CN112778300A - Organic compound and organic electroluminescent device containing the same - Google Patents
Organic compound and organic electroluminescent device containing the same Download PDFInfo
- Publication number
- CN112778300A CN112778300A CN201911073852.2A CN201911073852A CN112778300A CN 112778300 A CN112778300 A CN 112778300A CN 201911073852 A CN201911073852 A CN 201911073852A CN 112778300 A CN112778300 A CN 112778300A
- Authority
- CN
- China
- Prior art keywords
- organic
- compound
- organic compound
- substituted
- unsubstituted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 150000002894 organic compounds Chemical class 0.000 title claims abstract description 19
- 125000003118 aryl group Chemical group 0.000 claims abstract description 16
- 125000001072 heteroaryl group Chemical group 0.000 claims abstract description 13
- 125000000923 (C1-C30) alkyl group Chemical group 0.000 claims abstract description 8
- 125000001424 substituent group Chemical group 0.000 claims abstract description 8
- 125000000753 cycloalkyl group Chemical group 0.000 claims abstract description 7
- 229910052736 halogen Inorganic materials 0.000 claims abstract description 7
- 125000003545 alkoxy group Chemical group 0.000 claims abstract description 6
- 125000000732 arylene group Chemical group 0.000 claims abstract description 6
- 125000004093 cyano group Chemical group *C#N 0.000 claims abstract description 6
- 125000005549 heteroarylene group Chemical group 0.000 claims abstract description 6
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims abstract description 6
- 150000002367 halogens Chemical class 0.000 claims abstract description 5
- 125000000304 alkynyl group Chemical group 0.000 claims abstract description 4
- 150000004982 aromatic amines Chemical class 0.000 claims abstract description 4
- 125000005309 thioalkoxy group Chemical group 0.000 claims abstract description 4
- 125000000739 C2-C30 alkenyl group Chemical group 0.000 claims abstract description 3
- 125000005843 halogen group Chemical group 0.000 claims abstract 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims abstract 2
- 239000000463 material Substances 0.000 claims description 50
- 230000002950 deficient Effects 0.000 claims description 11
- 239000012044 organic layer Substances 0.000 claims description 5
- 239000010409 thin film Substances 0.000 claims description 5
- 230000003287 optical effect Effects 0.000 claims description 3
- 125000002529 biphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C12)* 0.000 claims description 2
- 230000005669 field effect Effects 0.000 claims description 2
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 description 99
- 239000010410 layer Substances 0.000 description 89
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 69
- -1 quinolinecarbonyl-substituted imidazole structure Chemical group 0.000 description 60
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 39
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 36
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 34
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 33
- 238000006243 chemical reaction Methods 0.000 description 32
- 238000002347 injection Methods 0.000 description 30
- 239000007924 injection Substances 0.000 description 30
- 229910052757 nitrogen Inorganic materials 0.000 description 24
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 22
- 238000002360 preparation method Methods 0.000 description 21
- 238000004440 column chromatography Methods 0.000 description 19
- 230000015572 biosynthetic process Effects 0.000 description 18
- 238000001704 evaporation Methods 0.000 description 18
- 238000003786 synthesis reaction Methods 0.000 description 18
- 230000005525 hole transport Effects 0.000 description 16
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 15
- 238000002390 rotary evaporation Methods 0.000 description 15
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 14
- 230000008020 evaporation Effects 0.000 description 14
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 11
- 229910000027 potassium carbonate Inorganic materials 0.000 description 11
- 239000012071 phase Substances 0.000 description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 10
- 238000010992 reflux Methods 0.000 description 10
- 239000010408 film Substances 0.000 description 9
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 9
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 238000013508 migration Methods 0.000 description 8
- 230000005012 migration Effects 0.000 description 8
- 239000011368 organic material Substances 0.000 description 8
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- NSGDYZCDUPSTQT-UHFFFAOYSA-N N-[5-bromo-1-[(4-fluorophenyl)methyl]-4-methyl-2-oxopyridin-3-yl]cycloheptanecarboxamide Chemical compound Cc1c(Br)cn(Cc2ccc(F)cc2)c(=O)c1NC(=O)C1CCCCCC1 NSGDYZCDUPSTQT-UHFFFAOYSA-N 0.000 description 7
- 230000000903 blocking effect Effects 0.000 description 7
- 239000012074 organic phase Substances 0.000 description 7
- SMUQFGGVLNAIOZ-UHFFFAOYSA-N quinaldine Chemical class C1=CC=CC2=NC(C)=CC=C21 SMUQFGGVLNAIOZ-UHFFFAOYSA-N 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 239000012043 crude product Substances 0.000 description 6
- 239000002019 doping agent Substances 0.000 description 6
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 6
- IVDFJHOHABJVEH-UHFFFAOYSA-N pinacol Chemical group CC(C)(O)C(C)(C)O IVDFJHOHABJVEH-UHFFFAOYSA-N 0.000 description 6
- 239000002356 single layer Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 229910017971 NH4BF4 Inorganic materials 0.000 description 5
- UKFWSNCTAHXBQN-UHFFFAOYSA-N ammonium iodide Chemical compound [NH4+].[I-] UKFWSNCTAHXBQN-UHFFFAOYSA-N 0.000 description 5
- 238000006555 catalytic reaction Methods 0.000 description 5
- 230000021615 conjugation Effects 0.000 description 5
- 239000011162 core material Substances 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000005611 electricity Effects 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- LEIMLDGFXIOXMT-UHFFFAOYSA-N trimethylsilyl cyanide Chemical compound C[Si](C)(C)C#N LEIMLDGFXIOXMT-UHFFFAOYSA-N 0.000 description 5
- ABRVLXLNVJHDRQ-UHFFFAOYSA-N [2-pyridin-3-yl-6-(trifluoromethyl)pyridin-4-yl]methanamine Chemical compound FC(C1=CC(=CC(=N1)C=1C=NC=CC=1)CN)(F)F ABRVLXLNVJHDRQ-UHFFFAOYSA-N 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- WGQKYBSKWIADBV-UHFFFAOYSA-N benzylamine Chemical compound NCC1=CC=CC=C1 WGQKYBSKWIADBV-UHFFFAOYSA-N 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 239000000975 dye Substances 0.000 description 4
- 125000002883 imidazolyl group Chemical group 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 4
- 235000011056 potassium acetate Nutrition 0.000 description 4
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 4
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical class O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 4
- VNFWTIYUKDMAOP-UHFFFAOYSA-N sphos Chemical compound COC1=CC=CC(OC)=C1C1=CC=CC=C1P(C1CCCCC1)C1CCCCC1 VNFWTIYUKDMAOP-UHFFFAOYSA-N 0.000 description 4
- FYADHXFMURLYQI-UHFFFAOYSA-N 1,2,4-triazine Chemical compound C1=CN=NC=N1 FYADHXFMURLYQI-UHFFFAOYSA-N 0.000 description 3
- HBQUOLGAXBYZGR-UHFFFAOYSA-N 2,4,6-triphenyl-1,3,5-triazine Chemical compound C1=CC=CC=C1C1=NC(C=2C=CC=CC=2)=NC(C=2C=CC=CC=2)=N1 HBQUOLGAXBYZGR-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 238000010549 co-Evaporation Methods 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000007812 deficiency Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 150000002460 imidazoles Chemical class 0.000 description 3
- 239000008204 material by function Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 229920000767 polyaniline Polymers 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- XRNVSPDQTPVECU-UHFFFAOYSA-N (4-bromophenyl)methanamine Chemical compound NCC1=CC=C(Br)C=C1 XRNVSPDQTPVECU-UHFFFAOYSA-N 0.000 description 2
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical group C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 2
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 2
- MAGFQRLKWCCTQJ-UHFFFAOYSA-M 4-ethenylbenzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=C(C=C)C=C1 MAGFQRLKWCCTQJ-UHFFFAOYSA-M 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 2
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N anhydrous quinoline Natural products N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 229910052805 deuterium Inorganic materials 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000002346 layers by function Substances 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- 125000004593 naphthyridinyl group Chemical group N1=C(C=CC2=CC=CN=C12)* 0.000 description 2
- 125000004934 phenanthridinyl group Chemical group C1(=CC=CC2=NC=C3C=CC=CC3=C12)* 0.000 description 2
- 125000001791 phenazinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3N=C12)* 0.000 description 2
- 125000001484 phenothiazinyl group Chemical group C1(=CC=CC=2SC3=CC=CC=C3NC12)* 0.000 description 2
- HXITXNWTGFUOAU-UHFFFAOYSA-N phenylboronic acid Chemical compound OB(O)C1=CC=CC=C1 HXITXNWTGFUOAU-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 125000003373 pyrazinyl group Chemical group 0.000 description 2
- 125000001725 pyrenyl group Chemical group 0.000 description 2
- 125000002098 pyridazinyl group Chemical group 0.000 description 2
- 125000000714 pyrimidinyl group Chemical group 0.000 description 2
- JWVCLYRUEFBMGU-UHFFFAOYSA-N quinazoline Chemical compound N1=CN=CC2=CC=CC=C21 JWVCLYRUEFBMGU-UHFFFAOYSA-N 0.000 description 2
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 150000003852 triazoles Chemical class 0.000 description 2
- BJFPYGGTDAYECS-UHFFFAOYSA-N (3-chlorophenyl)methanamine Chemical compound NCC1=CC=CC(Cl)=C1 BJFPYGGTDAYECS-UHFFFAOYSA-N 0.000 description 1
- UZDPQDBLCJDUAX-UHFFFAOYSA-N (4-chloro-3-methylphenyl)boronic acid Chemical compound CC1=CC(B(O)O)=CC=C1Cl UZDPQDBLCJDUAX-UHFFFAOYSA-N 0.000 description 1
- MIOPJNTWMNEORI-GMSGAONNSA-N (S)-camphorsulfonic acid Chemical compound C1C[C@@]2(CS(O)(=O)=O)C(=O)C[C@@H]1C2(C)C MIOPJNTWMNEORI-GMSGAONNSA-N 0.000 description 1
- FNQJDLTXOVEEFB-UHFFFAOYSA-N 1,2,3-benzothiadiazole Chemical compound C1=CC=C2SN=NC2=C1 FNQJDLTXOVEEFB-UHFFFAOYSA-N 0.000 description 1
- 125000004502 1,2,3-oxadiazolyl group Chemical group 0.000 description 1
- 125000004511 1,2,3-thiadiazolyl group Chemical group 0.000 description 1
- 125000004529 1,2,3-triazinyl group Chemical group N1=NN=C(C=C1)* 0.000 description 1
- 125000001399 1,2,3-triazolyl group Chemical group N1N=NC(=C1)* 0.000 description 1
- 125000004504 1,2,4-oxadiazolyl group Chemical group 0.000 description 1
- 125000004514 1,2,4-thiadiazolyl group Chemical group 0.000 description 1
- 125000004530 1,2,4-triazinyl group Chemical group N1=NC(=NC=C1)* 0.000 description 1
- 125000001376 1,2,4-triazolyl group Chemical group N1N=C(N=C1)* 0.000 description 1
- 125000004506 1,2,5-oxadiazolyl group Chemical group 0.000 description 1
- 125000004517 1,2,5-thiadiazolyl group Chemical group 0.000 description 1
- 125000004520 1,3,4-thiadiazolyl group Chemical group 0.000 description 1
- 125000003363 1,3,5-triazinyl group Chemical group N1=C(N=CN=C1)* 0.000 description 1
- FNKCOUREFBNNHG-UHFFFAOYSA-N 1,3-dibromo-5-chlorobenzene Chemical compound ClC1=CC(Br)=CC(Br)=C1 FNKCOUREFBNNHG-UHFFFAOYSA-N 0.000 description 1
- 125000004973 1-butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000004972 1-butynyl group Chemical group [H]C([H])([H])C([H])([H])C#C* 0.000 description 1
- 125000001637 1-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C(*)=C([H])C([H])=C([H])C2=C1[H] 0.000 description 1
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 1
- GIMXBORKCIXLDB-UHFFFAOYSA-N 1h-imidazo[4,5-b]quinoline Chemical group C1=CC=C2NC3=NC=NC3=CC2=C1 GIMXBORKCIXLDB-UHFFFAOYSA-N 0.000 description 1
- CXPRZBRLXKPFKD-UHFFFAOYSA-N 1h-imidazol-2-yl(quinolin-2-yl)methanone Chemical compound C=1C=C2C=CC=CC2=NC=1C(=O)C1=NC=CN1 CXPRZBRLXKPFKD-UHFFFAOYSA-N 0.000 description 1
- 125000004206 2,2,2-trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 description 1
- HNZUKQQNZRMNGS-UHFFFAOYSA-N 2-(3-bromophenyl)-4,6-diphenyl-1,3,5-triazine Chemical compound BrC1=CC=CC(C=2N=C(N=C(N=2)C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 HNZUKQQNZRMNGS-UHFFFAOYSA-N 0.000 description 1
- AYHGAQGOMUQMTR-UHFFFAOYSA-N 2-(4-bromophenyl)-4,6-diphenyl-1,3,5-triazine Chemical compound C1=CC(Br)=CC=C1C1=NC(C=2C=CC=CC=2)=NC(C=2C=CC=CC=2)=N1 AYHGAQGOMUQMTR-UHFFFAOYSA-N 0.000 description 1
- 125000004493 2-methylbut-1-yl group Chemical group CC(C*)CC 0.000 description 1
- 125000001622 2-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C(*)C([H])=C([H])C2=C1[H] 0.000 description 1
- BHVHKOVPWZKVCC-UHFFFAOYSA-N 4-(4-bromophenyl)benzonitrile Chemical compound C1=CC(Br)=CC=C1C1=CC=C(C#N)C=C1 BHVHKOVPWZKVCC-UHFFFAOYSA-N 0.000 description 1
- HQAIROMRVBVWSK-UHFFFAOYSA-N 4-chloro-2-methylquinoline Chemical compound C1=CC=CC2=NC(C)=CC(Cl)=C21 HQAIROMRVBVWSK-UHFFFAOYSA-N 0.000 description 1
- SQRYQSKJZVQJAY-UHFFFAOYSA-N 6-bromo-2-methylquinoline Chemical compound C1=C(Br)C=CC2=NC(C)=CC=C21 SQRYQSKJZVQJAY-UHFFFAOYSA-N 0.000 description 1
- BGEVROQFKHXUQA-UHFFFAOYSA-N 71012-25-4 Chemical compound C12=CC=CC=C2C2=CC=CC=C2C2=C1C1=CC=CC=C1N2 BGEVROQFKHXUQA-UHFFFAOYSA-N 0.000 description 1
- VIJYEGDOKCKUOL-UHFFFAOYSA-N 9-phenylcarbazole Chemical compound C1=CC=CC=C1N1C2=CC=CC=C2C2=CC=CC=C21 VIJYEGDOKCKUOL-UHFFFAOYSA-N 0.000 description 1
- 239000005964 Acibenzolar-S-methyl Substances 0.000 description 1
- 229910001148 Al-Li alloy Inorganic materials 0.000 description 1
- KLSJWNVTNUYHDU-UHFFFAOYSA-N Amitrole Chemical group NC1=NC=NN1 KLSJWNVTNUYHDU-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- JTPHKHUWLNQSSU-UHFFFAOYSA-N C1=CC=CC=2C=CC=3C=4C=CC=CC4NC3C21.C2(=CC=CC1=CC=CC=C21)N2C1=CC=CC=C1C=1C=CC=CC21 Chemical compound C1=CC=CC=2C=CC=3C=4C=CC=CC4NC3C21.C2(=CC=CC1=CC=CC=C21)N2C1=CC=CC=C1C=1C=CC=CC21 JTPHKHUWLNQSSU-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229910021595 Copper(I) iodide Inorganic materials 0.000 description 1
- 101000930898 Cryphonectria parasitica Glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- FJDQFPXHSGXQBY-UHFFFAOYSA-L Cs2CO3 Substances [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N Li2O Inorganic materials [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical group C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 101000766357 Ruditapes philippinarum Big defensin Proteins 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- JHYLKGDXMUDNEO-UHFFFAOYSA-N [Mg].[In] Chemical compound [Mg].[In] JHYLKGDXMUDNEO-UHFFFAOYSA-N 0.000 description 1
- 125000000641 acridinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3C=C12)* 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical group C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 1
- 125000005577 anthracene group Chemical group 0.000 description 1
- 125000002178 anthracenyl group Chemical group C1(=CC=CC2=CC3=CC=CC=C3C=C12)* 0.000 description 1
- 125000005264 aryl amine group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Inorganic materials [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 1
- LPTWEDZIPSKWDG-UHFFFAOYSA-N benzenesulfonic acid;dodecane Chemical compound OS(=O)(=O)C1=CC=CC=C1.CCCCCCCCCCCC LPTWEDZIPSKWDG-UHFFFAOYSA-N 0.000 description 1
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- 125000004618 benzofuryl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000003354 benzotriazolyl group Chemical group N1N=NC2=C1C=CC=C2* 0.000 description 1
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- 125000006269 biphenyl-2-yl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C1=C(*)C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 125000006268 biphenyl-3-yl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C1=C([H])C(*)=C([H])C([H])=C1[H] 0.000 description 1
- 125000000319 biphenyl-4-yl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 229910000024 caesium carbonate Inorganic materials 0.000 description 1
- XJHCXCQVJFPJIK-UHFFFAOYSA-M caesium fluoride Inorganic materials [F-].[Cs+] XJHCXCQVJFPJIK-UHFFFAOYSA-M 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229940126214 compound 3 Drugs 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 1
- LSXDOTMGLUJQCM-UHFFFAOYSA-M copper(i) iodide Chemical compound I[Cu] LSXDOTMGLUJQCM-UHFFFAOYSA-M 0.000 description 1
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 239000012969 di-tertiary-butyl peroxide Substances 0.000 description 1
- 125000004987 dibenzofuryl group Chemical group C1(=CC=CC=2OC3=C(C21)C=CC=C3)* 0.000 description 1
- 125000004988 dibenzothienyl group Chemical group C1(=CC=CC=2SC3=C(C21)C=CC=C3)* 0.000 description 1
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 description 1
- 229940060296 dodecylbenzenesulfonic acid Drugs 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 125000006575 electron-withdrawing group Chemical group 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 125000003914 fluoranthenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC=C4C1=C23)* 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 125000003453 indazolyl group Chemical group N1N=C(C2=C1C=CC=C2)* 0.000 description 1
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 125000003406 indolizinyl group Chemical group C=1(C=CN2C=CC=CC12)* 0.000 description 1
- VVVPGLRKXQSQSZ-UHFFFAOYSA-N indolo[3,2-c]carbazole Chemical compound C1=CC=CC2=NC3=C4C5=CC=CC=C5N=C4C=CC3=C21 VVVPGLRKXQSQSZ-UHFFFAOYSA-N 0.000 description 1
- 229960005544 indolocarbazole Drugs 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 125000005990 isobenzothienyl group Chemical group 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000000904 isoindolyl group Chemical group C=1(NC=C2C=CC=CC12)* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000002183 isoquinolinyl group Chemical group C1(=NC=CC2=CC=CC=C12)* 0.000 description 1
- 125000005956 isoquinolyl group Chemical group 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Inorganic materials [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- SJCKRGFTWFGHGZ-UHFFFAOYSA-N magnesium silver Chemical compound [Mg].[Ag] SJCKRGFTWFGHGZ-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000005244 neohexyl group Chemical group [H]C([H])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000003933 pentacenyl group Chemical group C1(=CC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C12)* 0.000 description 1
- 125000006340 pentafluoro ethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- JCDAUYWOHOLVMH-UHFFFAOYSA-N phenanthren-9-ylboronic acid Chemical compound C1=CC=C2C(B(O)O)=CC3=CC=CC=C3C2=C1 JCDAUYWOHOLVMH-UHFFFAOYSA-N 0.000 description 1
- 125000001792 phenanthrenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C=CC12)* 0.000 description 1
- 125000004625 phenanthrolinyl group Chemical group N1=C(C=CC2=CC=C3C=CC=NC3=C12)* 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical class N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 1
- 125000005592 polycycloalkyl group Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- 125000002568 propynyl group Chemical group [*]C#CC([H])([H])[H] 0.000 description 1
- 125000001042 pteridinyl group Chemical group N1=C(N=CC2=NC=CN=C12)* 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 125000000561 purinyl group Chemical group N1=C(N=C2N=CNC2=C1)* 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 1
- 125000005493 quinolyl group Chemical group 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000003548 sec-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000000967 suction filtration Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000005579 tetracene group Chemical group 0.000 description 1
- 125000001935 tetracenyl group Chemical group C1(=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C12)* 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- 238000007725 thermal activation Methods 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 125000004306 triazinyl group Chemical group 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- 229910052722 tritium Inorganic materials 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
- C07D471/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D519/00—Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/16—Electron transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/654—Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1011—Condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1044—Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1059—Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
An organic compound having a structure represented by (1):wherein L is1And L2Each independently selected from a single bond, a substituted or unsubstituted C6-C30 arylene, or a substituted or unsubstituted C3-C30 heteroarylene; ar (Ar)1And Ar2Each independently selected from substituted or unsubstituted C6-C30 aryl or substituted or unsubstituted C3-C30 heteroaryl; r is halogen, C1-C30 alkyl, C3-C30 cycloalkyl,C1-C30 alkoxy, amino, C6-C30 arylamine or nitro; p and n are respectively integers of 0-6, p + n is less than or equal to 6, and when p is 0, L1Is not a single bond; when each of the above-mentioned substituted or unsubstituted groups has a substituent, the substituent is selected from one or a combination of plural kinds of halogen, C1-C30 alkyl, C3-C30 cycloalkyl, C2-C30 alkenyl, C2-C30 alkynyl, cyano, nitro, C1-C30 alkoxy, C1-C30 thioalkoxy, C6-C30 aryl and C3-C60 heteroaryl. The present application also relates to an organic electroluminescent device using the above organic compound.
Description
Technical Field
The invention relates to a novel organic compound, in particular to an organic compound and application thereof in an organic electroluminescent device.
Background
Organic Light Emission Diodes (OLED) devices are a kind of devices with sandwich-like structure, which includes positive and negative electrode films and Organic functional material layers sandwiched between the electrode films. And applying voltage to the electrodes of the OLED device, injecting positive charges from the positive electrode and injecting negative charges from the negative electrode, and transferring the positive charges and the negative charges in the organic layer under the action of an electric field to meet for composite luminescence. Because the OLED device has the advantages of high brightness, fast response, wide viewing angle, simple process, flexibility and the like, the OLED device is concerned in the field of novel display technology and novel illumination technology. At present, the technology is widely applied to display panels of products such as novel lighting lamps, smart phones and tablet computers, and further expands the application field of large-size display products such as televisions, and is a novel display technology with fast development and high technical requirements.
With the continuous advance of OLEDs in both lighting and display areas, much attention has been paid to the research on their core materials. This is because an efficient, long-lived OLED device is generally the result of an optimized configuration of the device structure and various organic materials, which provides great opportunities and challenges for chemists to design and develop functional materials with various structures. Common functionalized organic materials are: hole injection materials, hole transport materials, hole blocking materials, electron injection materials, electron transport materials, electron blocking materials, and light emitting host materials and light emitting objects (dyes), and the like.
In order to prepare an OLED light-emitting device with lower driving voltage, better light-emitting efficiency and longer service life, the performance of the OLED device is continuously improved, the structure and the manufacturing process of the OLED device need to be innovated, and photoelectric functional materials in the OLED device need to be continuously researched and innovated, so that functional materials with higher performance can be prepared. Based on this, the OLED material industry has been working on developing new organic electroluminescent materials to achieve low driving voltage, high luminous efficiency and better lifetime of the device.
In the current OLED panel manufacturers, the commonly used electron transport materials include single oxazole, thiazole, imidazole, triazole or triazine structures.
Disclosure of Invention
Problems to be solved by the invention
However, in order to further satisfy the increasing demand for the photoelectric properties of OLED devices and the demand for energy saving of mobile electronic devices, new and efficient OLED materials are continuously developed, wherein the development of new electron transport materials with high electron injection capability and high mobility is of great importance.
Means for solving the problems
In order to solve the problems in the prior art, the inventors have intensively studied and found that the introduction of a conjugated group at a specific position of a quinolinecarbonyl-substituted imidazole structure provides a molecule with good plane conjugation, which is advantageous for improving the mobility of electrons, and particularly, the introduction of an electron-deficient conjugated group is advantageous for improving the electron injection and migration performance, thereby obtaining a compound with excellent performance that can be used in organic electronic devices.
Specifically, the present invention provides an organic compound having a structure represented by (1):
wherein L is1And L2Each independently selected from a single bond, a substituted or unsubstituted C6-C30 arylene, or a substituted or unsubstituted C3-C30 heteroarylene; ar (Ar)1And Ar2Each independently selected from substituted or unsubstituted C6-C30 aryl or substituted or unsubstituted C3-C30 heteroaryl; r is halogen, C1-C30 alkyl, C3-C30 cycloalkyl, C1-C30 alkoxyAmino, C6-C30 arylamine or nitro; p and n are respectively integers of 0-6, p + n is less than or equal to 6, and when p is 0, L1Is not a single bond; when each of the above-mentioned substituted or unsubstituted groups has a substituent, the substituent is selected from one or a combination of plural kinds of halogen, C1-C30 alkyl, C3-C30 cycloalkyl, C2-C30 alkenyl, C2-C30 alkynyl, cyano, nitro, C1-C30 alkoxy, C1-C30 thioalkoxy, C6-C30 aryl and C3-C60 heteroaryl.
The specific reason why the compound of the general formula of the present invention is excellent as an electron transport layer material in an organic electroluminescent device is not clear, and the following reason is presumed: the compound of the general formula has a core with a quinoline cyano-substituted imidazole structure, has good electron deficiency, and is beneficial to electron injection, and the aryl or heteroaryl conjugated structure is connected to a specific position of the core to expand a conjugated system of the core, so that molecules have good plane conjugation, and particularly the combination of the core and electron deficiency conjugated groups such as triazine, quinazoline, cyano and the like at the specific position enables the compound of the general formula to have stronger electron deficiency, thereby being beneficial to electron injection. Therefore, under the synergistic effect of the above characteristics, when the compound of the general formula is used as an electron transport layer material of an organic electroluminescent device, the electron injection and migration efficiency in the device can be effectively improved, thereby ensuring that the device obtains excellent effects of high luminous efficiency and low driving voltage.
Furthermore, the inventors have found that, in the compounds of the above general formula, when the quinoline ring of the mother nucleus is not linked to an aryl or heteroaryl group (i.e., p ═ 0, and therefore the aryl or heteroaryl group must be directly or indirectly linked to the imidazole ring), if the aryl or heteroaryl group is directly linked to the imidazole ring (i.e., L is L)1A single bond), the luminous efficiency, driving voltage, etc. of an organic electroluminescent device using the corresponding compound as an electron transport layer material are insufficient compared to the case where an aryl or heteroaryl group is linked to an imidazole ring via an arylene or heteroarylene group and an aryl or heteroaryl group is linked to a quinoline ring. The reason for this is not clear, and may be caused by insufficient conjugation due to steric hindrance in direct connection. In addition, the above-mentioned aryl or heteroaryl group is directly attached to the imidazoleThe synthesis of the azole ring compounds is difficult, which may also be due to steric hindrance.
In the present invention, the term "electron-deficient substituent" means a group in which the electron cloud density on the benzene ring is reduced after the hydrogen on the benzene ring is substituted with the group, and usually, the Hammett value of such a group is more than 0.6. The Hammett value is a representation of the charge affinity for a particular group and is a measure of the electron withdrawing group (positive Hammett value) or electron donating group (negative Hammett value). The Hammett equation is described In more detail In Thomas H.Lowry and Kathelen Schueler Richardson, "mechanics and Theory In Organic Chemistry', New York, 1987, 143-. Such groups may be listed but are not limited to: triazinyl, pyrimidinyl, benzopyrimidinyl, benzopyridyl, naphthyridinyl, phenanthridinyl, pyrazinyl, quinolinyl, isoquinolinyl, quinazolinyl, quinoxalinyl, pyridazinyl, and alkyl-or aryl-substituted ones of the foregoing.
In the present specification, the expression of Ca to Cb means that the group has carbon atoms of a to b, and the carbon atoms do not generally include the carbon atoms of the substituents unless otherwise specified. In the present invention, the expression of chemical elements includes the concept of chemically identical isotopes, such as the expression of "hydrogen", and also includes the concept of chemically identical "deuterium" and "tritium".
In the present specification, the expression of the loop structure marked by "-" indicates that the linking site is located at any position on the loop structure where the linking site can form a bond.
In the present specification, the C6 to C30 aryl group is a group selected from the group consisting of phenyl, naphthyl, anthracenyl, benzanthracenyl, phenanthrenyl, benzophenanthrenyl, pyrenyl, grotto, perylenyl, fluoranthenyl, tetracenyl, pentacenyl, benzopyrenyl, biphenyl, idophenyl, terphenyl, quaterphenyl, fluorenyl, spirobifluorenyl, dihydrophenanthrenyl, dihydropyrenyl, tetrahydropyrenyl, cis-or trans-indenofluorenyl, triindenyl, isotridendenyl, spirotrimerization indenyl, and spiroisotridendenyl. Specifically, the biphenyl group is selected from 2-biphenyl, 3-biphenyl, and 4-biphenyl; terphenyl includes p-terphenyl-4-yl, p-terphenyl-3-yl, p-terphenyl-2-yl, m-terphenyl-4-yl, m-terphenyl-3-yl and m-terphenyl-2-yl; the naphthyl group includes a 1-naphthyl group or a 2-naphthyl group; the anthracene group is selected from 1-anthracene group, 2-anthracene group and 9-anthracene group; the fluorenyl group is selected from the group consisting of 1-fluorenyl, 2-fluorenyl, 3-fluorenyl, 4-fluorenyl, and 9-fluorenyl; the pyrenyl group is selected from 1-pyrenyl, 2-pyrenyl and 4-pyrenyl; the tetracene group is selected from the group consisting of 1-tetracene, 2-tetracene, and 9-tetracene. C6-C30 arylene is similar to C6-C30 aryl, provided that the above groups are changed to the corresponding subunits.
The hetero atom in the present invention generally refers to an atom or group of atoms selected from N, O, S, P, Si and Se, preferably N, O, S.
In the present specification, examples of the heteroaryl group having from C3 to C30 include: nitrogen-containing heteroaryl, oxygen-containing heteroaryl, sulfur-containing heteroaryl, and the like, and specific examples thereof include: furyl, thienyl, pyrrolyl, pyridyl, benzofuryl, benzothienyl, isobenzofuryl, isobenzothienyl, indolyl, isoindolyl, dibenzofuryl, dibenzothienyl, carbazolyl and derivatives thereof, quinolyl, isoquinolyl, acridinyl, phenanthridinyl, benzo-5, 6-quinolyl, benzo-6, 7-quinolyl, benzo-7, 8-quinolyl, phenothiazinyl, phenazinyl, pyrazolyl, indazolyl, imidazolyl, benzimidazolyl, naphthoimidazolyl, phenanthroimidazolyl, pyridoimidazolyl, pyrazinoimidazolyl, quinoxalimidazolyl, oxazolyl, benzoxazolyl, naphthooxazolyl, anthraoxazolyl, phenanthroizolyl, 1, 2-thiazolyl, 1, 3-thiazolyl, benzothiazolyl, pyridazinyl, benzpyridazinyl, Pyrimidinyl, benzopyrimidinyl, quinoxalinyl, 1, 5-diazananthracenyl, 2, 7-diazpyrenyl, 2, 3-diazpyrenyl, 1, 6-diazenyl, 1, 8-diazenyl, 4, 5, 9, 10-tetraazaperyl, pyrazinyl, phenazinyl, phenothiazinyl, naphthyridinyl, azacarbazolyl, benzocarbazinyl, phenanthrolinyl, 1, 2, 3-triazolyl, 1, 2, 4-triazolyl, benzotriazolyl, 1, 2, 3-oxadiazolyl, 1, 2, 4-oxadiazolyl, 1, 2, 5-oxadiazolyl, 1, 2, 3-thiadiazolyl, 1, 2, 4-thiadiazolyl, 1, 2, 5-thiadiazolyl, 1, 3, 4-thiadiazolyl, 1, 3, 5-triazinyl, 1, 2, 4-triazinyl, 1, 2, 3-triazinyl, tetrazolyl, 1, 2, 4, 5-tetrazinyl, 1, 2, 3, 4-tetrazinyl, 1, 2, 3, 5-tetrazinyl, purinyl, pteridinyl, indolizinyl, benzothiadiazole, etc., wherein the carbazolyl derivative is preferably 9-phenylcarbazole, 9-naphthylcarbazole benzocarbazole, dibenzocarbazole, or indolocarbazole. C3-C30 heteroarylenes are similar to C3-C30 heteroarylenes, provided that the above groups are changed to the corresponding subunits.
In the present specification, examples of the C1-C30 alkyl group include: methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, 2-methylbutyl, n-pentyl, sec-pentyl, cyclopentyl, neopentyl, n-hexyl, cyclohexyl, adamantyl, neohexyl, n-heptyl, cycloheptyl, n-octyl, cyclooctyl, 2-ethylhexyl, trifluoromethyl, pentafluoroethyl, 2, 2, 2-trifluoroethyl and the like. C1-C30 alkoxy, C1-C30 thioalkoxy are similar to C1-C30 alkyl, except that-O-and-S-are respectively added to the groups.
In the present specification, the cycloalkyl group having 3 to 30 includes monocycloalkyl groups and polycycloalkyl groups, and examples thereof include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like.
In the present specification, examples of the C6 to C30 arylamine group include: diphenylamino, isopropyldiphenylamino, dinaphthylamino, naphthylanilino and the like.
In the present specification, examples of the C2 to C30 alkenyl group include: vinyl, propenyl, 1-butenyl, etc.; examples of C2-C30 alkynyl groups include: ethynyl, propynyl, 1-butynyl and the like.
In the present specification, examples of the halogen include: fluorine, chlorine, bromine, iodine, etc., preferably fluorine.
The compound of the general formula (1) of the present invention has specifically the structures (1-1) to (1-7):
the compound of the general formula (1) of the present invention is preferably Ar1And Ar2Each independently selected from the following substituted or unsubstituted structures:
the expression of the loop structure is indicated by a dotted line in the above structure, which indicates that the linking site may be located at any position on the loop structure where the linking site can form a bond.
The compound of the general formula (1) of the present invention is preferably Ar1And/or Ar2The electron-deficient group can increase the electron affinity of the molecule and adjust the dipole moment of the molecule, thereby being beneficial to improving the injection and migration capability of electrons.
The compound of the general formula (1) of the present invention is preferably L1And L2Each independently selected from single bond, phenylene or biphenylene, can enable the plane to have a certain twist angle, and avoid the effect that molecules are excessively stacked to easily cause quenching, thereby influencing the efficiency of the device.
The compound of the general formula (1) is preferably 0n, so that the prepared device has good performance, and the molecular structure is simple and convenient to synthesize.
The compounds of the general formula (1) according to the present invention are preferably selected from the following structures represented by C1 to C94, but these compounds are representative only:
the compound of the present invention has a high electron affinity, and therefore has a high electron-withdrawing ability, and is suitable for use as an electron transport material, and the application field is not limited to organic electroluminescent materials, and can be applied to the technical fields of large-area sensors such as optical sensors, solar cells, lighting devices, organic thin-film transistors, organic field-effect transistors, organic thin-film solar cells, information tags, electronic artificial skin sheets, sheet-type scanners, and electronic paper.
The invention also provides an organic electroluminescent device which comprises a first electrode, a second electrode and at least one organic layer positioned between the first electrode and the second electrode, and is characterized in that the organic layer contains the organic compound.
Specifically, the invention provides an organic electroluminescent device, which comprises a substrate, and an anode layer, a plurality of light-emitting functional layers and a cathode layer which are sequentially formed on the substrate; the light-emitting functional layer comprises a hole injection layer, a hole transport layer, a light-emitting layer and an electron transport layer, wherein the hole injection layer is formed on the anode layer, the hole transport layer is formed on the hole injection layer, the cathode layer is formed on the electron transport layer, and the light-emitting layer is arranged between the hole transport layer and the electron transport layer; wherein the electron transport layer contains the compound of the general formula of the present invention represented by the above formula (1).
Effects of the invention
The general formula compound adopts the combination of quinoline cyano substituted imidazole and electron-deficient groups such as triazine, quinazoline, cyano and the like, and compared with the common structures of single oxazole, thiazole, imidazole, triazole or triazine in the prior art, the structure of the compound has relatively stronger electron-deficient property, thereby being beneficial to the injection of electrons. Meanwhile, the compound contains electron-deficient groups with large conjugated structures, so that molecules have good plane conjugation, and the mobility of electrons is improved. The structural characteristics of the two aspects can make the molecule show good electron injection and migration performance. Therefore, when the compound is used as an electron transport layer material in an organic electroluminescent device, the electron injection and migration efficiency in the device can be effectively improved, so that the excellent effects of high luminous efficiency and low driving voltage of the device are ensured.
In addition, the preparation process of the compound is simple and feasible, the raw materials are easy to obtain, and the compound is suitable for mass production and amplification.
Detailed Description
The technical solutions of the present invention are further illustrated below by specific embodiments, and it should be understood by those skilled in the art that the examples are only for the understanding of the present invention and should not be construed as specifically limiting the present invention.
The basic chemical materials used in the following synthesis examples, such as ethyl acetate, sodium sulfate, toluene, tetrahydrofuran, dichloromethane, acetic acid, potassium carbonate, were purchased from Shanghai Tantake technology Co., Ltd and Xiong chemical Co., Ltd. The mass spectrometer used for determining the following compounds was a ZAB-HS type mass spectrometer measurement (manufactured by Micromass, UK).
Synthesis of intermediate M:
2-methylquinoline derivative M-1(0.1mol, 1eq), arylbenzylamine M-2(0.3mol, 3eq), TMSCN (0.3mol, 3eq), NH4I(0.02mol,0.2eq),Ph2PO2H (0.1mol, 1eq) and NH4BF4(0.1mol, 1eq) was added to a three-necked flask equipped with a platinum electrode containing DMA (1L). Under the catalysis of electricity (J is 10 mA/cm)2) Oil bathHeating to 90 ℃ for reaction for 15-24 hours, and monitoring the reaction completion by TLC. The reaction solution was cooled to room temperature, and the solvent was removed by rotary evaporation under reduced pressure. 1.5L of water was added and extracted with ethyl acetate (1L. times.3). And (3) combining ethyl acetate phases, drying the ethyl acetate phases by using anhydrous sodium sulfate, performing suction filtration, performing rotary evaporation to remove ethyl acetate, and performing column chromatography purification on the obtained crude product to obtain an intermediate M.
Synthesis example 1: synthesis of Compound C2
(1) Preparation of Compound 1-1
2-methylquinoline (14.3g, 0.1mol, 1eq), 4-bromobenzylamine (55.5g, 0.3mol, 3eq), TMSCN (30g, 0.3mol, 3eq), NH4I(2.9g,0.02mol,0.2eq),Ph2PO2H (21.8g, 0.1mol, 1eq) and NH4BF4(10.5g, 0.1mol, 1eq) was added to a three-necked flask equipped with a platinum electrode containing DMA (1L). Under the catalysis of electricity (J is 10 mA/cm)2) The oil bath was heated to 90 ℃ for 20 hours and the reaction was monitored by TLC. The reaction solution was cooled to room temperature, and the solvent was removed by rotary evaporation under reduced pressure. 1.5L of water was added and extracted with ethyl acetate (1L. times.3). The ethyl acetate phases were combined, dried over anhydrous sodium sulfate, filtered with suction, ethyl acetate removed by rotary evaporation, and the crude product was purified by column chromatography to give intermediate 1-1(27.2g, 80% yield).
(2) Preparation of Compound C2
Compound 1-1(6.2g, 18mmol), compound 2- (4-boronic acid pinacol group) phenyl-4, 6-diphenyl-1, 3, 5-triazine (7.8g, 18mmol), potassium carbonate (7.45g, 54mmol), pd (PPh)3)4(208mg, 0.18mmol) was added to a flask containing 100mL of toluene and 25mL of ethanol and 25mL of water, the nitrogen was replaced and the reaction was heated under nitrogen at reflux for 5 hours and TLC showed completion. The precipitated solid was filtered, rinsed with water and ethanol, respectively, dried and purified by column chromatography to give compound C2(8.9g, yield 86%). Calculated molecular weight: 576.21, found C/Z: 576.2.
synthesis example 2: synthesis of Compound C22
(1) Preparation of Compound 2-1
2-methylquinoline (14.3g, 0.1mol, 1eq), 3-chlorobenzylamine (42.3g, 0.3mol, 3eq), TMSCN (30g, 0.3mol, 3eq), NH4I(2.9g,0.02mol,0.2eq),Ph2PO2H (21.8g, 0.1mol, 1eq) and NH4BF4(10.5g, 0.1mol, 1eq) was added to a three-necked flask equipped with a platinum electrode containing DMA (1L). Under the catalysis of electricity (J is 10 mA/cm)2) The oil bath was heated to 90 ℃ for 22 hours and the reaction was monitored by TLC. The reaction solution was cooled to room temperature, and the solvent was removed by rotary evaporation under reduced pressure. 1.5L of water was added and extracted with ethyl acetate (1L. times.3). The ethyl acetate phases were combined, dried over anhydrous sodium sulfate, filtered off with suction and the ethyl acetate removed by rotary evaporation, and the crude product was purified by column chromatography to give intermediate 2-1(18.2g, yield 60%).
(2) Preparation of Compound 2-2
Compound 2-1(15.5g, 50mmol), pinacol diboron ester (19g, 75mmol) and potassium acetate (14.7g, 150mmol) were charged into a flask containing 1, 4-dioxane (300mL), and after replacing nitrogen with stirring at room temperature, palladium acetate (224mg, 1mmol) and SPhos (820mg, 2mmol) were added. After the addition was complete, the reaction was refluxed with stirring for 4 hours, and the end of the reaction was monitored by TLC. The 1, 4-dioxane was removed by rotary evaporation, the mixture was separated with water and dichloromethane, the organic phase was washed with saturated brine, dried over anhydrous sodium sulfate, and purified by column chromatography to give compound 2-2(16.7g, yield 85%).
(3) Preparation of Compound C22
The compound 2-2(7.1g, 18mmol), the compound 2- (3-bromophenyl) -4, 6-diphenyl-1, 3, 5-triazine (7.0g, 18mmol), potassium carbonate (7.45g, 54mmol), pd (PPh)3)4(208mg, 0.18mmol) was added to a flask containing 100mL of toluene and 25mL of ethanol and 25mL of water, the nitrogen was replaced and the reaction was heated under nitrogen at reflux for 7 hours and TLC showed completion. The precipitated solid was filtered, rinsed with water and ethanol, respectively, dried and purified by column chromatography to give compound C22(8.5g, yield 82%). Calculation of molecular weightThe value: 576.21, found C/Z: 576.2.
synthesis example 3: synthesis of Compound C41
(1) Preparation of Compound 3-1
The compound 4- (4-bromophenyl) benzonitrile (25.7g, 0.1mol), 3-methyl-4-chloro-phenylboronic acid (107g, 0.4mol), potassium carbonate (17g, 0.1mol), pd (PPh)3)4(1155mg, 1mmol) was added to a flask containing toluene/ethanol/water 400mL/100mL/100mL, the nitrogen was replaced and the reaction was heated to reflux under nitrogen for 4 hours and TLC indicated completion. Cooling to room temperature, separating, extracting water phase with ethyl acetate, combining organic phases, drying with anhydrous sodium sulfate, and purifying by column chromatography to obtain compound 3-1(25g, 83%).
(2) Preparation of Compound 3-2
Compound 3-1(15.2g, 50mmol), pinacol diboron ester (19g, 75mmol) and potassium acetate (14.7g, 150mmol) were charged into a flask containing 1, 4-dioxane (300mL), and after replacing nitrogen with stirring at room temperature, palladium acetate (224mg, 1mmol) and SPhos (820mg, 2mmol) were added. After the addition was complete, the reaction was refluxed with stirring for 8 hours, and the end of the reaction was monitored by TLC. The 1, 4-dioxane was removed by rotary evaporation, the mixture was separated with water and dichloromethane, the organic phase was washed with saturated brine, dried over anhydrous sodium sulfate, and purified by column chromatography to give compound 3-2(17g, yield 86%).
(3) Preparation of Compound C41
Mixing compound 1-1(6.2g, 18mmol), compound 3-2(7.1g, 18mmol), potassium carbonate (7.45g, 54mmol), pd (PPh)3)4(208mg, 0.18mmol) was added to a flask containing 100mL of toluene and 25mL of ethanol and 25mL of water, the nitrogen was replaced and the reaction was heated under nitrogen at reflux for 6 hours and TLC showed completion. The precipitated solid was filtered, rinsed with water and ethanol, respectively, dried and purified by column chromatography to give compound C41(8.4g, yield 87%). Calculated molecular weight: 536.20, found C/Z: 536.2.
synthesis example 4: synthesis of Compound C51
(1) Preparation of Compound 4-1
2-methyl-6-bromoquinoline (22.1g, 0.1mol, 1eq), benzylamine (32.1g, 0.3mol, 3eq), TMSCN (30g, 0.3mol, 3eq), NH4I(2.9g,0.02mol,0.2eq),Ph2PO2H (21.8g, 0.1mol, 1eq) and NH4BF4(10.5g, 0.1mol, 1eq) was added to a three-necked flask equipped with a platinum electrode containing DMA (1L). Under the catalysis of electricity (J is 10 mA/cm)2) The oil bath was heated to 90 ℃ for 18 h and the reaction was monitored by TLC. The reaction solution was cooled to room temperature, and the solvent was removed by rotary evaporation under reduced pressure. 1.5L of water was added and extracted with ethyl acetate (1L. times.3). The ethyl acetate phases were combined, dried over anhydrous sodium sulfate, filtered under suction and the ethyl acetate removed by rotary evaporation, and the crude product was purified by column chromatography to give intermediate 4-1(31.2g, 90% yield).
(2) Preparation of Compound C51
The compound 4-1(6.2g, 18mmol), the compound 2- (4-boronic acid pinacol group) phenyl-4, 6-diphenyl-1, 3, 5-triazine (7.8g, 18mmol), potassium carbonate (7.45g, 54mmol), pd (PPh)3)4(208mg, 0.18mmol) was added to a flask containing 100mL of toluene and 25mL of ethanol and 25mL of water, the nitrogen was replaced and the reaction was heated under nitrogen at reflux for 7 hours and TLC showed completion. The precipitated solid was filtered, rinsed with water and ethanol, respectively, dried and purified by column chromatography to give compound C51(8.6g, yield 83%). Calculated molecular weight: 576.21, found C/Z: 576.2.
synthesis example 5: synthesis of Compound C71
(1) Preparation of Compound 5-1
2-methyl-4-chloro-quinoline (17.7g, 0.1mol, 1eq), benzylamine (32.1g, 0.3mol, 3eq), TMSCN (30g, 0.3mol, 3eq), NH4I(2.9g,0.02mol,0.2eq),Ph2PO2H (21.8g, 0.1mol, 1eq) and NH4BF4(10.5g, 0.1mol, 1eq) was added to a three-necked flask equipped with a platinum electrode containing DMA (1L). Under the catalysis of electricity (J is 10 mA/cm)2) The oil bath was heated to 90 ℃ for 21 hours and the reaction was monitored by TLC. The reaction solution was cooled to room temperature, and the solvent was removed by rotary evaporation under reduced pressure. 1.5L of water was added and extracted with ethyl acetate (1L. times.3). The ethyl acetate phases were combined, dried over anhydrous sodium sulfate, filtered off with suction and the ethyl acetate removed by rotary evaporation, and the crude product was purified by column chromatography to give intermediate 5-1(21.2g, yield 70%).
(2) Preparation of Compound 5-2
Compound 5-1(15.2g, 50mmol), pinacol diboron ester (19g, 75mmol) and potassium acetate (14.7g, 150mmol) were charged into a flask containing 1, 4-dioxane (300mL), and after replacing nitrogen with stirring at room temperature, palladium acetate (224mg, 1mmol) and SPhos (820mg, 2mmol) were added. After the addition was complete, the reaction was refluxed with stirring for 10 hours, and the end of the reaction was monitored by TLC. The 1, 4-dioxane was removed by rotary evaporation, the mixture was separated with water and dichloromethane, the organic phase was washed with saturated brine, dried over anhydrous sodium sulfate, and purified by column chromatography to give compound 5-2(15.8g, yield 80%).
(3) Preparation of Compound C71
The compound 5-2(7.1g, 18mmol), the compound 2- (4-bromophenyl) -4, 6-diphenyl-1, 3, 5-triazine (7g, 18mmol), potassium carbonate (7.45g, 54mmol), pd (PPh)3)4(208mg, 0.18mmol) was added to a flask containing 100mL of toluene and 25mL of ethanol and 25mL of water, the nitrogen was replaced and the reaction was heated under nitrogen at reflux for 4 hours and TLC showed completion. The precipitated solid was filtered, rinsed with water and ethanol, respectively, dried and purified by column chromatography to give compound C71(7.9g, yield 77%). Calculated molecular weight: 576.21, found C/Z: 576.2.
synthesis example 6: synthesis of Compound C46
(1) Preparation of Compound 6-1
The compound 3, 5-dibromochlorobenzene (40g, 0.15mol), 9-phenanthreneboronic acid (22.2g, 0.1mol), potassium carbonate (41.4g, 0.3mol), pd (PPh)3)4(1155mg, 1mmol) was added to a flask containing toluene/ethanol/water 400mL/100mL/100mL, the nitrogen was replaced and the reaction was heated to reflux under nitrogen for 3 hours and TLC indicated completion. Cooling to room temperature, separating, extracting water phase with ethyl acetate, combining organic phases, drying with anhydrous sodium sulfate, and purifying by column chromatography to obtain compound 6-1(18.3g, 50%).
(2) Preparation of Compound 6-2
Compound 6-1(18.3g, 0.05mol), phenylboronic acid (6.1g, 0.05mol), potassium carbonate (20.7g, 0.15mol), pd (PPh)3)4(578mg, 0.5mmol) was added to a flask containing toluene/ethanol/water 200mL/50mL/50mL, the nitrogen replaced and the reaction heated to reflux under nitrogen for 2 hours and TLC indicated completion. Cooling to room temperature, separating, extracting water phase with ethyl acetate, combining organic phases, drying with anhydrous sodium sulfate, and purifying by column chromatography to obtain compound 6-2(16.9g, 93%).
(3) Preparation of Compound 6-3
Compound 6-2(14.5g, 40mmol), pinacol diboron ester (15.2g, 60mmol) and potassium acetate (11.7g, 120mmol) were charged into a flask containing 1, 4-dioxane (200mL), and after replacing nitrogen with stirring at room temperature, palladium acetate (224mg, 1mmol) and SPhos (820mg, 2mmol) were added. After the addition was complete, the reaction was refluxed with stirring for 12 hours, and the end of the reaction was monitored by TLC. The 1, 4-dioxane was removed by rotary evaporation, the mixture was separated with water and dichloromethane, the organic phase was washed with saturated brine, dried over anhydrous sodium sulfate, and purified by column chromatography to give compound 6-3(15.5g, yield 85%).
(4) Preparation of Compound C46
Mixing compound 6-3(8.2g, 18mmol), compound 1-1(4.5g, 18mmol), potassium carbonate (7.45g, 54mmol), pd (PPh)3)4(208mg, 0.18mmol) was added to a flask containing 100mL of toluene and 25mL of ethanol and 25mL of water, the nitrogen was replaced and the reaction was heated under nitrogen at reflux for 5 hours and TLC showed completion. Filtering to obtain solid, rinsing with water and ethanol, drying, and separating by column chromatographyCompound C46 was obtained pure (9.1g, 85% yield). Calculated molecular weight: 597.22, found C/Z: 597.2.
synthesis comparative example 1: synthesis of Compound ET-Y
(1) Preparation of Compound ET-Y1
Cuprous iodide (19g, 0.1mol, 1eq), water and copper acetate (20g, 0.1mol, 1eq) were dissolved in DMSO (750ml), and then 4-bromobenzylamine (55.5g, 0.3mol, 3eq), 2-methylquinoline (14.3g, 0.1mol, 1eq), di-t-butyl peroxide DTBP (29.2g, 0.2mol, 2eq) were added to the reaction system. The oil bath was heated to 110 ℃ for 24 h and the reaction was monitored by TLC. The reaction was cooled to room temperature, 1.5L of water was added and extracted with ethyl acetate (1L x 3). The ethyl acetate phases were combined, dried over anhydrous sodium sulfate, filtered with suction, and the ethyl acetate removed by rotary evaporation, and the crude product was purified by column chromatography to give intermediate ET-Y1(27.2g, 80% yield).
(2) Preparation of Compound ET-Y
The compound ET-Y1(5.8g, 18mmol), the compound 2- (4-boronic acid pinacol group) phenyl-4, 6-diphenyl-1, 3, 5-triazine (7.8g, 18mmol), potassium carbonate (7.45g, 54mmol), pd (PPh)3)4(208mg, 0.18mmol) was added to a flask containing 100mL of toluene and 25mL of ethanol and 25mL of water, the nitrogen was replaced and the reaction was heated under nitrogen at reflux for 6 hours and TLC showed completion. The precipitated solid was filtered, rinsed with water and ethanol, respectively, dried and purified by column chromatography to obtain compound ET-Y (8.2g, yield 83%). Calculated molecular weight: 551.21, found C/Z: 551.2.
device embodiments
The present invention also provides an organic electroluminescent device comprising the compound of the above embodiment. An example of using an OLED as an embodiment of the organic electronic light emitting device is illustrated below. The OLED of the present embodiment includes first and second electrodes, and an organic material layer between the electrodes. The organic material may in turn be divided into a plurality of regions. For example, the organic material layer may include a hole transport region, a light emitting layer, and an electron transport region.
In a specific embodiment, a substrate may be used below the first electrode or above the second electrode. The substrate is a glass or polymer material having excellent mechanical strength, thermal stability, water resistance, and transparency. In addition, a Thin Film Transistor (TFT) may be provided on a substrate for a display.
The first electrode may be formed by sputtering or depositing a material used as the first electrode on the substrate. When the first electrode is used as an anode, Indium Tin Oxide (ITO), Indium Zinc Oxide (IZO), tin dioxide (SnO) may be used2) And transparent conductive oxide materials such as zinc oxide (ZnO), and any combination thereof. When the first electrode is used as a cathode, a metal or an alloy such as magnesium (Mg), silver (Ag), aluminum (Al), aluminum-lithium (Al-Li), calcium (Ca), magnesium-indium (Mg-In), magnesium-silver (Mg-Ag), or any combination thereof can be used.
The organic material layer may be formed on the electrode by vacuum thermal evaporation, spin coating, printing, or the like. The compound used as the organic material layer may be an organic small molecule, an organic large molecule, and a polymer, and a combination thereof.
The hole transport region is located between the anode and the light emitting layer. The hole transport region may be a Hole Transport Layer (HTL) of a single layer structure including a single layer containing only one compound and a single layer containing a plurality of compounds. The hole transport region may also be a multilayer structure including at least one of a Hole Injection Layer (HIL), a Hole Transport Layer (HTL), and an Electron Blocking Layer (EBL).
The material of the hole transport region may be selected from, but is not limited to, phthalocyanine derivatives such as CuPc, conductive polymers or polymers containing conductive dopants such as polyphenylenevinylene, polyaniline/dodecylbenzenesulfonic acid (Pani/DBSA), poly (3, 4-ethylenedioxythiophene)/poly (4-styrenesulfonate) (PEDOT/PSS), polyaniline/camphorsulfonic acid (Pani/CSA), polyaniline/poly (4-styrenesulfonate) (Pani/PSS), aromatic amine derivatives such as compounds shown below in HT-1 to HT-34; or any combination thereof.
The hole injection layer is located between the anode and the hole transport layer. The hole injection layer may be a single compound material or a combination of a plurality of compounds. For example, the hole injection layer may employ one or more compounds of HT-1 to HT-34 described above, or one or more compounds of HI1-HI3 described below; one or more of the compounds HT-1 to HT-34 may also be used to dope one or more of the compounds HI1-HI3 described below.
The light emitting layer includes a light emitting dye (i.e., Dopant) that can emit different wavelength spectra, and may also include a Host material (Host). The light emitting layer may be a single color light emitting layer emitting a single color of red, green, blue, or the like. The single color light emitting layers of a plurality of different colors may be arranged in a planar manner in accordance with a pixel pattern, or may be stacked to form a color light emitting layer. When the light emitting layers of different colors are stacked together, they may be spaced apart from each other or may be connected to each other. The light-emitting layer may be a single color light-emitting layer capable of emitting red, green, blue, or the like at the same time.
According to different technologies, the luminescent layer material can be different materials such as fluorescent electroluminescent material, phosphorescent electroluminescent material, thermal activation delayed fluorescent luminescent material, and the like. In an OLED device, a single light emitting technology may be used, or a combination of a plurality of different light emitting technologies may be used. These technically classified different luminescent materials may emit light of the same color or of different colors.
In one aspect of the invention, the light-emitting layer employs a fluorescent electroluminescence technique. The luminescent layer fluorescent host material may be selected from, but is not limited to, the combination of one or more of BFH-1 through BFH-16 listed below.
In one aspect of the invention, the light-emitting layer employs a fluorescent electroluminescence technique. The luminescent layer fluorescent dopant may be selected from, but is not limited to, combinations of one or more of BFD-1 through BFD-12 listed below.
In one aspect of the invention, the light-emitting layer employs phosphorescent electroluminescent technology. The host material of the light emitting layer is selected from, but not limited to, one or more of GPH-1 to GPH-80.
In one aspect of the invention, the light-emitting layer employs phosphorescent electroluminescent technology. The phosphorescent dopant of the light emitting layer can be selected from, but is not limited to, one or more of GPD-1 to GPD-47 listed below.
Wherein D is deuterium.
In one aspect of the invention, the light-emitting layer employs phosphorescent electroluminescent technology. The phosphorescent dopant of the light emitting layer thereof may be selected from, but not limited to, a combination of one or more of RPD-1 to RPD-28 listed below.
In one aspect of the invention, the light-emitting layer employs phosphorescent electroluminescent technology. The phosphorescent dopant of the light-emitting layer can be selected from, but is not limited to, one or more of YPD-1 to YPD-11 listed below.
The organic EL light-emitting device of the present invention further includes an electron transport region between the light-emitting layer and the cathode. The electron transport region may be an Electron Transport Layer (ETL) of a single-layer structure including a single-layer electron transport layer containing only one compound and a single-layer electron transport layer containing a plurality of compounds. The electron transport region may also be a multilayer structure including at least one of an Electron Injection Layer (EIL), an Electron Transport Layer (ETL), and a Hole Blocking Layer (HBL).
The electron transport region may also be formed using the compound of the present invention for a multilayer structure including at least one of an Electron Injection Layer (EIL), an Electron Transport Layer (ETL), and a Hole Blocking Layer (HBL), although the material of the electron transport region may also be combined with one or more of ET-1 to ET-57 listed below.
An electron injection layer may also be included in the device between the electron transport layer and the cathode, the electron injection layer material including, but not limited to, combinations of one or more of the following: LiQ, LiF, NaCl, CsF, Li2O、Cs2CO3BaO, Na, Li and/or Ca.
The technical effects and advantages of the present invention are demonstrated and verified by testing practical use performance by specifically applying the compound of the present invention to an organic electroluminescent device.
Example 1
The embodiment provides a preparation method of an organic electroluminescent device, which comprises the following specific steps:
the glass plate coated with the ITO transparent conductive layer was sonicated in a commercial detergent, rinsed in deionized water, washed in acetone: ultrasonically removing oil in an ethanol mixed solvent, baking in a clean environment until the water is completely removed, cleaning by using ultraviolet light and ozone, and bombarding the surface by using low-energy cationic beams;
placing the glass substrate with the anode in a vacuum chamber, and vacuumizing until the pressure is less than 10-5Pa, performing vacuum evaporation on the anode layer film by using a multi-source co-evaporation method to obtain HI-3 as a hole injection layer, wherein the evaporation rate is 0.1nm/s, and the evaporation film thickness is 10 nm;
evaporating HT-4 on the hole injection layer in vacuum to serve as a first hole transport layer of the device, wherein the evaporation rate is 0.1nm/s, and the total evaporation film thickness is 40 nm;
evaporating HT-14 on the first hole transport layer in vacuum to serve as a second hole transport layer of the device, wherein the evaporation rate is 0.1nm/s, and the total evaporation film thickness is 10 nm;
a luminescent layer of the device is vacuum evaporated on the second hole transport layer, the luminescent layer comprises a main material and a dye material, the evaporation rate of the main material BFH-4 is adjusted to be 0.1nm/s, the evaporation rate of the dye BFD-4 is set in a proportion of 5%, and the total film thickness of evaporation is 20nm by using a multi-source co-evaporation method;
vacuum evaporating ET-17 on the luminescent layer to be used as a hole blocking layer of the device, wherein the evaporation rate is 0.1nm/s, and the total film thickness is 5 nm;
evaporating an electron transport layer on the hole blocking layer by using a multi-source co-evaporation method, adjusting the evaporation rate of the compound C2 to be 0.1nm/s, setting the proportion of the evaporation rate to the evaporation rate of ET-57 to be 100%, and setting the total film thickness of evaporation to be 23 nm;
LiF with the thickness of 1nm is vacuum-evaporated on the Electron Transport Layer (ETL) to be used as an electron injection layer, and an Al layer with the thickness of 80nm is used as a cathode of the device.
Examples 2 to 6
Examples 2 to 6 were prepared as in example 1, except that the compound C2 of the electron transport layer was replaced with the compounds shown in table 1, respectively.
Comparative example 1
Comparative example 1 was prepared according to the same procedure as in example 1, except that the compound C2 of the electron transport layer was replaced with the existing compound ET-X, having the formula:
comparative example 2
Comparative example 2 was prepared as in example 1 except that compound C2 of the electron transport layer was replaced with compound ET-Y obtained in the synthesis of comparative example 1, having the formula:
the organic electroluminescent device prepared by the above process was subjected to the following performance measurement:
at the same brightness, a Photo Research PR 750 type optical radiometer, S, was usedThe driving voltage and current efficiency of the organic electroluminescent devices prepared in examples 1 to 6 and comparative examples 1 to 2 were measured using a T-86LA type luminance meter (photoelectric instrument factory, university of beijing) and a Keithley4200 test system. Specifically, the voltage was raised at a rate of 0.1V per second, and it was determined that the luminance of the organic electroluminescent device reached 1000cd/m2The current density is measured at the same time as the driving voltage; the ratio of the brightness to the current density is the current efficiency; the results of the performance tests are shown in table 1.
Table 1:
as can be seen from table 1, under the condition that other materials in the organic electroluminescent device structure are the same, the organic electroluminescent devices provided in embodiments 1 to 6 of the present invention have high current efficiency and low driving voltage, wherein the current efficiency is 8.02 to 8.65cd/a, and the driving voltage is 4.07 to 4.25V.
The compound ET-X of comparative example 1, which contains a quinolinecarbonyl-substituted imidazole group, has a driving voltage of 5.96V and a current efficiency of 4.93cd/a, and has a large difference in performance compared to the devices of examples. The reason for this speculation may be: compared with the electron transport material in the comparative example 1, on the basis of the structure that the quinoline cyano substituted imidazole parent nucleus is singly substituted by the phenyl, the quinoline ring of the parent nucleus or the phenyl is additionally connected with the aryl or heteroaryl substituent, the whole electron affinity and the plane conjugation degree of the electron transport material in the examples 1-6 are much larger than those in the comparative example 1, and therefore, the electron injection and transport capability of the electron transport material is far higher than that of the compound ET-X in the comparative example 1. In addition, the comparative example 1 compound ET-X has too small a molecular weight and relatively low Tg, which is detrimental to the thermal stability of the material.
The compound ET-Y of comparative example 2 contained a quinolinoimidazole group, the driving voltage of the device was 4.63V, the current efficiency was 7.11cd/a, and both the current efficiency and the driving voltage were inferior to those of the device of example. The reason for this speculation may be: compared with the electron transport material of comparative example 2, the electron affinity of the quinolinecarbonyl-substituted imidazole parent nucleus is stronger than that of the quinolinecarbonyl-imidazole without cyano-substitution, and the electron transport material has more appropriate molecular dipole moment with new molecules consisting of other electron-deficient groups, so that the electron transport material has stronger electron injection and migration capabilities.
Further, the inventors have found that although the organic electroluminescent device of example 6 has a lower driving voltage and a higher current efficiency than those of comparative examples 1 to 2, the above parameters are slightly inferior to those of examples 1 to 5. The reason is presumed to be: in the compounds of examples 1-5 of the present invention, quinolinecarbonyl substituted imidazole is used as a large conjugated electron-deficient group, and is further connected to an electron-deficient group such as triazine, pyrimidine or cyano substituted phenyl through an arylene group, and a plurality of electron-deficient groups can increase the electron affinity of the whole molecule, thereby facilitating the injection of electrons, and can adjust the dipole moment of the whole molecule, so that the compound has suitable electron injection and migration capabilities. The new electron transport material constructed in this way has high electron injection and migration performance, so that the device has high current efficiency and low driving voltage.
The experimental data show that the novel organic material is an organic luminescent functional material with good performance as an electron transport material of an organic electroluminescent device, and has wide application prospect.
It should be understood that the above examples are only for clarity of illustration and are not intended to limit the embodiments. Other variations and modifications will be apparent to persons skilled in the art in light of the above description. And are neither required nor exhaustive of all embodiments. And obvious variations or modifications therefrom are within the scope of the invention.
Claims (10)
1. An organic compound having a structure represented by (1):
wherein,L1and L2Each independently selected from a single bond, a substituted or unsubstituted C6-C30 arylene, or a substituted or unsubstituted C3-C30 heteroarylene;
Ar1and Ar2Each independently selected from substituted or unsubstituted C6-C30 aryl or substituted or unsubstituted C3-C30 heteroaryl;
r is halogen, C1-C30 alkyl, C3-C30 cycloalkyl, C1-C30 alkoxy, amino, C6-C30 arylamine or nitro;
p and n are respectively integers of 0-6, p + n is less than or equal to 6, and when p is 0, L1Is not a single bond;
when each of the above-mentioned substituted or unsubstituted groups has a substituent, the substituent is selected from one or a combination of plural kinds of halogen, C1-C30 alkyl, C3-C30 cycloalkyl, C2-C30 alkenyl, C2-C30 alkynyl, cyano, nitro, C1-C30 alkoxy, C1-C30 thioalkoxy, C6-C30 aryl and C3-C60 heteroaryl.
4. the organic compound of claim 1 or 2, wherein Ar is Ar1And/or Ar2Having electron deficient groups.
5. The organic compound of claim 1 or 2, wherein L is1And L2Each independently selected from a single bond, phenylene, or biphenylene.
6. An organic compound according to claim 1 or 2, characterized in that n is 0.
8. use of the organic compound according to any one of claims 1 to 7 in an organic electronic device, preferably in an organic electroluminescent device, an optical sensor, a solar cell, a lighting element, an organic thin film transistor, an organic field effect transistor, an organic thin film solar cell, an information label, an electronic artificial skin sheet, a sheet-type scanner or electronic paper.
9. Use of an organic compound according to any one of claims 1 to 7 as an electron transport material in an organic electroluminescent device.
10. An organic electroluminescent device comprising a first electrode, a second electrode and at least one organic layer between the first electrode and the second electrode, wherein the organic layer contains the organic compound according to any one of claims 1 to 7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911073852.2A CN112778300B (en) | 2019-11-05 | 2019-11-05 | Organic compound and organic electroluminescent device containing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911073852.2A CN112778300B (en) | 2019-11-05 | 2019-11-05 | Organic compound and organic electroluminescent device containing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112778300A true CN112778300A (en) | 2021-05-11 |
CN112778300B CN112778300B (en) | 2024-02-02 |
Family
ID=75748809
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911073852.2A Active CN112778300B (en) | 2019-11-05 | 2019-11-05 | Organic compound and organic electroluminescent device containing the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112778300B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110104765A (en) * | 2010-03-17 | 2011-09-23 | 다우어드밴스드디스플레이머티리얼 유한회사 | Novel organic electroluminescent compounds and organic electroluminescent device using the same |
KR20150137266A (en) * | 2014-05-29 | 2015-12-09 | (주)피엔에이치테크 | An electroluminescent compound and an electroluminescent device comprising the same |
TW201918542A (en) * | 2017-09-27 | 2019-05-16 | 南韓商東進世美肯股份有限公司 | Novel compound and organic electroluminescent device including the same capable of ensuring high efficiency, prolonged service life, low driving voltage and driving stability of the organic electroluminescent device |
-
2019
- 2019-11-05 CN CN201911073852.2A patent/CN112778300B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110104765A (en) * | 2010-03-17 | 2011-09-23 | 다우어드밴스드디스플레이머티리얼 유한회사 | Novel organic electroluminescent compounds and organic electroluminescent device using the same |
KR20150137266A (en) * | 2014-05-29 | 2015-12-09 | (주)피엔에이치테크 | An electroluminescent compound and an electroluminescent device comprising the same |
TW201918542A (en) * | 2017-09-27 | 2019-05-16 | 南韓商東進世美肯股份有限公司 | Novel compound and organic electroluminescent device including the same capable of ensuring high efficiency, prolonged service life, low driving voltage and driving stability of the organic electroluminescent device |
Also Published As
Publication number | Publication date |
---|---|
CN112778300B (en) | 2024-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021057550A1 (en) | Organic compound and electronic device | |
CN110872316A (en) | Novel compound, application thereof and organic electroluminescent device using compound | |
CN113788852A (en) | Luminescent material, application thereof and organic electroluminescent device comprising luminescent material | |
CN115073464A (en) | Organic compound, application thereof and organic electroluminescent device comprising organic compound | |
CN112778253B (en) | Organic compound and organic electroluminescent device containing the same | |
CN114920758B (en) | Luminescent material, application thereof and organic electroluminescent device comprising luminescent material | |
CN113402537A (en) | Organic compound and application thereof | |
CN115197252A (en) | Organic compound and application thereof | |
CN112174968B (en) | Organic compound for light-emitting device, application of organic compound and organic electroluminescent device | |
CN112409276A (en) | Compound and application thereof | |
CN113921740B (en) | Organic electroluminescent device and display device | |
CN112442037B (en) | Luminescent material and application thereof | |
CN112745301B (en) | Organic compound and organic electroluminescent device containing the same | |
CN112614954B (en) | Organic light-emitting device and display device | |
CN111763208B (en) | Luminescent material and application thereof | |
CN115385933A (en) | Compound, application thereof and organic electroluminescent device comprising compound | |
CN112778300B (en) | Organic compound and organic electroluminescent device containing the same | |
CN113549087A (en) | Compound and application thereof | |
CN114685411A (en) | Organic compound, application thereof and organic electroluminescent device | |
CN114105785A (en) | Organic compound for organic electroluminescent device, application of organic compound and organic electroluminescent device | |
CN113444090A (en) | Compound and application thereof | |
CN111410657A (en) | Luminescent material and application thereof | |
CN112661760B (en) | Compound for organic electronic material and organic electroluminescent device containing the same | |
CN112979650B (en) | Organic compound and organic electroluminescent device containing the same | |
CN113461673A (en) | Compound and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |