CN112768951B - 面向收端小型化的可见光通信双凸透镜天线及其设计方法 - Google Patents

面向收端小型化的可见光通信双凸透镜天线及其设计方法 Download PDF

Info

Publication number
CN112768951B
CN112768951B CN202110076767.2A CN202110076767A CN112768951B CN 112768951 B CN112768951 B CN 112768951B CN 202110076767 A CN202110076767 A CN 202110076767A CN 112768951 B CN112768951 B CN 112768951B
Authority
CN
China
Prior art keywords
lens
stage
imaging
visible light
real image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110076767.2A
Other languages
English (en)
Other versions
CN112768951A (zh
Inventor
于子晨
魏佳琦
龚晨
黄诺
徐正元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology of China USTC
Original Assignee
University of Science and Technology of China USTC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology of China USTC filed Critical University of Science and Technology of China USTC
Priority to CN202110076767.2A priority Critical patent/CN112768951B/zh
Publication of CN112768951A publication Critical patent/CN112768951A/zh
Application granted granted Critical
Publication of CN112768951B publication Critical patent/CN112768951B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/08Refracting or diffracting devices, e.g. lens, prism formed of solid dielectric material

Abstract

本发明公开了一种面向收端小型化的可见光通信双凸透镜天线及其设计方法,在远距离通信场景下,通过发端双凸级联透镜天线的组合设计,在收端得到尺寸较小的清晰分离光斑,在接收端对各个光斑汇聚后进行独立接收,可以实现多色乃至同色可见光的并行传输通信,可有效达到高速可见光并行通信系统的小型化目的。其一,利用双凸透镜结构能够在收端平面呈现小尺寸分离光斑,达到系统小型化的目的。其二,通过对分离光斑的独立接收,避免了滤光片及二向色镜的使用,有效降低了系统的实现复杂度及成本。其三,第一级透镜的物距及两级透镜之间的距离调参,可以实现成像尺寸及成像位置的调整,系统实现具有较高的鲁棒性,能够很好地适应不同的通信场合。

Description

面向收端小型化的可见光通信双凸透镜天线及其设计方法
技术领域
本发明涉及可见光通信技术领域及光学天线领域,尤其涉及一种面向收端小型化的可见光通信双凸透镜天线及其设计方法。
背景技术
可见光通信(visible light communication,VLC)利用可见光频谱传输数据信息,在满足通信需求的同时兼顾照明需求,具有建设成本低,免于电磁波干扰,无需授权频谱及保密性能好等诸多优势,已有研究已经实现高达Gbps速率的无线传输,同时基于LED的高效照明产业得到了快速长足发展的事实,可见光通信有望得到广泛应用,因此受到国内外广泛关注。
可见光通信系统的某一实际部署框图如图1所示,通信链路距离为5米,通过多路并行传输实现高速可见光通信。所用LED通常以照明为目的,光线具有很高的发散性,尤其在远距离传输场景下,接收面处光斑面积的增大会严重限制收端系统的小型化,同时分散的光功率也会对光电探测器的接收造成困难。因此需要进行光学系统设计,要满足接收端信号强度要求,同时兼顾系统复杂性、尺寸及成本等诸多因素。
目前已知的基于多色并行通信的高速可见光通信光学系统设计方案有两种,一种是基于二向色镜的光学系统设计,即使用二向色镜将不同色光混合和分离,达到并行通信的目的,另一种是基于滤光片的光学系统,也即收发端各用一个凸透镜用于汇聚光束,结合滤光片达到并行通信的目的。其中,二向色镜的方案在【1】(15.73Gb/s Visible LightCommunication with off-the-shelf LEDs)中得到了应用,基于收发端单一透镜的光学系统在【2】(8-Gb/s RGBY LED-Based WDM VLC System Employing High-Order CAPModulation and Hybrid Post Equalizer)中得到了应用。但是基于二向色镜的光学系统需要使用多个二向色镜和凸透镜,系统结构复杂,尺寸难以小型化,而基于滤光片的光学系统在远距离成像时,往往会遇到成像尺寸过大而制约了接收端小型化的问题。
为了实现高速可见光通信,物理光学系统的设计起着重要作用。本发明提出了一种基于发端双透镜的光学系统设计,通过光学成像的方式,在收端平面处能够得到完美分离的各色小尺寸光斑,可以使用透镜对各个光斑分别汇聚后接收。
发明内容
本发明提出了一种基于发端双透镜的光学成像系统,通过选择合适的透镜焦距参数和空间位置,在收端得到清晰成像的小尺寸分离光斑,在保证高速并行通信和低系统复杂度的同时,实现了收端小型化的设计目标。
本发明采用的技术方案为:一种面向收端小型化的可见光通信双凸透镜天线的设计方法,该设计方法包括:
步骤一、在发端使用双凸透镜成像结构,利用第一级透镜在第一级透镜、第二级透镜之间成一缩小的实像,同时起到汇聚光强的作用,所成缩小的实像可视为新的等效光源用于第二级成像,第二级透镜在远处呈现相对等效光源放大的实像,总的成像放大比例由第一、二级透镜的成像特点共同决定,由于第一级光学系统有效减小了成像尺寸,在长距离通信场景下,仍然可以保证在接收端得到清晰成像的小尺寸分离光斑,透镜成像公式:
Figure BDA0002907823040000021
其中,fi表示第i级透镜的焦距,xi1表示第i级透镜的物距,xi2表示第i级透镜的像距,第一级透镜通过调整合适的物距参数,在距离第二级透镜f2+e1处成一个缩小倒立的实像,所成实像可以视作一个新的等效光源经过第二级透镜最终在接收平面处呈现清晰的分离光斑,用于可见光通信的并行接收,第一级透镜成像尺寸比例公式如下所示:
Figure BDA0002907823040000022
第二级透镜成像尺寸比例公式如下所示:
Figure BDA0002907823040000023
其中,第二级透镜主要功能是在远距离处呈现清晰的分离光斑,也即有第二级透镜的像距x22远大于物距x21,第二级透镜会在远距离接收面处得到清晰的分离光斑实像,为了达到收端小型化的目的,利用第一级透镜首先在两级透镜之间呈现一个缩小的实像,然后通过第二级透镜进行二次成像,最终得到尺寸较小的清晰分离光斑,用于可见光并行高速通信,也即对于第一级透镜,设定物距参数x11大于2倍的焦距f1,经过第一级透镜后得到缩小的实像,然后经过第二级透镜实现远距离成像的目的,总的系统成像比例参数为:
Figure BDA0002907823040000031
步骤二、通过选择焦距参数分别为f1和f2的两个凸透镜,其中f1<f2,第一级透镜和发端LED之间的距离大于2倍焦距f1,用于在第一级透镜、第二级透镜之间呈现一个缩小的实像,第二级透镜与所成实像的距离略大于第二级透镜的焦距f2,从而在收端平面能够得到尺寸较小的分离光斑,通过空分复用结构能够实现并行高速可见光通信。
一种面向收端小型化的可见光通信双凸透镜天线,利用所述的面向收端小型化的可见光通信双凸透镜天线的设计方法设计得到。
本发明的优点和积极效果为:
提出了面向小型化的远距离可见光成像阵列传输天线设计,在远距离通信场景下,通过发端级联双透镜天线的组合设计,在收端得到尺寸较小的清晰分离光斑,在接收端对各个光斑分别汇聚后进行独立接收,可以实现多色乃至同色可见光的并行传输通信,可有效实现高速可见光并行通信系统的小型化目的。
基于上述讨论可知,本发明的远距离小型化可见光通信系统光学天线相对于现有技术至少具有如下有益效果之一或其中的一部分:其一,利用双透镜结构能够在收端平面呈现小尺寸分离光斑,达到系统小型化的目的。其二,通过对分离光斑的独立接收,避免了滤光片及二向色镜的使用,有效降低了系统的实现复杂度及成本。其三,第一级透镜的物距及两级透镜之间的距离调参,可以实现成像尺寸及成像位置的调整,系统实现具有较高的鲁棒性,能够很好地适应不同的通信场合。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对所使用的附图作简单地介绍,显而易见,描述中的附图仅仅是对本发明的原理架构的描述,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1为应用本发明的某一光通信场景的系统框图;
图2为本发明所使用的发端双凸透镜级联光学系统的原理图;
具体实施方式
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
本发明在发端使用如图2所示的双凸透镜成像结构,首先利用第一级透镜在第一级透镜、第二级透镜之间成一缩小的实像,同时起到汇聚光强的作用,所成缩小的实像可视为新的光源用于第二级成像,第二级透镜在远处呈现相对新的光源放大的实像,总的成像放大比例由两级光学成像系统共同决定,由于第一级光学系统有效减小了成像尺寸,在长距离通信场景下,仍然可以保证在接收端得到清晰成像的小尺寸分离光斑。
透镜成像公式:
Figure BDA0002907823040000041
其中,fi表示第i级透镜的焦距,xi1表示第i级透镜的物距,xi2表示第i级透镜的像距,第一级透镜通过调整合适的物距参数,在距离第二级透镜f2+e1处成一个缩小倒立的实像,所成实像可以视作新的等效光源经过第二级透镜最终在接收平面处呈现清晰的分离光斑,用于可见光通信的并行接收。第一级透镜成像尺寸比例公式如下所示:
Figure BDA0002907823040000042
第二级透镜成像尺寸比例公式如下所示:
Figure BDA0002907823040000043
其中,第二级透镜主要功能是在远距离处呈现清晰的分离光斑,也即有第二级透镜的像距x22远大于物距x21,第二级透镜会在远距离接收面处得到清晰的分离光斑实像,为了达到收端小型化的目的,利用第一级透镜首先在两级透镜之间呈现一个缩小的实像,然后通过第二级透镜进行二次成像,最终得到尺寸缩小的清晰分离光斑,用于可见光并行高速通信,也即对于第一级透镜,设定物距参数x11大于2倍的焦距f1,经过第一级透镜后得到缩小的实像,然后经过第二级透镜实现远距离成像的目的,总的系统成像比例参数为:
Figure BDA0002907823040000051
通过选择具有合适焦距参数的透镜,并设计合理的空间布局,利用发端级联双透镜结构,在收端平面能够得到尺寸较小的分离光斑,通过空分复用结构能够实现并行高速可见光通信。
实施例
高速可见光通信的候选方案之一是基于多色复用的并行可见光通信,然而目前已有的通信系统面临系统复杂度高,尺寸大等诸多挑战,在本实施例中,提出基于发端双透镜的光学成像系统,通过选择合理参数的透镜组合并调整位置参数,能够在收端成缩小的清晰分离光斑,有效解决了系统复杂度和小型化难题,实施例中的光学系统框图如图2所示,发端两级光学透镜型号如表1所示。
表1
透镜 直径/mm 焦距/mm 形状 型号
L1 45 32.1 球面凸型 ACL4532U-A
L2 75 100 平凸型 LA1238-A
在实施实例中,对第一级透镜和光源之间的距离x11进行适当的调整,可以改变第一级成像的尺寸变化比例,同时在成像平面位置确定的前提下,确定了第一级透镜的物距x11后,整个光学系统的放置架构也得到了确定。在接收端使用阵列透镜对成像分离小光斑分别汇聚后进行独立接收,在远距离可见光通信场景下实现了接收端的小型化,同时有效降低了通信系统的实现复杂度。
基于图2的光学系统框图和表1中的透镜列表,设定第一级透镜的物距x11为88mm,在设定成像位置为5m的条件下,一二级透镜之间的间距随之得到确定为153mm,经过第一级球面凸型透镜根据成像公式推出成像放大比为0.574,经过第二级透镜成像的放大倍数经公式推导为46.60倍,总的发端级联光学系统的成像放大倍数为两者之积26.7倍,同时我们推算得出发端只使用平凸型透镜LA1238-A时的成像放大比为47.98倍,可以看出提出的发端双凸透镜级联系统将成像尺寸有效缩减为单透镜成像系统的0.56倍,接收光斑面积则缩小为单透镜成像系统的0.31倍,为收端小型化提供了可靠保证,同时收端使用阵列天线对多路信号进行并行接收,从而实现并行高速可见光通信。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (2)

1.一种面向收端小型化的可见光通信双凸透镜天线的设计方法,其特征在于,该设计方法包括:在发端使用双凸透镜成像结构,利用第一级透镜在第一级透镜、第二级透镜之间成一缩小的实像,同时起到汇聚光强的作用,所成缩小的实像视为新的等效光源用于第二级成像,第二级透镜在远距离接收平面处呈现相对等效光源放大的实像,总的成像放大比例由第一、二级透镜的成像特点共同决定,由于第一级光学系统有效减小了成像尺寸,在长距离通信场景下,在接收端得到清晰成像的小尺寸分离光斑,
透镜成像公式:
Figure FDA0003217359250000011
其中,fi表示第i级透镜的焦距,xi1表示第i级透镜的物距,xi2表示第i级透镜的像距,第一级透镜通过调整合适的物距参数,在距离第二级透镜f2+e1处成一个缩小倒立的实像,所成实像视作新的等效光源经过第二级透镜最终在接收平面处呈现清晰的分离光斑,用于可见光通信的并行接收,第一级透镜成像尺寸比例公式如下所示:
Figure FDA0003217359250000012
第二级透镜成像尺寸比例公式如下所示:
Figure FDA0003217359250000013
其中,第二级透镜在远距离接收平面处呈现清晰的分离光斑,也即有第二级透镜的像距x22远大于物距x21,第二级透镜会在远距离接收平面处得到清晰的分离光斑实像,为了达到收端小型化的目的,利用第一级透镜首先在两级透镜之间呈现一个缩小的实像,然后通过第二级透镜进行二次成像,最终在收端平面得到清晰分离光斑用于可见光并行高速通信,也即对于第一级透镜,设定物距参数x11大于2倍的焦距f1,经过第一级透镜后得到缩小的实像,然后经过第二级透镜实现远距离成像的目的,总的系统成像比例参数为:
Figure FDA0003217359250000014
其中,通过选择焦距参数分别为f1和f2的两个凸透镜,其中f1<f2,第一级透镜和发端LED之间的距离大于2倍焦距f1,用于在第一级透镜、第二级透镜之间呈现一个缩小的实像,第二级透镜与所成实像的距离大于第二级透镜的焦距f2,从而在收端平面能够得到尺寸较小的分离光斑,通过空分复用结构能够实现并行高速可见光通信。
2.一种面向收端小型化的可见光通信双凸透镜天线,其特征在于:利用权利要求1所述的面向收端小型化的可见光通信双凸透镜天线的设计方法设计得到。
CN202110076767.2A 2021-01-20 2021-01-20 面向收端小型化的可见光通信双凸透镜天线及其设计方法 Active CN112768951B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110076767.2A CN112768951B (zh) 2021-01-20 2021-01-20 面向收端小型化的可见光通信双凸透镜天线及其设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110076767.2A CN112768951B (zh) 2021-01-20 2021-01-20 面向收端小型化的可见光通信双凸透镜天线及其设计方法

Publications (2)

Publication Number Publication Date
CN112768951A CN112768951A (zh) 2021-05-07
CN112768951B true CN112768951B (zh) 2021-10-22

Family

ID=75703571

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110076767.2A Active CN112768951B (zh) 2021-01-20 2021-01-20 面向收端小型化的可见光通信双凸透镜天线及其设计方法

Country Status (1)

Country Link
CN (1) CN112768951B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103888184A (zh) * 2014-04-03 2014-06-25 中国科学院半导体研究所 可见光通信系统误码率与光功率关系测量装置及测量方法
CN104316982A (zh) * 2014-09-17 2015-01-28 北京理工大学 一种基于菲涅尔双透镜的可见光通信接收天线设计方法
CN105609920A (zh) * 2016-01-27 2016-05-25 中国人民解放军信息工程大学 一种水下可见光通信接收天线装置
CN105870640A (zh) * 2016-04-09 2016-08-17 北京工业大学 一种透镜接收天线
CN106961309A (zh) * 2017-05-31 2017-07-18 中国科学技术大学 一种可见光通信收发器与可见光通信系统
CN108008522A (zh) * 2018-01-09 2018-05-08 河南中云创光电科技股份有限公司 广角led照明融合mimo可见光通信接收光学天线
CN207408584U (zh) * 2017-04-18 2018-05-25 导装光电科技(深圳)有限公司 基于led光源的测距仪
EP3691026A1 (de) * 2019-02-04 2020-08-05 VEGA Grieshaber KG Antennenanordnung
CN111698029A (zh) * 2019-03-14 2020-09-22 中国科学院半导体研究所 一种可见光通信系统的检测方法、设置方法及检测装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7541994B2 (en) * 2006-05-17 2009-06-02 Raytheon Company Refractive compact range
CN102937733B (zh) * 2012-10-24 2015-04-22 江苏大学 可见光无线通信大视场可调复眼结构光学接收器
CN108400816A (zh) * 2018-02-27 2018-08-14 中国科学技术大学 基于无线光通信的高速光源识别、跟踪与对准系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103888184A (zh) * 2014-04-03 2014-06-25 中国科学院半导体研究所 可见光通信系统误码率与光功率关系测量装置及测量方法
CN104316982A (zh) * 2014-09-17 2015-01-28 北京理工大学 一种基于菲涅尔双透镜的可见光通信接收天线设计方法
CN105609920A (zh) * 2016-01-27 2016-05-25 中国人民解放军信息工程大学 一种水下可见光通信接收天线装置
CN105870640A (zh) * 2016-04-09 2016-08-17 北京工业大学 一种透镜接收天线
CN207408584U (zh) * 2017-04-18 2018-05-25 导装光电科技(深圳)有限公司 基于led光源的测距仪
CN106961309A (zh) * 2017-05-31 2017-07-18 中国科学技术大学 一种可见光通信收发器与可见光通信系统
CN108008522A (zh) * 2018-01-09 2018-05-08 河南中云创光电科技股份有限公司 广角led照明融合mimo可见光通信接收光学天线
EP3691026A1 (de) * 2019-02-04 2020-08-05 VEGA Grieshaber KG Antennenanordnung
CN111698029A (zh) * 2019-03-14 2020-09-22 中国科学院半导体研究所 一种可见光通信系统的检测方法、设置方法及检测装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Continuous zoom antenna for mobile visible light communication;Xuebin Zhang;《Applied Optics》;20151110;第54卷(第32期);全文 *
可见光通信系统中接收透镜的研究;李文阳;《中国优秀硕士学位论文全文数据库(基础科学辑)》;20170215(第2期);全文 *

Also Published As

Publication number Publication date
CN112768951A (zh) 2021-05-07

Similar Documents

Publication Publication Date Title
Memedi et al. Impact of vehicle type and headlight characteristics on vehicular VLC performance
CN108540180B (zh) 一种多色mimo-vlc比特功率分配星座设计方法
CN106059665B (zh) 一种使用多色led的可见光通信网室内定位方法
Langer et al. Rate-adaptive visible light communication at 500Mb/s arrives at plug and play
Yahia et al. Enhancement of vehicular visible light communication using spherical detector and custom lens combinations
Yahia et al. Multi-directional vehicle-to-vehicle visible light communication with angular diversity technology
Popadić et al. LiFi networks: Concept, standardization activities and perspectives
CN112768951B (zh) 面向收端小型化的可见光通信双凸透镜天线及其设计方法
CN112511227B (zh) 基于led阵列的mimo可见光通信系统
Cui et al. Research on non-uniform dynamic vehicle-mounted VLC with receiver spatial and angular diversity
Haas et al. An introduction to optical wireless mobile communication
Zhang Localisation, communication and networking with VLC: Challenges and opportunities
Soares et al. Optical camera communications with convolutional neural network for vehicle-tovehicle links
CN109067472B (zh) 一种基于重叠覆盖滤光片组的多色光信号接收方法
Takano et al. 300-meter long-range optical camera communication on RGB-LED-equipped drone and object-detecting camera
Memedi et al. A location-aware cross-layer MAC protocol for vehicular visible light communications
CN112910555B (zh) 面向收发端小型化的可见光通信凹凸透镜天线及其设计方法
CN104518831A (zh) 一种支持两种无源光网络共存的光组件及方法
CN107888287B (zh) 一种在可见光通信网络中基于用户体验质量最优的资源分配方法
CN112532317A (zh) 基于多色可见光通信系统的光学天线
CN105871460B (zh) 一种基于博弈论的对等可见光通信终端模式协同选择方法
CN103346843A (zh) 基于超宽视场镜头和阵列探测结构的光信号接收系统
CN105629439A (zh) 应用于无线光通信接收的镜头组件
CN111355531A (zh) 一种基于深度神经网络的单发多收车灯联网系统
CN108809430B (zh) 空间多节点激光自组网通信系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant