFN×numberOfSlotsPerFrame×numberOfSymbolsPerSlot+帧中的时隙数目×numberOfSymbolsPerSlot+时隙中的符号数目),且numberOfSlotsPerFrame和numberOfSymbolsPerSlot指代每帧的连续时隙的数目和每时隙的连续符号的数目,分别如TS 38.211[8]中指定。
注意1:CURRENT_symbol指代发生的重复集束的第一传送时机的符号索引。
注意2:如果激活所配置上行链路准予并且相关联HARQ进程ID小于nrofHARQ-Processes,则HARQ进程被配置用于所配置上行链路准予。
注意3:如果MAC实体接收随机接入响应中的准予以及用于其C-RNTI或CS-RNTI的重叠准予两者,从而需要SpCell上的同时传送,则MAC实体可以选择继续用于其RA-RNTI的准予或用于其C-RNTI或CS-RNTI的准予。
5.4.2HARQ操作
5.4.2.1HARQ实体
MAC实体包含用于具有配置上行链路的每一服务小区(包含当其经配置有supplementaryUplink时的情况)的HARQ实体,其维持许多并行的HARQ进程。
每HARQ实体的并行UL HARQ进程的数目在TS 38.214[7]中指定。
每一HARQ进程支持一个TB。
每一HARQ进程与HARQ进程标识符相关联。对于利用RA响应中的UL准予的UL传送,使用HARQ进程标识符0。
当MAC实体配置有pusch-AggregationFactor>1时,参数pusch-AggregationFactor提供在动态准予的集束内的TB传送数目。在初始传送之后,pusch-AggregationFactor-1次HARQ重新传送在集束内跟随其后。当MAC实体经配置有repK>1时,参数repK提供在配置上行链路准予的集束内的TB的传送数目。在初始传送之后,HARQ重新传送在集束内跟随其后。对于动态准予和所配置上行链路准予两者,捆绑操作依赖于HARQ实体针对作为同一集束的部分的每一传送调用同一HARQ过程。在集束内,触发HARQ重新传送而无需分别根据用于动态准予的pusch-AggregationFactor和用于所配置上行链路准予的repK等待来自先前传送的反馈。在集束内的每一传送是在集束内的初始上行链路准予传递到HARQ实体之后的单独上行链路准予。
针对在动态准予集束内的每一传送,根据TS 38.214[7]的第6.1.2.1节确定冗余版本的序列。对于所配置上行链路准予集束内的每个传送,根据TS38.214[7]的第6.1.2.3节确定冗余版本序列。
针对每一上行链路准予,HARQ实体将:
1>识别与此准予相关联的HARQ进程,且针对每一所识别HARQ进程:
2>如果接收到的准予未定址到PDCCH上的临时C-RNTI,并且相关联的HARQ信息中提供的NDI相比于此HARQ进程的此TB的先前传送中的值已经切换;或
2>如果在C-RNTI的PDCCH上接收了上行链路准予,并且所识别进程的HARQ缓冲区是空的;或
2>如果在随机接入响应中接收到上行链路准予;或
2>如果针对ra-ResponseWindow中的C-RNTI在PDCCH上接收到上行链路准予并且此PDCCH成功完成,则针对波束故障恢复起始随机接入过程;或
2>如果上行链路准予是所配置上行链路准予的集束的一部分并且可以根据TS38.214[7]的第6.1.2.3节用于初始传送,以及如果尚未针对此集束获得MAC PDU:
3>如果在Msg3缓冲区中存在MAC PDU,并且在随机接入响应中接收上行链路准予;或:
3>如果在Msg3缓冲区中存在MAC PDU并且针对ra-ResponseWindow中的C-RNTI在PDCCH上接收到上行链路准予,且此PDCCH成功完成,则针对波束故障恢复起始随机接入过程:
4>获得MAC PDU以从Msg3缓冲区传送。
4>如果上行链路准予大小与所获得MAC PDU的大小不匹配;
以及
4>如果在接收到上行链路准予后成功完成随机接入过程:
5>向复用和集合实体指示在后续的上行链路传送中包含从所获得MAC PDU载送MAC SDU的MAC子PDU;
5>获得MAC PDU以从复用和集合实体传送。
3>否则:
4>获得MAC PDU以从复用和集合实体(如果存在)传送;
3>如果已经获得用于传送的MAC PDU,则:
4>将MAC PDU和上行链路准予及TB的HARQ信息传递到所识别HARQ进程;
4>指示所识别HARQ进程触发新传送;
4>如果上行链路准予被寻址到CS-RNTI;或
4>如果上行链路准予是所配置上行链路准予;或
4>如果上行链路准予被寻址到C-RNTI,且所识别HARQ进程被配置成用于所配置上行链路准予:
5>当执行传送时开始或重新开始configuredGrantTimer(如果经配置)以用于对应HARQ进程。
3>否则:
4>刷新所识别HARQ进程的HARQ缓冲区。
2>否则(即,重新传送):
3>如果在PDCCH上接收的上行链路准予被寻址到CS-RNTI且如果所识别过程的HARQ缓冲区是空的;或
3>如果上行链路准予是集束的部分且如果针对此集束尚未获得MAC PDU;或
3>如果上行链路准予是所配置上行链路准予的集束的一部分,并且上行链路准予的PUSCH持续时间与针对此服务小区在PDCCH上或随机接入响应中接收到的另一上行链路准予的PUSCH持续时间重叠:
4>忽略上行链路准予。
3>否则:
4>将上行链路准予和TB的HARQ信息(冗余版本)传递到所识别HARQ进程;
4>指示所识别HARQ进程触发重新传送;
4>如果上行链路准予被寻址到CS-RNTI;或
4>如果上行链路准予被寻址到C-RNTI,且所识别HARQ进程被配置成用于所配置上行链路准予:
5>当执行传送时开始或重新开始configuredGrantTimer(如果经配置)以用于对应HARQ进程。
当确定NDI是否已经相比于先前传送中的值切换时,MAC实体将忽略针对其临时C-RNTI在PDCCH上的所有上行链路准予中接收到的NDI。
5.4.2.2HARQ进程
每一HARQ进程与HARQ缓冲区相关联。
在资源上且通过在PDCCH、随机接入响应或RRC上指示的MCS执行新传送。在资源上且(如果提供则)通过在PDCCH上指示的MCS或者在相同资源上且通过与用于在集束内最后做出的传送尝试相同的MCS来执行重新传送。
如果HARQ实体请求用于TB的新传送,则HARQ进程将:
1>将MAC PDU存储在相关联的HARQ缓冲区中;
1>存储从HARQ实体接收的上行链路准予;
1>如下所述地产生传送。
如果HARQ实体请求用于TB的重新传送,则HARQ进程将:
1>存储从HARQ实体接收的上行链路准予;
1>如下所述地产生传送。
为了产生用于TB的传送,HARQ进程将:
1>如果从Msg3缓冲区获得MAC PDU;或
1>如果在传送时不存在测量间隙且在重新传送的情况下,重新传送不会与从Msg3缓冲区获得的MAC PDU的传送发生冲突:
2>指示物理层根据所存储的上行链路准予产生传送。
<...>
5.8.2上行链路
在没有动态准予的情况下,存在两种类型的传送:
-所配置准予类型1,其中上行链路准予由RRC提供,且存储为所配置上行链路准予;
-所配置准予类型2,其中上行链路准予由PDCCH提供,且基于指示所配置准予激活或撤销激活的L1信令而存储或清理为所配置上行链路准予。
类型1和类型2针对每服务小区和每BWP由RRC配置。多个配置只能在不同服务小区上同时在作用中。对于类型2,激活和撤销激活在服务小区之间是独立的。对于同一服务小区,MAC实体用类型1或类型2配置。
当配置所配置准予类型1时,RRC配置以下参数:
-cs-RNTI:用于重新传送的CS-RNTI;
-periodicity:所配置准予类型1的周期性;
-timeDomainOffset:时域中资源相对于SFN=0的偏移;
-timeDomainAllocation:含有startSymbolAndLength(即,TS 38.214[7]中的SLIV)的时域中所配置上行链路准予的分配;
-nrofHARQ-Processes:针对所配置准予的HARQ进程的数目。
当配置所配置准予类型2时,RRC配置以下参数:
-cs-RNTI:用于激活、撤销激活和重新传送的CS-RNTI;
-periodicity:所配置准予类型2的周期性;
-nrofHARQ-Processes:针对所配置准予的HARQ进程的数目。
在上部层配置服务小区的所配置准予类型1时,MAC实体将:
1>将上部层所提供的上行链路准予存储为所指示服务小区的所配置上行链路准予;
1>初始化或重新初始化所配置上行链路准予以根据timeDomainOffset和S(如TS38.214[7]中指定从SLIV导出)在符号中开始,且以periodicity重新发生。
在针对所配置准予类型1配置上行链路准予之后,MAC实体将考虑上行链路准予与针对其的每一符号相关联而重新发生:
[(SFN×numberOfSlotsPerFrame×numberOfSymbolsPerSlot)+(帧中的时隙数目×numberOfSymbolsPerSlot)+时隙中的符号数目]=(timeDomainOffset×numberOfSymbolsPerSlot+S+N×periodicity)modulo(1024×numberOfSlotsPerFrame×numberOfSymbolsPerSlot),对于所有N>=0。
在针对所配置准予类型2配置上行链路准予之后,MAC实体将考虑上行链路准予与针对其的每一符号相关联而重新发生:
[(SFN×numberOfSlotsPerFrame×numberOfSymbolsPerSlot)+(帧中的时隙数目×numberOfSymbolsPerSlot)+时隙中的符号数目]=[(SFNstart time×numberOfSlotsPerFrame×numberOfSymbolsPerSlot+slotstart time×numberOfSymbolsPerSlot+symbolstart time)+N×periodicity]modulo(1024×numberOfSlotsPerFrame×numberOfSymbolsPerSlot),对于所有N>=0。
其中SFNstart time、slotstart time和symbolstart time分别是(重新)初始化所配置上行链路准予时的PUSCH的第一传送机会的SFN、时隙和符号。
当所配置上行链路准予被上部层释放时,所有对应的配置都将被释放,并且所有对应的上行链路准予都将被清除。
MAC实体将:
1>如果所配置上行链路准予确认已被触发且未取消;且
1>如果MAC实体具有分配用于新传送的UL资源:
2>指示多路复用和集合过程产生如第6.1.3.7节中定义的所配置准予确认MACCE;
2>取消已触发的所配置上行链路准予确认。
对于所配置准予类型2,MAC实体将在所配置准予确认MAC CE的第一次传送由所配置上行链路准予撤销激活触发之后立即清除所配置上行链路准予。
除了重复所配置上行链路准予之外的重新传送使用寻址到CS-RNTI的上行链路准予。
在如下引述的3GPP TS 38.214 V15.7.0的部分中定义PDSCH处理时间表:
5.3UE PDSCH处理过程时间
如果载送HARQ-ACK信息的PUCCH的第一上行链路符号(如由所分配的HARQ-ACK时序K1和要使用的PUCCH资源所定义并且包含时序提前的效果)不早于符号L1处开始,则UE将提供有效的HARQ-ACK消息,其中L1被定义为下一个上行链路符号,其CP在载送TB的PDSCH的最后一个符号的结束已确认之后在Tproc,1=(N1+d1,1)(2048+144)·κ2·TC之后开始。
-N1基于表5.3-1和表5.3-2中分别针对UE处理能力1和2的μ,其中μ对应于(μPDCCH、μPDSCH、μUL)中产生最大Tproc,1的一个,其中μPDCCH对应于调度PDSCH的PDCCH的子载波间隔,μPDSCH对应于经调度PDSCH的子载波间隔,并且μUL对应于要用其传送HARQ-ACK的上行链路信道的子载波间隔,并且κ在[4,TS 38.211]的第4.1小节中定义。
-如果在[4,TS 38.211]的第7.4.1.1.2小节中的表7.4.1.1.2-3中,用于额外DM-RS的PDSCH DM-RS位置l1是l1=12,则在表5.3-1中N1,0=14,否则N1,0=13。
-如果UE配置有多个有效分量载波,则载送HARQ-ACK信息的第一上行链路符号进一步包含如[11,TS 38.133]中给出的分量载波之间的时序差的效果。
-对于如在[4,TS 38.211]的第7.4.1.1小节中给定的PDSCH映射类型A:如果PDSCH的最后一个符号在时隙的第i个符号上,其中i<7,则d1,1=7-i,否则d1,1=0
-对于UE处理能力1:如果如[4,TS 38.211]的第7.4.1.1小节中给出,PDSCH是映射类型B,并且
-如果分配的PDSCH符号的数目是7,则d1,1=0,
-如果分配的PDSCH符号的数量是4,则d1,1=3
-如果分配的PDSCH符号的数量是2,则d1,1=3+d,其中d是调度PDCCH和经调度PDSCH的重叠符号的数目。
-对于UE处理能力2:如果如[4,TS 38.211]第7.4.1.1小节中给出,PDSCH为映射类型B,
-如果分配的PDSCH符号的数目是7,则d1,1=0,
-如果分配的PDSCH符号的数目是4,则d1,1是调度PDCCH和经调度PDSCH的重叠符号的数目,
-如果分配的PDSCH符号的数目是2,
-如果调度PDCCH在3符号CORESET中并且CORESET和PDSCH具有相同起始符号,则d1,1=3,
-否则,d1,1是调度PDCCH和经调度PDSCH的重叠符号的数目。
-对于当μPDSCH=1时具有调度限制的UE处理能力2,如果经调度RB分配超过136个RB,则UE默认为能力1处理时间。如果用具有30kHz SCS的136个RB以及以下能力1处理时间调度那些PDSCH中的任一个,则UE可以在调度成遵循能力2的PDSCH开始之前跳过用10个符号内的最后一个符号对多个PDSCH进行解码。
-对于在给定小区上支持能力2的UE,如果PUSCH-ServingCellConfig中的较高层参数processingType2Enabled配置用于小区并且设定成enable,则应用根据UE处理能力2的处理时间。
-如果此PUCCH资源与另一PUCCH或PUSCH资源重叠,则在[9,TS38.213]的第9.2.5小节中的过程之后对HARQ-ACK进行多路复用,否则在PUCCH上传送HARQ-ACK消息。
否则,UE可以不提供与经调度PDSCH相对应的有效HARQ-ACK。在标准和扩展循环前缀的情况下,都使用Tproc,1的值。
表5.3-1:用于PDSCH处理能力1的PDSCH处理时间
Figure BDA0002758006580000281
表5.3-2:用于PDSCH处理能力2的PDSCH处理时间
Figure BDA0002758006580000282
以下从3GPP TS 38.213 V15.7.0中引用包含用于RAR的调度延迟的随机接入过程的细节:
8随机接入过程
在起始物理随机接入过程之前,层1从较高层接收一组SS/PBCH块索引并且将对应的一组RSRP测量值提供到较高层。
在起始物理随机接入过程之前,层1从较高层接收以下信息:
-物理随机接入信道(physical random access channel,PRACH)传送参数(PRACH前导码格式、时间资源以及用于PRACH传送的频率资源)的配置。
-用于确定PRACH前导码序列集中的根序列及其循环移位的参数(逻辑根序列表的索引,循环移位(NCS)和集合类型(非受限,受限集合A或受限集合B))。
从物理层角度,L1随机接入过程包含PRACH中的随机接入前导码的传送(Msg1)、具有PDCCH/PDSCH的随机接入响应(RAR)消息(Msg2),以及在适用时,由RARUL准予调度的PUSCH以及用于争用解决的PDSCH的传送。
如果随机接入过程由对UE的PDCCH命令起始,则PRACH传送具有与由较高层起始的PRACH传送相同的SCS。
如果UE配置有用于服务小区的两个UL载波并且UE检测到PDCCH命令,则UE使用来自检测到的PDCCH命令的UL/SUL指示符字段值来确定用于对应PRACH传送的UL载波。
<...>
8.2随机接入响应
响应于PRACH传送,UE尝试在由较高层[11,TS 38.321]控制的窗口期间检测具有由对应RA-RNTI加扰的CRC的DCI格式1_0。窗口开始于最早CORESET的第一符号处,UE被配置成接收如在第10.1小节中定义的用于Type1-PDCCHCSS集的PDCCH,即,在对应于PRACH传送的PRACH时机的最后一个符号之后的至少一个符号,其中符号持续时间对应于如在第10.1小节中定义的用于Type1-PDCCHCSS集的SCS。基于用于Type1-PDCCHCSS集的SCS,多个时隙中的窗口的长度由ra-ResponseWindow提供。
如果UE在窗口内的对应PDSCH中检测到具有由对应RA-RNTI和传输块加扰的CRC的DCI格式1_0,则UE将传输块传递到较高层。较高层解析用于与PRACH传送相关联的随机接入前导码标识(random access preamble identity,RAPID)的传输块。如果较高层识别在传输块的RAR消息中的RAPID,则较高层指示对物理层的上行链路准予。这称为物理层中的随机接入响应(random access response,RAR)UL准予。
如果UE未检测到具有由窗口内的对应RA-RNTI加扰的CRC的DCI格式1_0,或如果UE未正确地接收在窗口内的对应PDSCH中的传输块,或如果较高层未从UE识别与PRACH传送相关联的RAPID,则较高层可以向物理层指示以传送PRACH。如果由较高层请求,则预期UE在不迟于窗口的最后一个符号,或PDSCH接收的最后一个符号之后的NT,1+0.75毫秒传送PRACH,其中NT,1是当配置PDSCH DM-RS时,对应于用于UE处理能力1的PDSCH处理时间的N1个符号的持续时间。对于μ=0,UE假设N1,0=14[6,TS38.214]。
如果UE检测到具有由对应RA-RNTI加扰的CRC的DCI格式1_0并且接收对应PDSCH中的传输块,则关于如在第8.1小节中描述的UE用于PRACH相关性的SS/PBCH块或CSI-RS资源,UE可以假设如在[6,TS 38.214]中描述的相同DM-RS天线端口准共址特性,无论是否在UE接收具有DCI格式1_0的PDCCH的情况下为UE提供CORESET的TCI-State。如果UE响应于由触发SpCell[11,TS 38.321]的非竞争随机接入过程的PDCCH命令起始的PRACH传送而尝试检测具有由对应RA-RNTI加扰的CRC的DCI格式1_0,则UE可以假设PDCCH包含DCI格式1_0并且PDCCH命令具有相同DM-RS天线端口准共址特性。如果UE响应于由触发次级小区的非竞争随机接入过程的PDCCH命令起始的PRACH传送而尝试检测具有由对应RA-RNTI加扰的CRC的DCI格式1_0,则UE可以假设与用于接收PDCCH的Type1-PDCCHCSS集相关联的CORESET的DM-RS天线端口准共址特性包含DCI格式1_0。
RARUL准予调度从UE的PUSCH传送。表8.2-1中给出以MSB开始以及以LSB结束的RARUL准予的内容。
8.3由RARUL准予调度的PUSCH
由较高层指示用于由RAR UL准予调度的PUSCH传送的如在第12小节中以及在[4,TS 38.211]中描述的激活UL BWP。为了确定在激活的UL BWP内的用于PUSCH传送的频域资源分配,
-如果激活的UL BWP和初始UL BWP具有相同SCS和相同CP长度,并且激活的UL BWP包含初始UL BWP的所有RB,或激活的UL BWP是初始UL BWP,则使用初始UL BWP
-否则,RB编号从激活的UL BWP的第一RB开始并且用于频域资源分配的RB的最大数目等于初始UL BWP中的RB的数目
由BWP-UplinkCommon中的subcarrierSpacing提供用于PUSCH传送的SCS。UE在同一服务小区的同一上行链路载波上传送PRACH和PUSCH。
UE使用冗余版本号0在由对应RAR消息中的RAR UL准予调度的PUSCH中传送传输块。如果由较高层提供TC-RNTI,则第8.2节中对应于RAR UL准予的PUSCH的加扰初始化由TC-RNTI完成。否则,在第8.2节中对应于RAR UL准予的PUSCH的加扰初始化由C-RNTI完成。传输块的Msg3 PUSCH重新传送(如果存在的话)由DCI格式0_0调度,所述DCI格式0_0具有由对应RAR消息[11,TS 38.321]中提供的TC-RNTI加扰的CRC。UE总是无重复地传送由RAR UL准予调度的PUSCH。
参考用于由RAR UL准予调度的PUSCH传送的时隙,如果UE从UE接收到用于对应PRACH传送的具有以时隙n结尾的RAR消息的PDSCH,则UE在时隙n+k2+Δ中传送PUSCH,其中k2和Δ在[6,TS 38.214]中提供。
UE可以假设在传送具有RAR UL准予的RAR消息的PDSCH接收的最后一个符号与由RAR UL准予调度的对应PUSCH传送的第一符号之间的最少时间等于NT,1+NT,2+0.5毫秒,其中NT,1是当配置额外PDSCH DM-RS时,对应于用于UE处理能力的PDSCH处理时间的N1个符号的持续时间,NT,2是对应于用于UE处理能力1[6,TS 38.214以及用于确定最少时间的PUSCH准备时间的N2个符号的持续时间,UE考虑N1和N2对应于用于PDSCH和PUSCH的SCS配置中的较小配置。对于μ=0,UE假设N1,0=14[6,TS 38.214]。
如在前述说明书中所论述,所配置准予可以由同一服务小区上的动态准予和/或随机接入响应(random access response,RAR)准予覆盖。在一些系统中,可以仅针对所配置准予由动态准予覆盖的情形定义处理时间表。并不针对所配置准予由RAR准予覆盖的情形定义处理时间表。在一些系统中,RAR准予可以覆盖所配置准予,而不管RAR准予和所配置准予的时序关系如何。因此,即使非常晚地将RAR准予传送到UE,例如紧接在所配置准予的起始符号之前,RAR准予也可以覆盖所配置准予,这对UE处理施加限制。在此情形中,UE必须非常快速地处理RAR和可能RAR准予,使得UE能够尽快确定所配置准予由RAR准予覆盖并且使得UE相应地表现(例如,UE根据RAR准予,而不是由RAR准予覆盖的所配置准予来表现)。此外,用于动态准予覆盖所配置准予的情形的处理时间表可以不用于所配置准予由RAR准予覆盖的情形,因为PDCCH和RAR的处理可能彼此不同。在一些实例中,在对与动态准予相关联的PDCCH进行解码之后,已知关于动态准予的信息。然而,对于RAR准予,在接收并解码与RAR准予相关联的PDCCH之后,UE可能需要接收并解码PDSCH(例如,迟于PDCCH传送PDSCH)。在对PDSCH(和/或RAR准予)进行解码之后,UE可能需要搜索以确定是否存在用于UE的RAR准予。因此,处理时间表的参考点可能不是PDCCH的结束,因此可能需要用于处理时间表的不同参考点。覆盖所配置准予的RAR准予与覆盖所配置准予的动态准予之间的另一差在于,对于RAR准予,基站可能不知晓哪个UE可以使用RAR准予(例如,然而对于动态准予,基站知晓哪个UE将使用动态准予)。在一些实例中,在一些情况下,基站可能无法避免以下情形:RAR准予调度与所配置准予的一个或多个资源重叠(在时域中)的一个或多个资源,以及RAR准予的最后一个符号(例如,载送RAR准予的PDSCH的最后一个符号)不是在基于所配置准予的PUSCH的起始符号之前的至少X个符号(例如,可以基于用于覆盖所配置准予的RAR准予的处理时间表定义X)。因此,需要用于处理以下情形的技术:在RAR准予与所配置准予之间出现时域重叠和/或RAR准予的接收太接近所配置准予的开始(例如,接收少于比所配置准予的开始早的阈值时间量)。
在本公开的第一实例概念中,定义用于覆盖所配置准予的RAR准予的处理时间表。在一些实例中,处理时间表与用于覆盖所配置准予的动态准予的第二处理时间表相同。替代地和/或另外,处理时间表可以与用于覆盖所配置准予的动态准予的第二处理时间表不同。在一些实例中,用于处理时间表的参考点可以是用RA-RNTI加扰的PDCCH CRC的最后一个符号。替代地和/或另外,用于处理时间表的参考点可以是调度用于UE的RAR的PDCCH的最后一个符号。替代地和/或另外,用于处理时间表的参考点可以是载送用于UE的RAR准予的PDSCH的最后一个符号。如果用于处理时间表的参考点是在所配置准予的起始符号之前的至少X个符号,则UE可以用RAR准予覆盖所配置准予。在参考点早于所配置准予的起始符号并且参考点与起始符号之间的符号数量等于或大于X个符号的情形下,参考点可以是在所配置准予的起始符号之前的至少X个符号。替代地和/或另外,如果用于处理时间表的参考点不是在所配置准予的起始符号之前的至少X个符号,则UE可以不用RAR准予覆盖所配置准予。在参考点在起始符号之后的情形下和/或在参考点早于所配置准予的起始符号并且参考点与起始符号之间的符号数量小于X个符号的情形下,参考点可以不是在所配置准予的起始符号之前的至少X个符号。在实例中,如果用于处理时间表的参考点不是在所配置准予的起始符号之前的至少X个符号,则UE可以基于所配置准予执行PUSCH传送。替代地和/或另外,如果用于处理时间表的参考点不是在所配置准予的起始符号之前的至少X个符号,则UE可以不基于RAR准予执行PUSCH传送。在一些实例中,X等于N2。N2可以是对应于PUSCH准备时间的符号数目。替代地和/或另外,X可以不同于N2。例如,X可以大于N2。可以基于用于RAR准予的处理时间确定X(例如,处理时间可以对应于UE处理RAR准予所花费的时间量)。
在一些实例中,如果用于处理时间表的参考点比所配置准予的起始符号早至少X毫秒,则UE可以用RAR准予覆盖所配置准予。在参考点早于所配置准予的起始符号并且参考点早于起始符号的持续时间等于或大于X毫秒的情形下,参考点可以比所配置准予的起始符号早至少X毫秒。替代地和/或另外,如果用于处理时间表的参考点不比所配置准予的起始符号早至少X毫秒,则UE可以不用RAR准予覆盖所配置准予。在参考点在所配置准予的起始符号之后的情形下和/或在参考点早于所配置准予的起始符号并且参考点早于起始符号的持续时间小于X毫秒的情形下,参考点可以不比所配置准予的起始符号早至少X毫秒。在实例中,如果用于处理时间表的参考点不比所配置准予的起始符号早至少X毫秒,则UE可以基于所配置准予执行PUSCH传送。替代地和/或另外,如果用于处理时间表的参考点不比所配置准予的起始符号早至少X毫秒,则UE可以不基于RAR准予执行PUSCH传送。在一些实例中,可以基于T1确定X。替代地和/或另外,可以基于T2确定X。替代地和/或另外,可以基于T3确定X。替代地和/或另外,可以基于T1、T2和/或T3确定X。替代地和/或另外,可以基于T1和T2的总和确定X。替代地和/或另外,可以基于T1、T2和T3的总和确定X。在一些实例中,T3可以是0.5毫秒。例如,X可以等于T1+T2+0.5。在一些实例中,T1可以是对应于PDSCH处理时间的持续时间。在一些实例中,T2可以是对应于PUSCH准备时间的持续时间。在一些实例中,T3可以是对应于层间处理和/或通信,例如物理层与MAC层之间的处理和/或通信的持续时间。替代地和/或另外,T3可以是对应于RAR消息的处理的持续时间。在一些实例中,T1可以等于N1个符号的持续时间。在一些实例中,T2可以等于N2个符号的持续时间。UE可以基于处理时间表确定是否用RAR准予覆盖所配置准予。
在本公开的第二实例概念中,基站可以不调度与第一资源(例如,由RAR准予调度的第一PUSCH)相关联的RAR准予,所述第一资源与UE群组的所配置准予的一个或多个资源(例如,与一个或多个传送时机相关联的一个或多个PUSCH)重叠。例如,基站不应调度与第一资源(例如,由RAR准予调度的第一PUSCH)相关联的RAR准予,所述第一资源与UE群组的所配置准予的一个或多个资源(例如,与一个或多个传送时机相关联的一个或多个PUSCH)相关联(例如,基站可以被配置成使得基站不调度与第一资源相关联的RAR准予,所述第一资源和与UE群组的所配置准予相关联的一个或多个资源重叠)。基站避免调度与UE群组的所配置准予的一个或多个资源重叠的资源(例如,RAR准予的资源)。在一些实例中,UE群组可以包括小区中的一些和/或所有UE。在一些实例中,UE群组是可以利用RAR准予的UE。在一些实例中,RAR准予与PRACH资源相关联。在一些实例中,UE群组是配置有PRACH资源的UE。
在本公开的第三实例概念中,基站以大于某一值的调度延迟来调度RAR准予。调度延迟可以是传送具有RAR准予(例如,RAR上行链路准予)的RAR消息的PDSCH接收的最后一个符号与由RAR准予调度的对应PUSCH传送的第一符号(例如,初始和/或起始符号)之间的持续时间。所述值大于用于RAR的最小调度延迟。如果基站以较大调度延迟来调度RAR准予,则基站可以较早地(以考虑较大调度延迟)传送RAR消息(具有RAR准予)。通过以大于值的调度延迟来调度RAR准予,UE(例如接收RAR消息)具有足够时间来处理和/或处置RAR准予和/或用RAR准予覆盖所配置准予。在一些实例中,基站不会以小于值的调度延迟来调度RAR准予。例如,基站不应以小于值的调度延迟来调度RAR准予(例如,基站可以被配置成使得基站不会以小于值的调度延迟来调度RAR准予)。在一些实例中,如果RAR准予的资源(例如,第一PUSCH)将与UE群组的所配置准予的一个或多个资源重叠,则基站不会以小于值的调度延迟来调度RAR准予。如果RAR准予的资源(例如,第一PUSCH)将与UE群组的所配置准予的一个或多个资源重叠,则基站不会以小于值的调度延迟来调度RAR准予(例如,如果RAR准予的资源将与UE群组的所配置准予的一个或多个资源重叠,则基站可以被配置成使得基站不会以小于值的调度延迟来调度RAR准予)。
在一些实例中,UE群组可以包括小区中的一些和/或所有UE。在一些实例中,UE群组是可以利用RAR准予的UE。在一些实例中,RAR准予与PRACH资源相关联。在一些实例中,UE群组是配置有PRACH资源的UE。在一些实例中,基于Y确定值。替代地和/或另外,可以基于Z确定值。替代地和/或另外,可以基于Y和Z确定值。例如,可以基于Y和Z的总和确定值。在实例中,值可以等于Y+Z。在一些实例中,可以基于用于RAR的最小调度延迟确定Y。例如,Y可以等于用于RAR的最小调度延迟。替代地和/或另外,可以基于对应于PDSCH处理时间的持续时间和/或对应于PUSCH准备时间的持续时间来确定Y。例如,可以基于对应于PDSCH处理时间的持续时间和对应于PUSCH准备时间的持续时间的总和来确定Y。例如,Y可以等于T1+T2+0.5,其中T1可以是对应于PDSCH处理时间的持续时间和/或T2可以是对应于PUSCH准备时间的持续时间。在一些实例中,基于所配置准予PUSCH(例如,所配置准予的PUSCH,例如由所配置准予调度的PUSCH,UE可以通过所述所配置准予执行PUSCH传送)的起始符号与RAR准予PUSCH(例如,RAR准予的PUSCH,例如由RAR准予调度的PUSCH,UE可以通过所述RAR准予执行PUSCH传送)的起始符号之间的差来确定Z,其中所配置准予PUSCH和RAR准予PUSCH可以重叠(在时域中)。替代地和/或另外,可以基于所配置准予PUSCH的起始符号与RAR准予PUSCH的起始符号之间的最大差来确定Z,其中所配置准予PUSCH和RAR准予PUSCH可以重叠(在时域中)。替代地和/或另外,Z可以是固定值。替代地和/或另外,Z可以等于1个时隙的持续时间。替代地和/或另外,Z可以等于0.5个时隙的持续时间。替代地和/或另外,Z可以等于1毫秒。替代地和/或另外,Z可以等于0.5毫秒。
在本公开的第一实例实施例中,UE接收所配置准予。在一些实例中,激活所配置准予。在一些实例中,初始化所配置准予。在一些实例中,所配置准予可用于UE传送上行链路数据(例如使用所配置准予的一个或多个资源,例如PUSCH)。UE接收RAR准予。在一些实例中,RAR准予调度第一PUSCH。在一些实例中,RAR准予的第一PUSCH与所配置准予的第二PUSCH重叠。例如,RAR准予的第一PUSCH持续时间(例如,第一PUSCH的持续时间和/或时间段)与所配置准予的第二PUSCH持续时间(例如,所配置准予的第二PUSCH的持续时间和/或时间段)重叠。例如,RAR准予的第一PUSCH的持续时间和/或时间段与所配置准予的第二PUSCH的持续时间和/或时间段重叠。
在一些实例中,如果RAR准予的最后一个符号比所配置准予的传送时机(或传送机会)的第一符号(例如,初始和/或起始符号)早至少第一持续时间,则UE用RAR准予覆盖所配置准予。所配置准予的传送时机或传送机会可以是其中UE被配置成和/或允许传送具有所配置准予的PUSCH的符号集合(例如,一个或多个符号的集合)。在一些实例中,如果RAR准予的最后一个符号不比所配置准予的传送时机(或传送机会)的第一符号早至少第一持续时间,则UE可以不用RAR准予覆盖所配置准予。在一些实例中,基于RAR准予的最后一个符号是否不比所配置准予的传送时机(或传送机会)的第一符号早至少第一持续时间,UE确定是否用RAR准予覆盖所配置准予。在一些实例中,如果RAR准予的最后一个符号比所配置准予的传送时机(或传送机会)的第一符号早至少第一持续时间,则UE基于RAR准予执行PUSCH传送并且UE不基于所配置准予执行PUSCH传送。在一些实例中,如果RAR准予的最后一个符号比所配置准予的传送时机(或传送机会)的第一符号早至少第一持续时间,则UE基于RAR准予执行PUSCH传送。在一些实例中,如果RAR准予的最后一个符号比所配置准予的传送时机(或传送机会)的第一符号早至少第一持续时间,则UE可以不基于所配置准予执行PUSCH传送。在一些实例中,如果RAR准予的最后一个符号不比所配置准予的传送时机(或传送机会)的第一符号早至少第一持续时间,则UE可以不基于RAR准予执行PUSCH传送。在一些实例中,如果RAR准予的最后一个符号比所配置准予的传送时机(或传送机会)的第一符号早至少第一持续时间,则UE可以不基于所配置准予执行PUSCH传送。在一些实例中,如果RAR准予的最后一个符号不比所配置准予的传送时机(或传送机会)的第一符号早至少第一持续时间,则UE基于所配置准予执行PUSCH传送。
在一些实例中,如果RAR准予的最后一个符号不比所配置准予的传送时机(或传送机会)的第一符号早至少第一持续时间,则UE基于所配置准予执行PUSCH传送的第一部分。在一些实例中,如果RAR准予的最后一个符号不比所配置准予的传送时机(或传送机会)的第一符号早至少第一持续时间,则UE不基于所配置准予执行PUSCH传送的第二部分。在一些实例中,PUSCH传送的第一部分不与第一PUSCH重叠。在一些实例中,PUSCH传送的第二部分与第一PUSCH重叠。
第一持续时间是持续时间(例如,时间长度和/或时间段)。可以基于第二持续时间确定第一持续时间。第二持续时间可以对应于PDSCH处理时间(例如,第二持续时间可以是PDSCH处理时间、等于PDSCH处理时间和/或具有PDSCH处理时间的长度)。第二持续时间可以对应于N1个符号的持续时间(例如,第二持续时间可以是N1个符号的持续时间、等于N1个符号的持续时间和/或具有N1个符号的持续时间的长度)。可以基于第三持续时间确定第一持续时间。第三持续时间可以对应于PUSCH准备时间(例如,第三持续时间可以是PUSCH准备时间、等于PUSCH准备时间和/或具有PUSCH准备时间的长度)。第三持续时间可以对应于N2个符号的持续时间(例如,第三持续时间可以是N2个符号的持续时间、等于N2个符号的持续时间和/或具有N2个符号的持续时间的长度)。可以基于第四持续时间确定第一持续时间。第四持续时间可以对应于RAR消息的处理。例如,第四持续时间可以对应于UE处理RAR消息所花费的持续时间(例如,第四持续时间可以是UE处理RAR消息所花费的持续时间、等于UE处理RAR消息所花费的持续时间和/或具有UE处理RAR消息所花费的持续时间的长度)。替代地和/或另外,第四持续时间可以对应于层间处理和/或通信。例如,第四持续时间可以对应于UE执行层间处理和/或通信所花费的持续时间。在一些实例中,第四持续时间是固定值。第四持续时间可以对应于0.5毫秒(例如,第四持续时间可以是0.5毫秒、等于0.5毫秒和/或具有0.5毫秒的长度)。可以基于第二持续时间、第三持续时间和/或第四持续时间来确定第一持续时间。可以基于第二持续时间和第三持续时间的总和来确定第一持续时间。可以基于第二持续时间、第三持续时间和第四持续时间的总和来确定第一持续时间。在一些实例中,第一持续时间可以对应于第二持续时间(例如,第一持续时间可以是第二持续时间、等于第二持续时间和/或具有第二持续时间的长度)。替代地和/或另外,第一持续时间可以对应于第三持续时间(例如,第一持续时间可以是第三持续时间、等于第三持续时间和/或具有第三持续时间的长度)。替代地和/或另外,第一持续时间可以对应于第四持续时间(例如,第一持续时间可以是第四持续时间、等于第四持续时间和/或具有第四持续时间的长度)。第一持续时间可以对应于第二持续时间、第三持续时间和第四持续时间的总和(例如,第一持续时间可以是第二持续时间、第三持续时间和第四持续时间的总和、等于第二持续时间、第三持续时间和第四持续时间的总和,和/或具有第二持续时间、第三持续时间和第四持续时间的总和的长度)。第一持续时间可以对应于N1个符号(例如,第一持续时间可以是N1个符号、等于N1个符号和/或具有N1个符号的长度)。第一持续时间可以对应于N2个符号(例如,第一持续时间可以是N2个符号、等于N2个符号和/或具有N2个符号的长度)。第一持续时间可以对应于0.5毫秒(例如,第一持续时间可以是0.5毫秒、等于0.5毫秒和/或具有0.5毫秒的长度)。第一持续时间可以对应于T1+T2+0.5毫秒(例如,第一持续时间可以是T1+T2+0.5毫秒、等于T1+T2+0.5毫秒和/或具有T1+T2+0.5毫秒的长度)。T1可以对应于N1个符号的持续时间(例如,T1可以是N1个符号的持续时间、等于N1个符号的持续时间和/或具有N1个符号的持续时间的长度)。T2可以对应于N2个符号的持续时间(例如,T2可以是N2个符号的持续时间、等于N2个符号的持续时间和/或具有N2个符号的持续时间的长度)。
在一些实例中,UE可能不期望处理以下情形:RAR准予的最后一个符号不比所配置准予的传送时机(或传送机会)的第一符号早至少第一持续时间,以及所配置准予的资源,例如第二PUSCH与RAR准予的资源,例如第一PUSCH重叠。针对RAR准予的最后一个符号不比所配置准予的传送时机(或传送机会)的第一符号早至少第一持续时间,以及所配置准予的资源与RAR准予的资源重叠的情形,可能不会针对UE指定UE行为。例如,UE可以将此情形(RAR准予的最后一个符号不比所配置准予的传送时机(或传送机会)的第一符号早至少第一持续时间,以及所配置准予的资源与RAR准予的资源重叠)视为错误(例如,错误情况)。
在本公开的第二实例实施例中,基站调度RAR准予。基站为一个或多个UE配置一个或多个所配置准予(例如,基站用一个或多个所配置准予配置一个或多个UE)。在一些实例中,初始化一个或多个所配置准予。在一些实例中,基站确保不出现以下情形:RAR准予的最后一个符号不比一个或多个所配置准予中的所配置准予的传送时机(或传送机会)的第一符号(例如,初始和/或起始符号)早至少第一持续时间,以及所配置准予的资源与RAR准予的资源重叠。所配置准予的资源可以对应于与所配置准予的传送时机相关联的PUSCH(例如,用于执行PUSCH传送的PUSCH)。RAR准予的资源可以对应于例如由用于执行PUSCH传送的RAR准予调度的RAR准予的PUSCH。
在一些实例中,基站确保RAR准予的最后一个符号比所配置准予的传送时机(或传送机会)的第一符号早至少第一持续时间。在一些实例中,如果所配置准予的资源与RAR准予的资源重叠,则基站确保RAR准予的最后一个符号比所配置准予的传送时机(或传送机会)的第一符号早至少第一持续时间。
在一些实例中,基站调度RAR准予,使得RAR准予的最后一个符号比所配置准予的传送时机(或传送机会)的第一符号早至少第一持续时间。在一些实例中,如果所配置准予的资源与RAR准予的资源重叠,则基站调度RAR准予,使得RAR准予的最后一个符号比所配置准予的传送时机(或传送机会)的第一符号早至少第一持续时间。
在一些实例中,不允许基站调度RAR准予,其方式为使得RAR准予的最后一个符号不比所配置准予的传送时机(或传送机会)的第一符号早至少第一持续时间。在一些实例中,不允许基站调度RAR准予,其方式为使得如果所配置准予的资源与RAR准予的资源重叠,则RAR准予的最后一个符号不比所配置准予的传送时机(或传送机会)的第一符号早至少第一持续时间。
在一些实例中,基站以较大调度延迟(例如,调度延迟大于阈值)来调度RAR。在一些实例中,不允许基站以最小调度延迟来调度RAR。在一些实例中,如果所配置准予的资源与RAR准予的资源重叠,则基站以较大调度延迟来调度RAR。在一些实例中,如果所配置准予的资源与RAR准予的资源重叠,则基站以调度延迟来调度RAR,其中调度延迟大于某一值。在一些实例中,如果所配置准予的资源与RAR准予的资源重叠,则不允许基站以最小调度延迟来调度RAR。在一些实例中,如果所配置准予的资源与RAR准予的资源重叠,则不允许基站以小于所述值的调度延迟来调度RAR。在一些实例中,不允许基站以最小调度延迟来调度RAR。在一些实例中,不允许基站以小于所述值的调度延迟来调度RAR。
在一些实例中,可以基于RAR准予的最小调度延迟确定值。在一些实例中,值是最小调度延迟和常数的总和。常数可以对应于1个时隙(例如,常数可以是1个时隙和/或1个时隙的持续时间,和/或等于1个时隙和/或1个时隙的持续时间)。在一些实例中,值大于最小调度延迟。使用较大调度延迟(例如,至少等于所述值的调度延迟)可以确保RAR准予的最后一个符号比所配置准予的传送时机(或传送机会)的第一符号早至少第一持续时间。
在一些实例中,基站确保RAR准予的资源不与所配置准予的资源重叠。所配置准予的资源可以对应于与所配置准予的传送时机相关联的PUSCH(例如,用于执行PUSCH传送的PUSCH)。RAR准予的资源可以对应于例如由用于执行PUSCH传送的RAR准予调度的RAR准予的PUSCH。在一些实例中,基站调度RAR准予的资源,使得RAR准予的资源不与所配置准予的资源重叠。在一些实例中,不允许基站调度RAR准予的资源,其方式为使得RAR准予的资源与所配置准予的资源重叠。在一些实例中,如果RAR准予的调度延迟小于所述值,则基站确保RAR准予的资源不与所配置准予的资源重叠。在一些实例中,如果RAR准予的调度延迟小于所述值,则基站调度RAR准予的资源,使得RAR准予的资源不与所配置准予的资源重叠。在一些实例中,如果RAR准予的调度延迟小于所述值,则不允许基站调度RAR准予的资源,其方式为使得RAR准予的资源与所配置准予的资源重叠。
在一些实例中,所配置准予用于一个UE。替代地和/或另外,所配置准予可以用于UE群组。UE群组可以包括小区中的一些和/或所有UE。在一些实例中,UE群组是可以使用和/或可能使用RAR准予的UE。在一些实例中,UE群组是配置有与RAR准予相关联的PRACH资源的UE。
第一持续时间是持续时间(例如,时间长度和/或时间段)。可以基于第二持续时间确定第一持续时间。第二持续时间可以对应于PDSCH处理时间(例如,第二持续时间可以是PDSCH处理时间、等于PDSCH处理时间和/或具有PDSCH处理时间的长度)。第二持续时间可以对应于N1个符号的持续时间(例如,第二持续时间可以是N1个符号的持续时间、等于N1个符号的持续时间和/或具有N1个符号的持续时间的长度)。可以基于第三持续时间确定第一持续时间。第三持续时间可以对应于PUSCH准备时间(例如,第三持续时间可以是PUSCH准备时间、等于PUSCH准备时间和/或具有PUSCH准备时间的长度)。第三持续时间可以对应于N2个符号的持续时间(例如,第三持续时间可以是N2个符号的持续时间、等于N2个符号的持续时间和/或具有N2个符号的持续时间的长度)。可以基于第四持续时间确定第一持续时间。第四持续时间可以对应于RAR消息的处理。例如,第四持续时间可以对应于UE处理RAR消息所花费的持续时间(例如,第四持续时间可以是UE处理RAR消息所花费的持续时间、等于UE处理RAR消息所花费的持续时间和/或具有UE处理RAR消息所花费的持续时间的长度)。替代地和/或另外,第四持续时间可以对应于层间处理和/或通信。例如,第四持续时间可以对应于UE执行层间处理和/或通信所花费的持续时间。在一些实例中,第四持续时间是固定值。第四持续时间可以对应于0.5毫秒(例如,第四持续时间可以是0.5毫秒、等于0.5毫秒和/或具有0.5毫秒的长度)。可以基于第二持续时间、第三持续时间和/或第四持续时间来确定第一持续时间。可以基于第二持续时间和第三持续时间的总和来确定第一持续时间。可以基于第二持续时间、第三持续时间和第四持续时间的总和来确定第一持续时间。在一些实例中,第一持续时间可以对应于第二持续时间(例如,第一持续时间可以是第二持续时间、等于第二持续时间和/或具有第二持续时间的长度)。替代地和/或另外,第一持续时间可以对应于第三持续时间(例如,第一持续时间可以是第三持续时间、等于第三持续时间和/或具有第三持续时间的长度)。替代地和/或另外,第一持续时间可以对应于第四持续时间(例如,第一持续时间可以是第四持续时间、等于第四持续时间和/或具有第四持续时间的长度)。第一持续时间可以对应于第二持续时间、第三持续时间和第四持续时间的总和(例如,第一持续时间可以是第二持续时间、第三持续时间和第四持续时间的总和、等于第二持续时间、第三持续时间和第四持续时间的总和,和/或具有第二持续时间、第三持续时间和第四持续时间的总和的长度)。第一持续时间可以对应于N1个符号(例如,第一持续时间可以是N1个符号、等于N1个符号和/或具有N1个符号的长度)。第一持续时间可以对应于N2个符号(例如,第一持续时间可以是N2个符号、等于N2个符号和/或具有N2个符号的长度)。第一持续时间可以对应于0.5毫秒(例如,第一持续时间可以是0.5毫秒、等于0.5毫秒和/或具有0.5毫秒的长度)。第一持续时间可以对应于T1+T2+0.5毫秒(例如,第一持续时间可以是T1+T2+0.5毫秒、等于T1+T2+0.5毫秒和/或具有T1+T2+0.5毫秒的长度)。T1可以对应于N1个符号的持续时间(例如,T1可以是N1个符号的持续时间、等于N1个符号的持续时间和/或具有N1个符号的持续时间的长度)。T2可以对应于N2个符号的持续时间(例如,T2可以是N2个符号的持续时间、等于N2个符号的持续时间和/或具有N2个符号的持续时间的长度)。
在一些实例中,可以由基站执行和/或应用本文相对于UE描述的一个或多个操作和/或技术。例如,基站可以使用与本文相对于UE确定和/或导出时序描述的一个或多个技术相同或相似的一个或多个技术来确定和/或导出时序。在另一实例中,基站可以使用与本文相对于UE确定和/或导出中断时间描述的一个或多个技术相同或相似的一个或多个技术来确定和/或导出中断时间。
在一些实例中,可以由基站执行和/或应用本文相对于基站描述的一个或多个操作和/或技术。例如,UE可以使用与本文相对于基站确定和/或导出时序描述的一个或多个技术相同或相似的一个或多个技术来确定和/或导出时序。在另一实例中,UE可以使用与本文相对于基站确定和/或导出中断时间描述的一个或多个技术相同或相似的一个或多个技术来确定和/或导出中断时间。
在一些实例中,本文相对于UE描述的一个或多个操作和/或技术可以对称地应用于基站。例如,UE执行消息接收的本文所描述的操作可以应用于基站,即例如,其中基站执行消息的传送。
在一些实例中,本文相对于基站描述的一个或多个操作和/或技术可以对称地应用于UE。例如,基站执行消息接收的本文所描述的操作可以应用于UE,即例如,其中UE执行消息的传送。
在一些实例中,如果例如根据本文所描述的技术中的一个或多个,UE在一时间段期间禁止和/或暂停接收和/或传送(例如在小区中的接收和/或传送,和/或往来基站的接收和/或传送),则基站可以在相同时间段期间禁止和/或暂停接收和/或传送(例如在小区中的接收和/或传送,和/或往来UE的接收和/或传送)。
在一些实例中,如果例如根据本文中所描述的技术中的一个或多个,基站在一时间段期间禁止和/或暂停接收和/或传送(例如在小区中的接收和/或传送,和/或往来UE的接收和/或传送),则UE可以在相同的时间段期间禁止和/或暂停接收和/或传送(例如在小区中的接收和/或传送,和/或往来基站的接收和/或传送)。
在本公开的第三实例实施例中,UE并不预期由传送以符号i结尾的PDCCH和/或PDSCH调度,以在时间上与传送时机重叠的给定服务小区上传送PUSCH,其中如果符号i的结尾不是在符号j的开始之前的至少N2个符号,则允许UE在同一服务小区上传送以符号j开始的具有所配置准予的PUSCH(例如根据3GPP TS 38.321 V15.7.0)。可以根据UE处理能力确定符号中的值N2(例如在3GPP TS 38.214 V15.7.0的第6.4小节中定义)。N2和符号持续时间可以基于对应于具有所配置准予的PUSCH的子载波间隔以及传送调度PUSCH的RAR的PDCCH或PDSCH的子载波间隔的最小值。
在本公开的第四实例实施例中,UE并不预期由传送以符号i结尾的RAR的PDSCH调度,以在时间上与传送时机重叠的给定服务小区上传送PUSCH,其中如果符号i的结尾不比符号j的开始早至少NT,1+NT,2+0.5毫秒,则允许UE在同一服务小区上传送以符号j开始的具有所配置准予的PUSCH(例如,根据3GPP TS 38.321 V15.7.0),其中当配置额外的PDSCH解调参考信号(demodulation reference signal,DM-RS)时,NT,1是对应于用于UE处理能力1的PDSCH处理时间的N1个符号的持续时间,和/或NT,2是对应于用于UE处理能力1的PUSCH准备时间的N2个符号的持续时间(例如在3GPP TS 38.214 V15.7.0中定义)。为了确定最少时间,UE可以考虑N1和N2对应于用于PDSCH和PUSCH的子载波间隔配置中的较小者。对于μ=0,UE可以假设N1,0=14(例如在3GPP TS 38.214 V15.7.0中定义)。
贯穿本公开,术语“重叠”可以对应于在时域中的至少部分重叠。两个信号重叠可以表示两个信号处于(例如,调度成处于)至少一个相同符号(例如,OFDM符号)上。
贯穿本公开描述的技术和/或操作可以对应于单个服务小区的行为和/或操作,除非另外指出。可以使用单个服务小区应用本文所提供的技术和/或操作。
贯穿本公开描述的技术和/或操作可以对应于多个服务小区的行为和/或操作,除非另外指出。可以使用多个服务小区应用本文所提供的技术和/或操作。
相对于本公开的实施例,基站可以配置UE的多个带宽部分(例如,基站可以配置具有多个带宽部分的UE),除非另外指出。
相对于本公开的实施例,基站可以配置UE的单个带宽部分(例如,基站可以配置具有单个带宽部分的UE),除非另外指出。
以上技术和/或实施例中的一个、一些和/或全部可以形成为新实施例。
在一些实例中,可以独立地和/或单独地实施本文所公开的实施例,例如相对于第一实例概念、第二实例概念、第三实例概念、第一实例实施例、第二实例实施例、第三实例实施例和第四实例实施例描述的实施例。替代地和/或另外,可以实施本文所描述的实施例,例如相对于第一实例概念、第二实例概念、第三实例概念、第一实例实施例、第二实例实施例、第三实例实施例和/或第四实例实施例描述的实施例的组合。替代地和/或另外,可以并行地和/或同时地实施本文所描述的实施例,例如相对于第一实例概念、第二实例概念、第三实例概念、第一实例实施例、第二实例实施例、第三实例实施例和/或第四实例实施例描述的实施例的组合。
可以彼此独立地和/或单独地执行本公开的各种技术。替代地和/或另外,可以使用单个系统组合和/或实施本公开的各种技术。替代地和/或另外,可以并行和/或同时地实施本公开的各种技术。
图6是从UE的角度的根据一个示例性实施例的流程图600。在步骤605中,UE接收所配置准予。在步骤610中,UE接收RAR准予,其中RAR准予的第一PUSCH与所配置准予的第二PUSCH重叠。例如,第一PUSCH的一个或多个符号可以与第二PUSCH的一个或多个符号重叠。在步骤615中,如果RAR准予的最后一个符号比所配置准予的传送时机的初始符号早至少第一持续时间,则UE用RAR准予覆盖所配置准予。
在一个实施例中,如果RAR准予的最后一个符号不比所配置准予的传送时机的初始符号早至少第一持续时间,则UE不用RAR准予覆盖所配置准予。
在一个实施例中,如果RAR准予的最后一个符号比所配置准予的传送时机的初始符号早至少第一持续时间,则UE基于RAR准予传送PUSCH(例如,第一PUSCH)并且不基于所配置准予传送PUSCH(例如,第二PUSCH)。
在一个实施例中,如果RAR准予的最后一个符号不比所配置准予的传送时机的初始符号早至少第一持续时间,则UE不基于RAR准予传送PUSCH(例如,第一PUSCH)并且基于所配置准予传送PUSCH(例如,第二PUSCH)。
在一个实施例中,如果RAR准予的最后一个符号不比所配置准予的传送时机的初始符号早至少第一持续时间,则UE基于RAR准予传送PUSCH(例如,第一PUSCH)并且基于所配置准予传送PUSCH(例如,第二PUSCH)。
在一个实施例中,在第一PUSCH和第二PUSCH重叠的时间段期间,UE传送所配置准予PUSCH(例如,第二PUSCH)或RAR准予PUSCH(例如,第一PUSCH)中的一个。
在一个实施例中,基于对应于PDSCH处理时间的第二持续时间来确定第一持续时间。
在一个实施例中,基于对应于PUSCH准备时间的第三持续时间来确定第一持续时间。
在一个实施例中,基于对应于RAR消息的处理的第四持续时间(例如,UE执行RAR消息的处理所花费的时间,其中RAR消息可以载送RAR准予)来确定第一持续时间。
在一个实施例中,第四持续时间对应于层间处理和/或通信(例如,第四持续时间可以对应于RAR消息的处理以及层间处理和/或通信,例如,UE执行RAR消息的处理以及层间处理和/或通信所花费的时间)。
在一个实施例中,基于第二持续时间、第三持续时间和第四持续时间的总和来确定第一持续时间。
在一个实施例中,第一持续时间是T1+T2+0.5毫秒。
在一个实施例中,T1是N1个符号的持续时间。
在一个实施例中,T1是第二持续时间。
在一个实施例中,T2是N2个符号的持续时间。
在一个实施例中,T2是第三持续时间。
返回参考图3和4,在UE的一个示例性实施例中,装置300包含存储在存储器310中的程序代码312。CPU 308可以执行程序代码312以使UE能够(i)接收所配置准予;(ii)接收RAR准予,其中RAR准予的第一PUSCH与所配置准予的第二PUSCH重叠;以及(iii)如果RAR准予的最后一个符号比所配置准予的传送时机的初始符号早至少第一持续时间,则用RAR准予覆盖所配置准予。此外,CPU 308可以执行程序代码312,以执行上述动作和步骤和/或本文中描述的其它动作和步骤中的一个、一些和/或全部。
图7是从UE的角度的根据一个示例性实施例的流程图700。在步骤705中,UE接收所配置准予。在步骤710中,UE接收RAR准予,其中RAR准予的第一PUSCH与所配置准予的第二PUSCH重叠。例如,第一PUSCH的一个或多个符号可以与第二PUSCH的一个或多个符号重叠。在步骤715中,UE基于所配置准予传送第二PUSCH。
在一个实施例中,UE不传送第一PUSCH。
在一个实施例中,UE不用RAR准予覆盖所配置准予。
在一个实施例中,基于(例如,由于)RAR准予的最后一个符号不比所配置准予的传送时机的初始符号早至少第一持续时间,UE不用RAR准予覆盖所配置准予。例如,如果RAR准予的最后一个符号不比所配置准予的传送时机的初始符号早至少第一持续时间,则UE不用RAR准予覆盖所配置准予。
在一个实施例中,基于(例如,由于)接收RAR准予的时间,执行传送第二PUSCH。在一些实例中,时间对应于RAR准予的最后一个符号的时间。
在一个实施例中,基于(例如由于)接收RAR准予的时间,UE不用RAR准予覆盖所配置准予。例如,UE可以基于接收RAR准予的时间和/或所配置准予的传送时机的初始符号来确定是否用RAR准予覆盖所配置准予。例如,如果所述时间不比所配置准予的传送时机的初始符号早至少第一持续时间,则UE可以不用RAR准予覆盖所配置准予(和/或UE可以基于所配置准予传送第二PUSCH)。替代地和/或另外,如果所述时间比所配置准予的传送时机的初始符号早至少第一持续时间,则UE可以用RAR准予覆盖所配置准予(和/或UE可以基于RAR准予传送第一PUSCH)。
在一个实施例中,基于(例如由于)与时间表(例如,处理时间表)相关联的问题,执行传送第二PUSCH。
在一个实施例中,UE基于时间表来确定是否用RAR准予覆盖所配置准予。例如,时间表的参考点可以对应于接收RAR准予的时间。替代地和/或另外,时间表的参考点可以对应于RAR准予的最后一个符号的时间。UE可以基于参考点和/或所配置准予的传送时机的初始符号来确定是否用RAR准予覆盖所配置准予。例如,如果参考点不比所配置准予的传送时机的初始符号早至少第一持续时间,则UE可以不用RAR准予覆盖所配置准予(和/或UE可以基于所配置准予传送第二PUSCH)。替代地和/或另外,如果参考点比所配置准予的传送时机的初始符号早至少第一持续时间,则UE可以用RAR准予覆盖所配置准予(和/或UE可以基于RAR准予传送第一PUSCH)。
在一个实施例中,基于(例如由于)RAR准予的最后一个符号不比所配置准予的传送时机的初始符号早至少第一持续时间,执行传送第二PUSCH。例如,如果RAR准予的最后一个符号不比所配置准予的传送时机的初始符号早至少第一持续时间,则UE基于所配置准予传送第二PUSCH。
返回参考图3和4,在UE的一个示例性实施例中,装置300包含存储在存储器310中的程序代码312。CPU 308可以执行程序代码312以使UE能够(i)接收所配置准予;(ii)接收RAR准予,其中RAR准予的第一PUSCH与所配置准予的第二PUSCH重叠;以及(iii)基于所配置准予传送第二PUSCH。此外,CPU 308可以执行程序代码312,以执行上述动作和步骤和/或本文中描述的其它动作和步骤中的一个、一些和/或全部。
图8是从UE的角度的根据一个示例性实施例的流程图800。在步骤805中,UE接收所配置准予。在步骤810中,UE接收RAR准予,其中RAR准予的第一PUSCH与所配置准予的第二PUSCH重叠。例如,第一PUSCH的一个或多个符号可以与第二PUSCH的一个或多个符号重叠。在步骤815中,基于(例如,由于)RAR准予的最后一个符号比所配置准予的传送时机的初始符号早至少第一持续时间,UE传送第一PUSCH,或基于(例如,由于)RAR准予的最后一个符号不比所配置准予的传送时机的初始符号早至少第一持续时间,UE传送第二PUSCH。
例如,如果RAR准予的最后一个符号比所配置准予的传送时机的初始符号早至少第一持续时间,则UE可以传送第一PUSCH。如果RAR准予的最后一个符号不比所配置准予的传送时机的初始符号早至少第一持续时间,则UE可以传送第二PUSCH。
在一个实施例中,基于(例如,由于)RAR准予的最后一个符号比所配置准予的传送时机的初始符号早至少第一持续时间,则UE用RAR准予覆盖所配置准予。例如,如果RAR准予的最后一个符号比所配置准予的传送时机的初始符号早至少第一持续时间,则UE可以用RAR准予覆盖所配置准予。
在一个实施例中,基于(例如,由于)RAR准予的最后一个符号不比所配置准予的传送时机的初始符号早至少第一持续时间,UE不用RAR准予覆盖所配置准予。例如,如果RAR准予的最后一个符号不比所配置准予的传送时机的初始符号早至少第一持续时间,则UE可以不用RAR准予覆盖所配置准予。
在一个实施例中,基于(例如,由于)RAR准予的最后一个符号比所配置准予的传送时机的初始符号早至少第一持续时间,则UE不传送第二PUSCH。例如,如果RAR准予的最后一个符号比所配置准予的传送时机的初始符号早至少第一持续时间,则UE可以不传送第二PUSCH。
在一个实施例中,基于RAR准予的最后一个符号不比所配置准予的传送时机的初始符号早至少第一持续时间,UE不传送第一PUSCH。例如,如果RAR准予的最后一个符号不比所配置准予的传送时机的初始符号早至少第一持续时间,则UE可以不传送第一PUSCH。
在一个实施例中,基于RAR准予执行传送第一PUSCH。
在一个实施例中,基于所配置准予执行传送第二PUSCH。
返回参考图3和4,在UE的一个示例性实施例中,装置300包含存储在存储器310中的程序代码312。CPU 308可以执行程序代码312以使UE能够(i)接收所配置准予;(ii)接收RAR准予,其中RAR准予的第一PUSCH与所配置准予的第二PUSCH重叠;以及(iii)基于RAR准予的最后一个符号比所配置准予的传送时机的初始符号早至少第一持续时间,传送第一PUSCH,或基于RAR准予的最后一个符号不比所配置准予的传送时机的初始符号早至少第一持续时间,传送第二PUSCH。此外,CPU 308可以执行程序代码312,以执行上述动作和步骤和/或本文中描述的其它动作和步骤中的一个、一些和/或全部。
可以提供一种通信装置(例如,UE、基站、网络节点等),其中所述通信装置可以包括控制电路、安装在控制电路中的处理器和/或安装在控制电路中并且耦合到处理器的存储器。处理器可以被配置成执行存储于存储器中的程序代码以执行图6到8中说明的一个、一些和/或全部方法步骤。此外,所述处理器可以执行程序代码以执行上述动作和步骤和/或本文中描述的其它动作和步骤中的一个、一些和/或全部。
可以提供计算机可读媒体。计算机可读媒体可以是非暂时性计算机可读媒体。计算机可读媒体可以包括快闪存储器装置、硬盘驱动器、盘(例如,磁盘和/或光盘,例如数字多功能盘(digital versatile disc,DVD)、压缩光盘(compact disc,CD)等中的至少一个),和/或存储器半导体,例如静态随机存取存储器(static random access memory,SRAM)、动态随机存取存储器(dynamic random access memory,DRAM)、同步动态随机存取存储器(synchronous dynamic random access memory,SDRAM)等中的至少一个。计算机可读媒体可以包括处理器可执行指令,所述处理器可执行指令在被执行时致使执行图6到8中说明的一个、一些和/或全部方法步骤,和/或上述动作和步骤和/或本文中描述的其它动作和步骤中的一个、一些和/或全部。
可以理解,应用本文中呈现的技术中的一个或多个可以产生一个或多个优势,包含但不限于,增加装置(例如,UE和/或网络节点)之间的通信效率,例如其中UE配置有所配置准予。例如在RAR准予的资源与所配置准予的资源重叠的情形中,增加的效率可以是使UE能够确定是否用RAR准予覆盖所配置准予的结果。
上文已经描述了本公开的各种方面。应明白,本文中的教示可以通过多种多样的形式实施,且本文中所公开的任何具体结构、功能或这两者仅是代表性的。基于本文中的教示,本领域的技术人员应了解,本文中所公开的方面可以独立于任何其它方面而实施,且可以通过不同方式组合这些方面中的两个或更多个方面。举例来说,可以使用本文中所阐述的任何数目个方面来实施设备或实践方法。另外,通过使用除了本文所阐述的方面中的一个或多个之外或不同于本文所阐述的实施例中的一个或多个的其它结构、功能性或结构与功能性,可以实施此设备或可以实践此方法。作为一些上述概念的实例,在一些方面,可以基于脉冲重复频率来建立并行信道。在一些方面中,可以基于脉冲位置或偏移建立并行信道。在一些方面,可以基于跳时序列建立并行信道。在一些方面中,可以基于脉冲重复频率、脉冲位置或偏移以及时间跳频序列而建立并行信道。
本领域的技术人员将理解,可以使用多种不同技术和技艺中的任一种来表示信息和信号。例如,可以通过电压、电流、电磁波、磁场或磁粒子、光场或光粒子或其任何组合来表示在整个上文描述中可能参考的数据、指令、命令、信息、信号、位、符号和码片。
本领域的技术人员将进一步了解,结合本文中所公开的方面描述的各种说明性逻辑块、模块、处理器、构件、电路以及算法步骤可以实施为电子硬件(例如,可以使用源译码或某一其它技术进行设计的数字实施、模拟实施或这两者的组合)、并入有指令的各种形式的程序或设计代码(为方便起见,其在本文中可以称为“软件”或“软件模块”)或这两者的组合。为清晰地说明硬件与软件的此可互换性,上文已大体就各种说明性组件、块、模块、电路和步骤的功能性加以描述。这类功能性是实施为硬件还是软件取决于特定应用和强加于整个系统的设计约束。本领域的技术人员可以针对每一具体应用以不同方式来实施所描述的功能性,但这样的实施决策不应被解释为会引起脱离本公开的范围。
另外,结合本文中所公开的方面描述的各种说明性逻辑块、模块和电路可以在集成电路(“IC”)、接入终端或接入点内实施或由所述集成电路、接入终端或接入点执行。IC可以包括通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(fieldprogrammable gate array,FPGA)或其它可编程逻辑装置、离散门或晶体管逻辑、离散硬件组件、电气组件、光学组件、机械组件,或其经设计以执行本文中所描述的功能的任何组合,且可以执行驻存在IC内、在IC外或这两种情况下的代码或指令。通用处理器可以是微处理器,但在替代方案中,处理器可以是任何常规处理器、控制器、微控制器或状态机。处理器还可以实施为计算装置的组合,例如,DSP与微处理器的组合、多个微处理器的组合、一个或多个微处理器与DSP核心结合,或任何其它此种配置。
应理解,在任何公开的过程中的步骤的任何具体次序或层次是样本方法的实例。应理解,基于设计偏好,过程中的步骤的具体次序或层级可以重新布置,同时保持在本公开的范围内。随附的方法权利要求以样本次序呈现各种步骤的元素,且并不有意限于所呈现的特定次序或阶层。
结合本文中公开的方面所描述的方法或算法的步骤可以直接用硬件、用处理器执行的软件模块或用这两者的组合体现。软件模块(例如,包含可执行指令和相关数据)和其它数据可以驻存在数据存储器中,例如RAM存储器、快闪存储器、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移除式磁盘、CD-ROM或本领域中已知的任何其它形式的计算机可读存储媒体。样本存储媒体可以耦合到例如计算机/处理器等机器(为方便起见,所述机器在本文中可以称为“处理器”),使得所述处理器可以从存储媒体读取信息(例如,代码)和将信息写入到存储媒体。样本存储媒体可以与处理器形成一体。处理器和存储媒体可以驻存在ASIC中。ASIC可以驻存在用户设备中。在替代方案中,处理器和存储媒体可以作为离散组件驻存于用户设备中。替代地和/或另外,在一些方面中任何合适的计算机程序产品可以包括计算机可读媒体,所述计算机可读媒体包括与本公开的方面中的一个或多个相关的代码。在一些方面中,计算机程序产品可以包括封装材料。
虽然已经结合各个方面描述了所公开的主题,但是应理解,所公开的主题能够进一步修改。本申请预期涵盖一般遵循所公开主题的原理的所公开主题的任何变化、使用或改编,并且包含所公开主题所涉及领域内已知和惯常的实践范围内出现的对本公开的偏离。

Claims (20)

1.一种用户设备的方法,其特征在于,所述方法包括:
接收所配置准予;
接收随机接入响应准予,其中所述随机接入响应准予的第一物理上行链路共享信道与所述所配置准予的第二物理上行链路共享信道重叠;以及
基于所述所配置准予传送所述第二物理上行链路共享信道。
2.根据权利要求1所述的方法,其特征在于,包括:
不传送所述第一物理上行链路共享信道。
3.根据权利要求1所述的方法,其特征在于,包括:
不用所述随机接入响应准予覆盖所述所配置准予。
4.根据权利要求3所述的方法,其特征在于:
不用所述随机接入响应准予覆盖所述所配置准予是基于所述随机接入响应准予的最后一个符号不比所述所配置准予的传送时机的初始符号早至少第一持续时间。
5.根据权利要求1所述的方法,其特征在于:
基于接收所述随机接入响应准予的时间执行所述传送所述第二物理上行链路共享信道。
6.根据权利要求5所述的方法,其特征在于,包括:
基于接收所述随机接入响应准予的所述时间,不用所述随机接入响应准予覆盖所述所配置准予。
7.根据权利要求1所述的方法,其特征在于:
基于所述随机接入响应准予的最后一个符号不比所述所配置准予的传送时机的初始符号早至少第一持续时间,执行所述传送所述第二物理上行链路共享信道。
8.一种用户设备,其特征在于,包括:
控制电路;
处理器,所述处理器安装在所述控制电路中;及
存储器,所述存储器安装在所述控制电路中且可操作地耦合到所述处理器,其中所述处理器被配置成执行存储于所述存储器中的程序代码以执行操作,所述操作包括:
接收所配置准予;
接收随机接入响应准予,其中所述随机接入响应准予的第一物理上行链路共享信道与所述所配置准予的第二物理上行链路共享信道重叠;以及
以下项中的一个:
基于所述随机接入响应准予的最后一个符号比所述所配置准予的传送时机的初始符号早至少第一持续时间,传送所述第一物理上行链路共享信道;或
基于所述随机接入响应准予的所述最后一个符号不比所述所配置准予的所述传送时机的所述初始符号早至少所述第一持续时间,传送所述第二物理上行链路共享信道。
9.根据权利要求8所述的用户设备,其特征在于,所述操作包括:
基于所述随机接入响应准予的所述最后一个符号比所述所配置准予的所述传送时机的所述初始符号早至少所述第一持续时间,用所述随机接入响应准予覆盖所述所配置准予。
10.根据权利要求8所述的用户设备,其特征在于,所述操作包括:
基于所述随机接入响应准予的所述最后一个符号不比所述所配置准予的所述传送时机的所述初始符号早至少所述第一持续时间,不用所述随机接入响应准予覆盖所述所配置准予。
11.根据权利要求8所述的用户设备,其特征在于,所述操作包括:
基于所述随机接入响应准予的所述最后一个符号比所述所配置准予的所述传送时机的所述初始符号早至少所述第一持续时间,不传送所述第二物理上行链路共享信道。
12.根据权利要求8所述的用户设备,其特征在于,所述操作包括:
基于所述随机接入响应准予的所述最后一个符号不比所述所配置准予的所述传送时机的所述初始符号早至少所述第一持续时间,不传送所述第一物理上行链路共享信道。
13.根据权利要求8所述的用户设备,其特征在于:
基于所述随机接入响应准予执行所述传送所述第一物理上行链路共享信道;或
基于所述所配置准予执行所述传送所述第二物理上行链路共享信道。
14.一种非暂时性计算机可读媒体,其特征在于,包括当由用户设备执行时使得执行操作的处理器可执行指令,所述操作包括:
接收所配置准予;
接收随机接入响应准予,其中所述随机接入响应准予的第一物理上行链路共享信道与所述所配置准予的第二物理上行链路共享信道重叠;以及
基于所述所配置准予传送所述第二物理上行链路共享信道。
15.根据权利要求14所述的非暂时性计算机可读媒体,其特征在于,所述操作包括:
不传送所述第一物理上行链路共享信道。
16.根据权利要求14所述的非暂时性计算机可读媒体,其特征在于,所述操作包括:
不用所述随机接入响应准予覆盖所述所配置准予。
17.根据权利要求16所述的非暂时性计算机可读媒体,其特征在于:
不用所述随机接入响应准予覆盖所述所配置准予是基于所述随机接入响应准予的最后一个符号不比所述所配置准予的传送时机的初始符号早至少第一持续时间。
18.根据权利要求14所述的非暂时性计算机可读媒体,其特征在于:
基于接收所述随机接入响应准予的时间执行所述传送所述第二物理上行链路共享信道。
19.根据权利要求18所述的非暂时性计算机可读媒体,其特征在于,所述操作包括:
基于接收所述随机接入响应准予的所述时间,不用所述随机接入响应准予覆盖所述所配置准予。
20.根据权利要求14所述的非暂时性计算机可读媒体,其特征在于:
基于所述随机接入响应准予的最后一个符号不比所述所配置准予的传送时机的初始符号早至少第一持续时间,执行所述传送所述第二物理上行链路共享信道。
CN202011208981.0A 2019-11-06 2020-11-03 无线通信系统中用于上行链路准予覆盖的方法和设备 Active CN112788779B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962931439P 2019-11-06 2019-11-06
US62/931,439 2019-11-06

Publications (2)

Publication Number Publication Date
CN112788779A true CN112788779A (zh) 2021-05-11
CN112788779B CN112788779B (zh) 2023-10-31

Family

ID=75688212

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011208981.0A Active CN112788779B (zh) 2019-11-06 2020-11-03 无线通信系统中用于上行链路准予覆盖的方法和设备

Country Status (3)

Country Link
US (1) US11558904B2 (zh)
KR (1) KR102584120B1 (zh)
CN (1) CN112788779B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11711171B2 (en) * 2018-01-11 2023-07-25 Huawei Technologies Co., Ltd. System and method for reliable transmission over network resources
US11903034B2 (en) * 2020-02-19 2024-02-13 Intel Corporation Aggregation indication for uplink transmission during random access channel procedures
US11924827B2 (en) * 2020-02-21 2024-03-05 Qualcomm Incorporated UE processing time for PDSCH repetition in the same slot
US20210360660A1 (en) * 2020-05-15 2021-11-18 Samsung Electronics Co., Ltd. Method and apparatus for coverage enhancement of msg3
US11968148B2 (en) * 2020-08-06 2024-04-23 Lg Electronics Inc. Method and apparatus for transmitting or receiving HARQ feedback for multicast/broadcast signal
US20220303071A1 (en) * 2020-10-05 2022-09-22 Apple Inc. PDCCH Transmission in RACH Procedure for Reduced Capability Devices
WO2022073148A1 (en) * 2020-10-05 2022-04-14 Apple Inc. Monitoring pdcch transmissions in a rach procedure
KR102500494B1 (ko) * 2021-09-07 2023-02-16 주식회사 블랙핀 무선 이동 통신 시스템에서 축소된 성능의 단말이 복수의 탐색구간과 제어자원셋을 이용해서 랜덤 액세스를 수행하고 시스템정보블록2를 수신하는 방법 및 장치
KR102487886B1 (ko) * 2021-09-07 2023-01-12 주식회사 블랙핀 무선 이동 통신 시스템에서 축소된 성능의 단말이 복수의 pusch 공통 설정 정보를 이용해서 랜덤 액세스를 수행하는 방법 및 장치
CN114503753A (zh) * 2022-01-12 2022-05-13 北京小米移动软件有限公司 物理下行共享信道的处理时间参数的确定方法及装置

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106105088A (zh) * 2014-03-27 2016-11-09 高通股份有限公司 用于ul dm‑rs开销减少的方法和装置
WO2017116132A1 (ko) * 2015-12-31 2017-07-06 엘지전자 주식회사 비면허 대역을 지원하는 무선 통신 시스템에서 상향링크 신호를 송수신하는 방법 및 이를 지원하는 장치
US20170273056A1 (en) * 2016-03-21 2017-09-21 Samsung Electronics Co., Ltd Scheduling uplink transmissions
EP3226639A1 (en) * 2016-04-01 2017-10-04 ASUSTek Computer Inc. Method and apparatus for improving a transmission using a configured resource in a wireless communication system
US20170367120A1 (en) * 2016-06-15 2017-12-21 Convida Wireless, Llc Random access procedures in next gen networks
CN108702782A (zh) * 2016-02-05 2018-10-23 高通股份有限公司 用于有执照辅助式接入的上行链路调度
US20180368175A1 (en) * 2017-06-15 2018-12-20 Hyoungsuk Jeon Logical Channel Mapping to Grant Free Transmission
WO2018231978A1 (en) * 2017-06-15 2018-12-20 Sharp Laboratories Of America, Inc. Procedure, base station and user equipment for uplink transmission without grant
WO2018232003A1 (en) * 2017-06-15 2018-12-20 Sharp Laboratories Of America, Inc. User equipments, base stations and methods
US20180368117A1 (en) * 2017-06-15 2018-12-20 Sharp Laboratories Of America, Inc. Procedure, base station and user equipment for uplink transmission without grant
WO2018232321A2 (en) * 2017-06-15 2018-12-20 Hyoungsuk Jeon Grant free configuration
US20180368188A1 (en) * 2017-06-15 2018-12-20 Sharp Laboratories Of America, Inc. User equipments, base stations and methods
WO2019051177A1 (en) * 2017-09-08 2019-03-14 Convida Wireless, Llc TRANSMISSION OF TRPS AND MULTIPLE PANELS WITH DYNAMIC BAND WIDTH FOR NR
US20190149365A1 (en) * 2018-01-12 2019-05-16 Intel Corporation Time domain resource allocation for mobile communication
WO2019097459A1 (en) * 2017-11-16 2019-05-23 Telefonaktiebolaget Lm Ericsson (Publ) Method for allocating resource grant
US20190191464A1 (en) * 2017-12-20 2019-06-20 Lenovo (Singapore) Pte. Ltd. Random-access procedure for scheduling request
CA3028778A1 (en) * 2017-12-29 2019-06-29 Comcast Cable Communications, Llc Selection of grant and csi
US20190215872A1 (en) * 2017-11-15 2019-07-11 Lg Electronics Inc. Method for performing early data transmission in random access procedure in wireless communication system and apparatus therefor
CA3091289A1 (en) * 2018-02-15 2019-08-22 FG Innovation Company Limited User equipments, base stations and methods
US20190268932A1 (en) * 2018-02-26 2019-08-29 Qualcomm Incorporated Grant processing during grant-free uplink repetitions
CN110278616A (zh) * 2018-03-13 2019-09-24 华硕电脑股份有限公司 无线通信系统中随机接入过程期间处置传送的方法和设备
CN110278612A (zh) * 2018-03-16 2019-09-24 华硕电脑股份有限公司 无线通信中处理多个无线电资源控制程序的方法和设备
CN110301158A (zh) * 2017-02-04 2019-10-01 高通股份有限公司 物理上行链路共享信道覆盖增强
CN110313158A (zh) * 2018-01-25 2019-10-08 Lg电子株式会社 在支持tdd的无线通信系统中发送和接收nprach前导码的方法和用于该方法的设备
WO2019194619A1 (en) * 2018-04-05 2019-10-10 Lg Electronics Inc. Method of transmitting or receiving signal in wireless communication system and apparatus therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160270038A1 (en) * 2015-03-11 2016-09-15 Samsung Electronics Co., Ltd Transmissions of downlink control channels for low cost ues
US10356808B2 (en) 2017-01-13 2019-07-16 Asustek Computer Inc. Method and apparatus for timing relationship between control channel and data channel in a wireless communication system
KR20200095879A (ko) * 2019-02-01 2020-08-11 한국전자통신연구원 통신 시스템에서 그랜트 프리 방식에 기초한 상향링크 통신을 위한 방법 및 장치

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106105088A (zh) * 2014-03-27 2016-11-09 高通股份有限公司 用于ul dm‑rs开销减少的方法和装置
WO2017116132A1 (ko) * 2015-12-31 2017-07-06 엘지전자 주식회사 비면허 대역을 지원하는 무선 통신 시스템에서 상향링크 신호를 송수신하는 방법 및 이를 지원하는 장치
CN108702782A (zh) * 2016-02-05 2018-10-23 高通股份有限公司 用于有执照辅助式接入的上行链路调度
US20170273056A1 (en) * 2016-03-21 2017-09-21 Samsung Electronics Co., Ltd Scheduling uplink transmissions
EP3226639A1 (en) * 2016-04-01 2017-10-04 ASUSTek Computer Inc. Method and apparatus for improving a transmission using a configured resource in a wireless communication system
US20170367120A1 (en) * 2016-06-15 2017-12-21 Convida Wireless, Llc Random access procedures in next gen networks
CN110301158A (zh) * 2017-02-04 2019-10-01 高通股份有限公司 物理上行链路共享信道覆盖增强
US20180368175A1 (en) * 2017-06-15 2018-12-20 Hyoungsuk Jeon Logical Channel Mapping to Grant Free Transmission
WO2018232003A1 (en) * 2017-06-15 2018-12-20 Sharp Laboratories Of America, Inc. User equipments, base stations and methods
US20180368117A1 (en) * 2017-06-15 2018-12-20 Sharp Laboratories Of America, Inc. Procedure, base station and user equipment for uplink transmission without grant
WO2018232321A2 (en) * 2017-06-15 2018-12-20 Hyoungsuk Jeon Grant free configuration
US20180368188A1 (en) * 2017-06-15 2018-12-20 Sharp Laboratories Of America, Inc. User equipments, base stations and methods
WO2018231978A1 (en) * 2017-06-15 2018-12-20 Sharp Laboratories Of America, Inc. Procedure, base station and user equipment for uplink transmission without grant
WO2019051177A1 (en) * 2017-09-08 2019-03-14 Convida Wireless, Llc TRANSMISSION OF TRPS AND MULTIPLE PANELS WITH DYNAMIC BAND WIDTH FOR NR
US20190215872A1 (en) * 2017-11-15 2019-07-11 Lg Electronics Inc. Method for performing early data transmission in random access procedure in wireless communication system and apparatus therefor
WO2019097459A1 (en) * 2017-11-16 2019-05-23 Telefonaktiebolaget Lm Ericsson (Publ) Method for allocating resource grant
US20190191464A1 (en) * 2017-12-20 2019-06-20 Lenovo (Singapore) Pte. Ltd. Random-access procedure for scheduling request
CA3028778A1 (en) * 2017-12-29 2019-06-29 Comcast Cable Communications, Llc Selection of grant and csi
US20190149365A1 (en) * 2018-01-12 2019-05-16 Intel Corporation Time domain resource allocation for mobile communication
CN110313158A (zh) * 2018-01-25 2019-10-08 Lg电子株式会社 在支持tdd的无线通信系统中发送和接收nprach前导码的方法和用于该方法的设备
CA3091289A1 (en) * 2018-02-15 2019-08-22 FG Innovation Company Limited User equipments, base stations and methods
US20190268932A1 (en) * 2018-02-26 2019-08-29 Qualcomm Incorporated Grant processing during grant-free uplink repetitions
CN110278616A (zh) * 2018-03-13 2019-09-24 华硕电脑股份有限公司 无线通信系统中随机接入过程期间处置传送的方法和设备
CN110278612A (zh) * 2018-03-16 2019-09-24 华硕电脑股份有限公司 无线通信中处理多个无线电资源控制程序的方法和设备
WO2019194619A1 (en) * 2018-04-05 2019-10-10 Lg Electronics Inc. Method of transmitting or receiving signal in wireless communication system and apparatus therefor

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
""38321_CR0505R2_(Rel-15)R2-1818792 Handling of overlapped configured grant and UL grant received in RAR"", 3GPP TSG_RAN\\WG2_RL2 *
HUAWEI, HISILICON: "R2-1815300 \"Further discussion on configured grant during RA procedure\"", 3GPP TSG_RAN\\WG2_RL2, no. 2 *
M. CENTENARO, L. VANGELISTA, S. SAUR, A. WEBER AND V. BRAUN: "Comparison of Collision-Free and Contention-Based Radio Access Protocols for the Internet of Things", 《IEEE TRANSACTIONS ON COMMUNICATIONS》 *
ZTE: "R1-1903399 \"Summary for Al 7.1.5 Maintenance for UL power control\"", 3GPP TSG_RAN\\WG1_RL1, no. 1 *

Also Published As

Publication number Publication date
US20210136830A1 (en) 2021-05-06
CN112788779B (zh) 2023-10-31
US11558904B2 (en) 2023-01-17
KR102584120B1 (ko) 2023-10-05
KR20210055606A (ko) 2021-05-17

Similar Documents

Publication Publication Date Title
CN112788779B (zh) 无线通信系统中用于上行链路准予覆盖的方法和设备
KR102370215B1 (ko) 무선 통신 시스템에 있어서 pdcch 모니터링 패턴을 개선하는 방법 및 장치
US10827487B2 (en) Method and apparatus for monitoring for interrupted transmission indication in a wireless communication system
EP3735074B1 (en) Method and apparatus for handling retransmission indication for configured grant in sidelink in a wireless communication system
EP3226639B1 (en) Method and apparatus for improving a transmission using a configured resource in a wireless communication system
US10219256B2 (en) Control information feedback for eCC on PCell
US11637658B2 (en) URLLC in unlicensed bands
CN113242612A (zh) 无线通信系统中用于非活动状态下的传送的方法和设备
WO2022061249A1 (en) Enhanced wireless device and wireless network processes
CN113840382B (zh) 无线通信系统中指示时间延迟的方法和设备
CN113939045B (zh) 无线通信系统中处置经配置上行链路准予集束的drx计时器的方法和设备
CN113645660B (zh) 使用上行链路空间复用和上行链路跳过的用户设备和方法
CN112929929B (zh) 无线通信中关于小区停用处理波束故障恢复的方法和设备
JP7308994B2 (ja) 無線通信システムにおけるチャネルアクセスを決定するための方法及び機器
US20220232628A1 (en) Method and apparatus for channel access in a wireless communication system
KR20230133802A (ko) 무선 통신 시스템에서 사이드링크 피드백 전송 방법 및 장치
CN117062086A (zh) 无线通信系统中用于带宽部分配对的方法和设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant