CN112767284B - 基于光子计数熵的激光三维成像云雾后向散射滤除方法及系统 - Google Patents

基于光子计数熵的激光三维成像云雾后向散射滤除方法及系统 Download PDF

Info

Publication number
CN112767284B
CN112767284B CN202110171303.XA CN202110171303A CN112767284B CN 112767284 B CN112767284 B CN 112767284B CN 202110171303 A CN202110171303 A CN 202110171303A CN 112767284 B CN112767284 B CN 112767284B
Authority
CN
China
Prior art keywords
target
photon counting
entropy
laser
echo signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110171303.XA
Other languages
English (en)
Other versions
CN112767284A (zh
Inventor
张子静
黄明维
赵远
孙怿飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202110171303.XA priority Critical patent/CN112767284B/zh
Publication of CN112767284A publication Critical patent/CN112767284A/zh
Application granted granted Critical
Publication of CN112767284B publication Critical patent/CN112767284B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • G06T5/70
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06MCOUNTING MECHANISMS; COUNTING OF OBJECTS NOT OTHERWISE PROVIDED FOR
    • G06M1/00Design features of general application
    • G06M1/08Design features of general application for actuating the drive
    • G06M1/10Design features of general application for actuating the drive by electric or magnetic means
    • G06M1/101Design features of general application for actuating the drive by electric or magnetic means by electro-optical means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/10Image enhancement or restoration by non-spatial domain filtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20048Transform domain processing
    • G06T2207/20056Discrete and fast Fourier transform, [DFT, FFT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

基于光子计数熵的激光三维成像云雾后向散射滤除方法及系统,涉及激光三维成像技术领域。本发明是为了解决现有云雾环境激光三维成像目标信号峰淹没于后向散射信号,提取目标信号峰需要长时间统计探测,测量实时性差,且云雾多径效应导致目标信号峰展宽,距离分辨率低的问题。本发明利用两步滤噪处理滤除后向散射噪声,提高信噪比,能够获取高精度目标距离像。利用滑窗处理结合光子计数熵滤除后向散射噪声,同时增强目标信号的信噪比,实现高精度实时距离像获取。

Description

基于光子计数熵的激光三维成像云雾后向散射滤除方法及 系统
技术领域
本发明属于激光三维成像技术领域。
背景技术
云雾环境激光三维成像对科学和技术领域都具有重要的意义,无论在地形测绘、自动驾驶等民用方面,还是战场环境预警、导航等军用方面。云雾环境激光三维成像目标信号峰淹没于后向散射信号,提取目标信号峰需要长时间统计探测,测量实时性差,且云雾多径效应导致目标信号峰展宽,距离分辨率低。
发明内容
本发明是为了解决现有云雾环境激光三维成像目标信号峰淹没于后向散射信号,提取目标信号峰需要长时间统计探测,测量实时性差,且云雾多径效应导致目标信号峰展宽,距离分辨率低的问题,现提供基于光子计数熵的激光三维成像云雾后向散射滤除方法及系统。
基于光子计数熵的激光三维成像云雾后向散射滤除方法,该方法基于以下装置实现,所述装置包括:扫描装置、发射/接收系统、盖格模式雪崩光电二极管;
光源发射的激光脉冲能够入射至扫描装置,扫描装置能够使得其接收到的光束以任意角度入射至视场内,扫描装置的出射光束能够通过发射/接收系统照射至被测目标,所述被测目标位于云雾环境中,经被测目标反射后的光束能够被发射/接收系统接收,发射/接收系统能够将反射后的光束照射至盖格模式雪崩光电二极管的光敏面;
设K为光源发射激光脉冲的总次数,j=1,2,...,L+M,L为包含目标的回波信号的总数,M为不包含目标的回波信号的总数,所述基于光子计数熵的激光三维成像云雾后向散射滤除方法包括以下步骤:
初始化:启动光源发出激光脉冲,使j=1,
步骤一:调整扫描装置使其接收到的光束以角度αj入射至视场内,αj≠αj+1
步骤二:将光源发射激光脉冲的时刻标记为计时起点,将盖格模式雪崩光电二极管发生响应的时刻标记为计时终点,将计时起点与计时终点作差获得飞行时间,记录该飞行时间内的回波信号,所述回波信号为光子计数次数,
步骤三:判断j是否等于L+M,是则执行步骤四,否则使j=j+1,然后返回步骤一,
步骤四:分别计算每个回波信号对应的光子计数熵,并依据光子计数熵判断每个回波信号是否包含目标,
步骤五:利用不包含目标的回波信号特征拟合视场内后向散射峰的分布,将该分布作为估计后的后向散射信号,
步骤六:将估计后的后向散射信号分别与每个包含目标的回波信号作差,使得后向散射噪声被滤除。
进一步的,上述步骤四中根据下式计算光子计数熵:
其中,Y(k)为{y(n)}的离散傅里叶变换结果,|Y(k)|2为Y(k)的能量,Hck为{y(n)}的光子计数熵,y(n)为第n飞行时间通道的光子计数结果,N为飞行时间通道数,n=1,2,...,N,Nk为离散频率点的数量,k=1,2,...,Nk,i为虚数单位。
进一步的,上述步骤四中判断每个回波信号是否包含目标的具体方法为:
预设光子计数熵阈值为HT
若Hck<HT,则Hck对应的回波信号中包含目标,
若Hck>HT,则Hck对应的回波信号中不包含目标。
进一步的,上述步骤五中,将所有不包含目标的回波信号进行统计平均,获得统计平均值
其中,为第m个不包含目标的回波信号,M为不包含目标的回波信号的总数,m=1,2,...,M,N为飞行时间通道数,
利用gamma分布对进行曲线拟合,获得拟合结果表示为/>该拟合结果为估计后的后向散射信号。
进一步的,上述基于光子计数熵的激光三维成像云雾后向散射滤除方法还包括以下步骤:
步骤七:利用滑窗将步骤六作差后所有差值向量均匀划分为Q个计数子区间,分别对每个计数子区间进行离散傅里叶变换,并计算差值向量的光子计数熵,
步骤八:选取最小光子计数熵对应计数子区间的时延量作为目标距离。
进一步的,上述步骤七中,滑窗划分的第q个计数子区间yl,q(n)为:
其中,q=0,1,…,Q-1,为第l个包含目标的回波信号,w()为窗函数,n=1,2,...,N,N为飞行时间通道数,F为滑窗宽度,s为滑窗步长,l=1,2,...,L。
进一步的,根据下式对第q个计数子区间yl,q(n)进行傅里叶变换:
其中,Yl,q(k)为傅里叶变换结果,Nk为离散频率点的数量,k=1,2,...,Nk,i为虚数单位。
基于光子计数熵的激光三维成像云雾后向散射滤除系统,包括:扫描装置、发射/接收系统、计时模块、盖格模式雪崩光电二极管、目标点检测模块、后向散射估计模块和后向散射滤除模块;
光源发射的激光分成两部分、并分别入射至扫描装置和计时模块,
扫描装置使得其接收到的一部分光束能够以任意角度入射至视场内,扫描装置的出射光束通过发射/接收系统照射至被测目标,所述被测目标位于云雾环境中,经被测目标反射后的光束被发射/接收系统接收,发射/接收系统将反射后的光束照射至盖格模式雪崩光电二极管的光敏面,盖格模式雪崩光电二极管的响应信号输出端连接计时模块的响应信号输入端,
计时模块将接收到响应信号时刻标记为计时终点,计时模块将接收到光源发射激光的时刻标记为计时起点,计时模块还用于将计时起点与计时终点作差获得飞行时间及该飞行时间内的回波信号,
目标点检测模块用于根据每个回波信号计算光子计数熵,并依据光子计数熵判断每个回波信号是否包含目标,
后向散射估计模块用于利用不包含目标的回波信号特征拟合视场内后向散射峰的分布,将该分布作为估计后的后向散射信号,
后向散射滤除模块用于将估计后的后向散射信号分别与每个包含目标的回波信号作差,使得后向散射噪声被滤除。
进一步的,上述基于光子计数熵的激光三维成像云雾后向散射滤除系统还包括随机噪声滤除模块,随机噪声滤除模块用于利用滑窗将作差后所有差值向量均匀划分为Q个计数子区间,分别对每个计数子区间进行离散傅里叶变换,并计算差值向量的光子计数熵,选取最小光子计数熵对应计数子区间的时延量作为目标距离。
与现有技术相比,本发明的有益效果是:
本发明无需现有方法依靠长时间统计探测累积目标信号峰,而是在不增加系统复杂度的前提下,利用两步滤噪处理滤除后向散射噪声,提高信噪比,能够获取高精度目标距离像。利用滑窗处理结合光子计数熵滤除后向散射噪声,同时增强目标信号的信噪比,实现高精度实时距离像获取。
附图说明
图1为基于光子计数熵的激光三维成像云雾后向散射滤除系统的结构框图;
图2为光子计数熵滤除后向散射噪声流程示意图;
图3为光子计数直方图,其中A表示介质峰,B表示目标峰;
图4为后向散射噪声粗滤除结果示意图;
图5为基于光子计数熵的随机噪声滤除结果示意图。
具体实施方式
具体实施方式一:参照图2至图5具体说明本实施方式,本实施方式所述的基于光子计数熵的激光三维成像云雾后向散射滤除方法,该方法基于以下装置实现。
所述装置包括:扫描装置2、发射/接收系统3、盖格模式雪崩光电二极管5。
光源发射的激光脉冲能够入射至扫描装置2,扫描装置2能够使得其接收到的光束以任意角度入射至视场内,扫描装置2的出射光束能够通过发射/接收系统3照射至被测目标10,所述被测目标10位于云雾环境中,经被测目标10反射后的光束能够被发射/接收系统3接收,发射/接收系统3能够将反射后的光束照射至盖格模式雪崩光电二极管5的光敏面。
设K为光源发射激光脉冲的总次数,j=1,2,...,L+M,L为包含目标的回波信号的总数,M为不包含目标的回波信号的总数,所述基于光子计数熵的激光三维成像云雾后向散射滤除方法包括以下步骤:
初始化:启动光源发出激光脉冲,使j=1,
步骤一:调整扫描装置2使其接收到的光束以角度αj入射至视场内,αj≠αj+1
步骤二:将光源发射激光脉冲的时刻标记为计时起点,将盖格模式雪崩光电二极管5发生响应的时刻标记为计时终点,将计时起点与计时终点作差获得飞行时间,记录该飞行时间内的回波信号,所述回波信号为光子计数次数,
步骤三:判断j是否等于L+M,是则执行步骤四,否则使j=j+1,然后返回步骤一。
步骤四:依据光子计数直方图中的数据,分别计算每个回波信号对应的光子计数熵,具体的,根据下式计算光子计数熵:
其中,Y(k)为{y(n)}的离散傅里叶变换结果,|Y(k)|2为Y(k)的能量,Hck为{y(n)}的光子计数熵,y(n)为第n飞行时间通道的光子计数结果,N为飞行时间通道数,n=1,2,...,N,Nk为离散频率点的数量,k=1,2,...,Nk,i为虚数单位。
之后,预设光子计数熵阈值为HT,若Hck<HT,则Hck对应的回波信号中包含目标,若Hck>HT,则Hck对应的回波信号中不包含目标,从而确定每个回波信号是否包含目标。
以下为滤噪过程,如图2所示。
步骤五:利用不包含目标的回波信号特征拟合视场内后向散射峰的分布,将该分布作为估计后的后向散射信号。具体如下:
将所有不包含目标的回波信号进行统计平均,获得统计平均值
其中,为第m个不包含目标的回波信号,M为不包含目标的回波信号的总数,m=1,2,...,M,N为飞行时间通道数,
利用gamma分布对进行曲线拟合,获得拟合结果表示为/>该拟合结果为估计后的后向散射信号。
步骤六:将估计后的后向散射信号分别与每个包含目标的回波信号作差,使得后向散射噪声被滤除。
步骤七:利用滑窗将步骤六作差后所有差值向量均匀划分为Q个计数子区间,设滑窗划分的第q个计数子区间yl,q(n)为:
其中,q=0,1,…,Q-1,为第l个包含目标的回波信号,w()为窗函数,n=1,2,...,N,N为飞行时间通道数,F为滑窗宽度,s为滑窗步长。
根据下式对第q个计数子区间yl,q(n)进行傅里叶变换:
其中,Yl,q(k)为傅里叶变换结果,Nk为离散频率点的数量,k=1,2,...,Nk,i为虚数单位。
之后计算差值向量的光子计数熵。
步骤八:选取最小光子计数熵对应计数子区间的时延量作为目标距离。
本实施方式利用云雾后向散射信号和目标回波信号的光子计数熵特征差异,区分目标像素点和非目标像素点,统计全部非目标像素点的回波信号特征并估计后向散射峰,然后在目标像素点的回波信号中减除后向散射峰,并利用滑窗处理结合光子计数熵滤除剩余的随机噪声,提高信噪比,获得高精度目标距离像。
具体实施方式二:参照图1、3、4和5具体说明本实施方式,本实施方式所述的基于光子计数熵的激光三维成像云雾后向散射滤除系统,包括:扫描装置2、发射/接收系统3、计时模块4、盖格模式雪崩光电二极管5、目标点检测模块6、后向散射估计模块7、后向散射滤除模块8和随机噪声滤除模块9。
由激光器1发射的激光分成两部分、并分别入射至扫描装置2和计时模块4,
扫描装置2使得其接收到的一部分光束能够以任意角度入射至视场内,扫描装置2的出射光束通过发射/接收系统3照射至被测目标10,所述被测目标10位于云雾环境中,经被测目标10反射后的光束被发射/接收系统3接收,发射/接收系统3将反射后的光束照射至盖格模式雪崩光电二极管5的光敏面,盖格模式雪崩光电二极管5的响应信号输出端连接计时模块4的响应信号输入端,
计时模块4将接收到响应信号时刻标记为计时终点,计时模块4将接收到光源发射激光的时刻标记为计时起点,计时模块4还用于将计时起点与计时终点作差获得飞行时间及该飞行时间内的回波信号。累积K个发射激光脉冲后,获得光子到达时间计数直方图,如图3所示。
目标点检测模块6用于根据每个回波信号计算光子计数熵,并依据光子计数熵判断每个回波信号是否包含目标。其中,根据下式计算光子计数熵:
其中,Y(k)为{y(n)}的离散傅里叶变换结果,|Y(k)|2为Y(k)的能量,Hck为{y(n)}的光子计数熵,y(n)为第n飞行时间通道的光子计数结果,N为飞行时间通道数,n=1,2,...,N,Nk为离散频率点的数量,k=1,2,...,Nk,i为虚数单位。
预设光子计数熵阈值为HT,若Hck<HT,则Hck对应的回波信号中包含目标,若Hck>HT,则Hck对应的回波信号中不包含目标。
后向散射估计模块7用于利用不包含目标的回波信号特征拟合视场内后向散射峰的分布,将该分布作为估计后的后向散射信号。其中,将所有不包含目标的回波信号进行统计平均,获得统计平均值
其中,为第m个不包含目标的回波信号,M为不包含目标的回波信号的总数,m=1,2,...,M,N为飞行时间通道数,
利用gamma分布对进行曲线拟合,获得拟合结果表示为/>该拟合结果为估计后的后向散射信号。
后向散射滤除模块8用于将估计后的后向散射信号分别与每个包含目标的回波信号作差,使得后向散射噪声被粗略滤除。
由于GM-APD概率性响应回波光子,光子计数存在随机起伏,后向散射滤除模块8处理之后光子计数直方图中仍然存在大量的随机噪声,且减除处理没有增强目标信号峰,信号峰仍然淹没于噪声中。因此,需要将后向散射滤除模块8处理后含有大量随机噪声的信号输入随机噪声滤除模块9,利用滑窗处理结合光子计数熵的滤噪方法滤除随机噪声,增强目标信号峰。具体的,如图2所示,随机噪声滤除模块9用于利用滑窗将步骤六作差后所有差值向量均匀划分为Q个计数子区间,分别对每个计数子区间进行离散傅里叶变换,并计算差值向量的光子计数熵。由于目标信号峰随机性低,光子计数熵远低于随机噪声,处理后目标信号峰得到增强,信噪比提高。
最后在滤噪处理后的数据中搜索光子计数熵最小的子区间,该子区间的时延量作为目标距离的估计,从而获取高精度目标距离像。
本实施方式以云雾后向散射信号和目标回波信号的光子计数熵特征差异为基础,通过光子计数熵准确区分目标像素点和非目标像素点,利用非目标像素点获得的接收信号估计云雾后向散射峰,然后在目标像素点减除后向散射信号,并利用光子计数熵结合滑窗滤除剩余的随机噪声,提高信噪比,获得高精度目标距离像。

Claims (9)

1.基于光子计数熵的激光三维成像云雾后向散射滤除方法,其特征在于,该方法基于以下装置实现,所述装置包括:扫描装置(2)、发射/接收系统(3)、盖格模式雪崩光电二极管(5);
光源发射的激光脉冲能够入射至扫描装置(2),扫描装置(2)能够使得其接收到的光束以任意角度入射至视场内,扫描装置(2)的出射光束能够通过发射/接收系统(3)照射至被测目标(10),所述被测目标(10)位于云雾环境中,经被测目标(10)反射后的光束能够被发射/接收系统(3)接收,发射/接收系统(3)能够将反射后的光束照射至盖格模式雪崩光电二极管(5)的光敏面;
设K为光源发射激光脉冲的总次数,j=1,2,...,L+M,L为包含目标的回波信号的总数,M为不包含目标的回波信号的总数,所述基于光子计数熵的激光三维成像云雾后向散射滤除方法包括以下步骤:
初始化:启动光源发出激光脉冲,使j=1,
步骤一:调整扫描装置(2)使其接收到的光束以角度αj入射至视场内,
步骤二:将光源发射激光脉冲的时刻标记为计时起点,将盖格模式雪崩光电二极管(5)发生响应的时刻标记为计时终点,将计时起点与计时终点作差获得飞行时间,记录该飞行时间内的回波信号,所述回波信号为光子计数次数,
步骤三:判断j是否等于L+M,是则执行步骤四,否则使j=j+1,然后返回步骤一,
步骤四:分别计算每个回波信号对应的光子计数熵,并依据光子计数熵判断每个回波信号是否包含目标,
步骤五:利用不包含目标的回波信号特征拟合视场内后向散射峰的分布,将该分布作为估计后的后向散射信号,
步骤六:将估计后的后向散射信号分别与每个包含目标的回波信号作差,使得后向散射噪声被滤除;
步骤四中根据下式计算光子计数熵:
其中,Y(k)为{y(n)}的离散傅里叶变换结果,|Y(k)2为Y(k)的能量,Hck为{y(n)}的光子计数熵,y(n)为第n飞行时间通道的光子计数结果,N为飞行时间通道数,n=1,2,...,N,Nk为离散频率点的数量,k=1,2,...,Nk,i为虚数单位;
步骤四中判断每个回波信号是否包含目标的具体方法为:
预设光子计数熵阈值为HT
若Hck<HT,则Hck对应的回波信号中包含目标,
若Hck>HT,则Hck对应的回波信号中不包含目标。
2.根据权利要求1所述的基于光子计数熵的激光三维成像云雾后向散射滤除方法,其特征在于,步骤五中,将所有不包含目标的回波信号进行统计平均,获得统计平均值
其中,为第m个不包含目标的回波信号,M为不包含目标的回波信号的总数,m=1,2,...,M,N为飞行时间通道数,
利用gamma分布对进行曲线拟合,获得拟合结果表示为/>该拟合结果为估计后的后向散射信号。
3.根据权利要求1所述的基于光子计数熵的激光三维成像云雾后向散射滤除方法,其特征在于,还包括以下步骤:
步骤七:利用滑窗将步骤六作差后所有差值向量均匀划分为Q个计数子区间,分别对每个计数子区间进行离散傅里叶变换,并计算差值向量的光子计数熵,
步骤八:选取最小光子计数熵对应计数子区间的时延量作为目标距离。
4.根据权利要求3所述的基于光子计数熵的激光三维成像云雾后向散射滤除方法,其特征在于,步骤七中,滑窗划分的第q个计数子区间yl,q(n)为:
其中,q=0,1,…,Q-1,为第l个包含目标的回波信号,w()为窗函数,n=1,2,...,N,N为飞行时间通道数,F为滑窗宽度,s为滑窗步长,l=1,2,...,L。
5.根据权利要求4所述的基于光子计数熵的激光三维成像云雾后向散射滤除方法,其特征在于,根据下式对第q个计数子区间yl,q(n)进行傅里叶变换:
其中,Yl,q(k)为傅里叶变换结果,Nk为离散频率点的数量,k=1,2,...,Nk,i为虚数单位。
6.基于光子计数熵的激光三维成像云雾后向散射滤除系统,其特征在于,包括:扫描装置(2)、发射/接收系统(3)、计时模块(4)、盖格模式雪崩光电二极管(5)、目标点检测模块(6)、后向散射估计模块(7)和后向散射滤除模块(8);
光源发射的激光分成两部分、并分别入射至扫描装置(2)和计时模块(4),
扫描装置(2)使得其接收到的一部分光束能够以任意角度入射至视场内,扫描装置(2)的出射光束通过发射/接收系统(3)照射至被测目标(10),所述被测目标(10)位于云雾环境中,经被测目标(10)反射后的光束被发射/接收系统(3)接收,发射/接收系统(3)将反射后的光束照射至盖格模式雪崩光电二极管(5)的光敏面,盖格模式雪崩光电二极管(5)的响应信号输出端连接计时模块(4)的响应信号输入端,
计时模块(4)将接收到响应信号时刻标记为计时终点,计时模块(4)将接收到光源发射激光的时刻标记为计时起点,计时模块(4)还用于将计时起点与计时终点作差获得飞行时间及该飞行时间内的回波信号,
目标点检测模块(6)用于根据每个回波信号计算光子计数熵,并依据光子计数熵判断每个回波信号是否包含目标,
后向散射估计模块(7)用于利用不包含目标的回波信号特征拟合视场内后向散射峰的分布,将该分布作为估计后的后向散射信号,
后向散射滤除模块(8)用于将估计后的后向散射信号分别与每个包含目标的回波信号作差,使得后向散射噪声被滤除;
目标点检测模块(6)中,根据下式计算光子计数熵:
其中,Y(k)为{y(n)}的离散傅里叶变换结果,|Y(k)2为Y(k)的能量,Hck为{y(n)}的光子计数熵,y(n)为第n飞行时间通道的光子计数结果,N为飞行时间通道数,n=1,2,...,N,Nk为离散频率点的数量,k=1,2,...,Nk,i为虚数单位;
目标点检测模块(6)中,预设光子计数熵阈值为HT
若Hck<HT,则Hck对应的回波信号中包含目标,
若Hck>HT,则Hck对应的回波信号中不包含目标。
7.根据权利要求6所述的基于光子计数熵的激光三维成像云雾后向散射滤除系统,其特征在于,还包括随机噪声滤除模块(9),
随机噪声滤除模块(9)用于利用滑窗将作差后所有差值向量均匀划分为Q个计数子区间,分别对每个计数子区间进行离散傅里叶变换,并计算差值向量的光子计数熵,选取最小光子计数熵对应计数子区间的时延量作为目标距离。
8.根据权利要求6或7所述的基于光子计数熵的激光三维成像云雾后向散射滤除系统,其特征在于,光源为激光器(1)。
9.根据权利要求6或7所述的基于光子计数熵的激光三维成像云雾后向散射滤除系统,其特征在于,后向散射估计模块(7)中,将所有不包含目标的回波信号进行统计平均,获得统计平均值
其中,为第m个不包含目标的回波信号,M为不包含目标的回波信号的总数,m=1,2,...,M,N为飞行时间通道数,
利用gamma分布对进行曲线拟合,获得拟合结果表示为/>该拟合结果为估计后的后向散射信号。
CN202110171303.XA 2021-02-03 2021-02-03 基于光子计数熵的激光三维成像云雾后向散射滤除方法及系统 Active CN112767284B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110171303.XA CN112767284B (zh) 2021-02-03 2021-02-03 基于光子计数熵的激光三维成像云雾后向散射滤除方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110171303.XA CN112767284B (zh) 2021-02-03 2021-02-03 基于光子计数熵的激光三维成像云雾后向散射滤除方法及系统

Publications (2)

Publication Number Publication Date
CN112767284A CN112767284A (zh) 2021-05-07
CN112767284B true CN112767284B (zh) 2024-03-08

Family

ID=75705321

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110171303.XA Active CN112767284B (zh) 2021-02-03 2021-02-03 基于光子计数熵的激光三维成像云雾后向散射滤除方法及系统

Country Status (1)

Country Link
CN (1) CN112767284B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120043843A (ko) * 2010-10-27 2012-05-07 한국과학기술원 3차원 영상화 펄스 레이저 레이더 시스템 및 이 시스템에서의 자동 촛점 방법
KR20120098529A (ko) * 2011-02-28 2012-09-05 한국과학기술원 듀얼 가이거 모드 어밸런치 광다이오드를 운용하는 스캐닝 3차원 영상화 펄스 레이저 레이더 시스템 및 방법
CN103064076A (zh) * 2012-12-26 2013-04-24 南京理工大学 光子计数三维成像激光雷达距离行走误差校正系统及方法
CN103994719A (zh) * 2014-05-30 2014-08-20 中国科学院国家天文台南京天文光学技术研究所 基于盖革apd阵列的高精度三维成像装置及其使用方法
CN105607073A (zh) * 2015-12-18 2016-05-25 哈尔滨工业大学 一种采用相邻像元阈值法实时滤噪的光子计数成像激光雷达
CN112213737A (zh) * 2019-06-24 2021-01-12 南京理工大学 远距离光子计数三维激光雷达成像系统及其方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120043843A (ko) * 2010-10-27 2012-05-07 한국과학기술원 3차원 영상화 펄스 레이저 레이더 시스템 및 이 시스템에서의 자동 촛점 방법
KR20120098529A (ko) * 2011-02-28 2012-09-05 한국과학기술원 듀얼 가이거 모드 어밸런치 광다이오드를 운용하는 스캐닝 3차원 영상화 펄스 레이저 레이더 시스템 및 방법
CN103064076A (zh) * 2012-12-26 2013-04-24 南京理工大学 光子计数三维成像激光雷达距离行走误差校正系统及方法
CN103994719A (zh) * 2014-05-30 2014-08-20 中国科学院国家天文台南京天文光学技术研究所 基于盖革apd阵列的高精度三维成像装置及其使用方法
CN105607073A (zh) * 2015-12-18 2016-05-25 哈尔滨工业大学 一种采用相邻像元阈值法实时滤噪的光子计数成像激光雷达
CN112213737A (zh) * 2019-06-24 2021-01-12 南京理工大学 远距离光子计数三维激光雷达成像系统及其方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于光子计数激光雷达的时域去噪;骆乐;吴长强;林杰;冯振超;何伟基;陈钱;;光学精密工程;20180515(05);全文 *

Also Published As

Publication number Publication date
CN112767284A (zh) 2021-05-07

Similar Documents

Publication Publication Date Title
CN109343069B (zh) 可实现组合脉冲测距的光子计数激光雷达及其测距方法
US10948575B2 (en) Optoelectronic sensor and method of measuring the distance from an object
CN110161519B (zh) 一种宏脉冲光子计数激光雷达
CN107907885B (zh) 一种基于单光子计数方法的水下目标探测装置
CN104833979A (zh) 一种激光测距及激光测距数据的信号处理的方法
CN103760567A (zh) 一种具有测距功能的被动成像系统及其测距方法
CN107290755B (zh) 基于4d成像光子计数激光雷达系统实现的目标距离和目标强度的获取方法
CN110554404A (zh) 一种强背景噪声下Gm-APD阵列激光雷达成像方法及系统
CN112255636A (zh) 一种距离测量方法、系统及设备
KR20120098529A (ko) 듀얼 가이거 모드 어밸런치 광다이오드를 운용하는 스캐닝 3차원 영상화 펄스 레이저 레이더 시스템 및 방법
US20220187430A1 (en) Time of flight calculation with inter-bin delta estimation
CN103926590A (zh) 一种不等间距的激光多脉冲测距方法及其测距装置
CN105954733A (zh) 基于光子飞行时间相关性的时域滤波方法
CN113424077A (zh) 光学测距装置
CN112424639A (zh) 使用飞行时间和伪随机比特序列测量到物体的距离
CN114089366A (zh) 一种星载单光子激光雷达的水体光学参数反演方法
Tan et al. Long-range daytime 3D imaging lidar with short acquisition time based on 64× 64 Gm-APD array
Hou et al. Full-waveform fast correction method for photon counting Lidar
CN113406594A (zh) 一种基于双量估计法的单光子激光透雾方法
CN112767284B (zh) 基于光子计数熵的激光三维成像云雾后向散射滤除方法及系统
CN111538026B (zh) 一种激光测距方法及系统
CN114488174B (zh) 基于双通道单光子探测和二维互相关的测距系统及方法
US20230288538A1 (en) Laser receiving system and laser ranging system
CN111352119B (zh) 基于单光子速度累加的目标测距方法及装置
Zhu et al. High anti-interference 3D imaging LIDAR system based on digital chaotic pulse position modulation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant