CN112760332B - 一种Sir2家族基因或蛋白在调控植物萜类物质产量中的应用 - Google Patents

一种Sir2家族基因或蛋白在调控植物萜类物质产量中的应用 Download PDF

Info

Publication number
CN112760332B
CN112760332B CN202110267837.2A CN202110267837A CN112760332B CN 112760332 B CN112760332 B CN 112760332B CN 202110267837 A CN202110267837 A CN 202110267837A CN 112760332 B CN112760332 B CN 112760332B
Authority
CN
China
Prior art keywords
gene
leu
plant
val
ala
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110267837.2A
Other languages
English (en)
Other versions
CN112760332A (zh
Inventor
吴立文
汪阳东
陈益存
高暝
赵耘霄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Subtropical Forestry of Chinese Academy of Forestry
Original Assignee
Research Institute of Subtropical Forestry of Chinese Academy of Forestry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Subtropical Forestry of Chinese Academy of Forestry filed Critical Research Institute of Subtropical Forestry of Chinese Academy of Forestry
Priority to CN202110267837.2A priority Critical patent/CN112760332B/zh
Publication of CN112760332A publication Critical patent/CN112760332A/zh
Application granted granted Critical
Publication of CN112760332B publication Critical patent/CN112760332B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Nutrition Science (AREA)
  • Medicinal Chemistry (AREA)
  • Peptides Or Proteins (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明公开了一种Sir2家族基因或蛋白在调控植物萜类物质产量中的应用;所述Sir2家族基因为LcSRT1基因或LcSRT2基因;所述萜类物质为单萜类物质,如(1R)‑(+)‑α‑蒎烯、D‑柠檬烯、桉树脑、β‑环柠檬醛和/或香叶醛。本发明通过将Sir2家族基因在植物中进行转基因过表达,发现其可增加植物的萜类物质产量,为萜类物质的生产提供了一种新的途径;另外,本发明也拓展了Sir2家族基因或蛋白的应用,为Sir2家族基因或蛋白的应用提供了一种新的途径。

Description

一种Sir2家族基因或蛋白在调控植物萜类物质产量中的应用
技术领域
本发明涉及植物分子生物学领域,特别是涉及一种Sir2家族基因或蛋白在调控植物萜类物质产量中的应用。
背景技术
萜类物质是植物中含量最高的次级代谢产物,它们在植物中以及植物与其他生物之间或与环境之间起着重要作用。目前,已从不同物种中鉴定出30,000多种萜类物质,并已将其提取出来用于多种商业用途,例如:香水、食品调味品、农药或杀虫剂的制作。萜类物质衍生自通用的C5前体异戊烯基二磷酸酯(IPP)及其烯丙基异构体二甲基烯丙基二磷酸酯(DMAPP),在更高的植物中,它们是通过位于细胞内单独的区室的两个独立途径生成的。在胞质溶胶中,IPP源自众所周知的甲羟戊酸(MVA)途径,该途径以乙酰辅酶A的缩合开始。在质体中,IPP由丙酮酸和D-甘油醛3-磷酸形成。这种独立于MVA的途径,也称为MEP途径,紧随关键的中间体甲基赤藓糖醇磷酸酯(MEP)之后。大量研究表明,MVA途径的最终产物是倍半萜、三萜和植物甾醇,而MEP途径的最终产物是单萜、二萜、植物激素和类胡萝卜素。
沉默信息调节剂2(silence information regulator Sir2)蛋白是NAD+依赖性蛋白脱乙酰基酶/ADP核糖基转移酶的一个家族,目前已知其靶标涉及衰老、DNA修复和代谢调节的多种细胞蛋白,但目前还没有任何关于Sir2家族蛋白或基因在调控植物萜类物质产量中的报道。
发明内容
本发明要解决的技术问题是提供一种有效的分子方法来增加植物中萜类物质的产量。
为解决上述技术问题,本发明从山苍子(Litsea cubeba(Lour.)Persoon)出发,进行了一系列相关实验。
山苍子是多年生的落叶灌木或小树,具有美丽的树形和五颜六色的花朵,因此主要用于美化环境。此外,山苍子的花朵和水果都带有新鲜的柠檬香气。原因是花朵和水果中含有精油,精油的主要成分是柠檬醛,为单萜物质。L.cubeba精油因其独特的香气可用于配制香水。
本发明通过之前获得的山苍子的转录组数据(见NCBI的SRA数据库中accessionnumber SRA080286),从中筛选出两个注释信息为Sir2家族蛋白的转录本,并且两个转录本都具有完全开放的阅读框架(ORF)。根据ORF序列设计了两个基因的引物,通过RT-PCR从山苍子中克隆了Sir2家族基因。Sir2家族基因被命名为LcSRT1和LcSRT2,分别具有1,359bp和1,158bp的长度,分别编码452和385个氨基酸。
通过将LcSRT1和LcSRT2基因分别在烟草中转基因异源表达,本发明中发现在各自的阳性转基因植株中,两个基因较烟草中的Sir2家族基因(NbSRT)的表达量分别上升了3,373倍和2,512倍,导致萜类物质的产量呈现明显增加的表型。此外,还发现两个基因的转基因阳性植株较野生型均有植物器官增大的表型,体现在叶片增大、茎粗增加、同发育时期高度增加以及鲜重增加的表型。
基于上述发现,本发明开发了上述基因及蛋白的新应用,具体包括如下技术方案:
一种Sir2家族基因或蛋白在调控植物萜类物质产量中的应用。
作为本发明进一步地改进,所述Sir2家族基因为LcSRT1基因或LcSRT2基因;所述LcSRT1基因如(a)或(b)所示的序列:(a)Seq ID No:1所示的核苷酸序列;(b)在(a)所示的核苷酸序列中添加和/或取代和/或缺失一个或几个核苷酸而生成的可编码调控植物萜类物质产量的蛋白质的突变基因、等位基因或衍生物;所述LcSRT2基因如(c)或(d)所示的序列:(a)Seq ID No:2所示的核苷酸序列;(b)在(a)所示的核苷酸序列中添加和/或取代和/或缺失一个或几个核苷酸而生成的可编码调控植物萜类物质产量的蛋白质的突变基因、等位基因或衍生物。
进一步地,所述Sir2家族蛋白为LcSRT1基因的编码蛋白或LcSRT2基因的编码蛋白;所述LcSRT1基因的编码蛋白如(A)或(B)所示的序列:(A)Seq ID No:3所示的氨基酸序列;(B)在(A)所限定的氨基酸序列中添加和/或取代和/或缺失一个或几个氨基酸且具有相同功能的由(A)衍生的蛋白质;所述LcSRT2基因的编码蛋白如(C)或(D)所示的序列:(C)SeqID No:4所示的氨基酸序列;(D)在(C)所限定的氨基酸序列中添加和/或取代和/或缺失一个或几个氨基酸且具有相同功能的由(A)衍生的蛋白质。
进一步地,所述应用为将Sir2家族基因在植物中进行转基因过表达来增加萜类物质产量。
进一步地,所述萜类物质为单萜类物质。
进一步地,所述单萜类物质为(1R)-(+)-α-蒎烯、D-柠檬烯、桉树脑、β-环柠檬醛和/或香叶醛。
进一步地,所述植物为烟草。
进一步地,所述Sir2家族基因或蛋白来源于山苍子。
进一步地,增加的所述萜类物质,通过提取进一步用于制备植物精油、香水、食品调味品、农药或杀虫剂。
本发明通过研究发现了Sir2家族基因或蛋白具有调控植物萜类物质产量的功能,为萜类物质的生产提供了一种新的途径,进一步为需要依赖萜类物质的各产品的制备提供了新的来源,尤其是为植物精油的制备提供了来源(萜类物质是植物精油的主要活性成分);另外,本发明也拓展了Sir2家族基因或蛋白的应用,为Sir2家族基因或蛋白的应用提供了一种新的途径。
附图说明
上述仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,以下结合附图与具体实施方式对本发明作进一步的详细说明。
图1是阳性转基因植株中,LcSRT1和LcSRT2基因与烟草中的Sir2家族基因表达水平对比;
图2是野生型和转基因植株中单萜物质的产量对比,其中(a)顶空固相微萃取-气相色谱-质谱法分析野生型植株中单萜物质的产量结果;(b)顶空固相微萃取-气相色谱-质谱法分析LcSRT1转基因植株中单萜物质的产量结果;(c)顶空固相微萃取-气相色谱-质谱法分析LcSRT2转基因植株中单萜物质的产量结果;(d)统计分析对比野生型植株、LcSRT1转基因植株以及LcSRT2转基因植株中单萜类物质的产量(数据所示为平均值,误差条为利用12个生物学重复的标准差所制,根据学生的t检验,星号表示与野生型有统计学上的显著差异(*,P<0.05;**,P<0.01);
图3是生长1个月后的野生型与转基因植株表型对比,标尺尺寸为2厘米;
图4是生长1个月后的野生型与转基因植株表型数据对比;
图5是生长2个月后的野生型与LcSRT1转基因植株叶片大小对比(植株上部叶片(第一片)、植株中部叶片(第二片)、植株下部叶片(第三片),标尺尺寸为2厘米;
图6是生长2个月后的野生型与转基因植株表型对比,标尺尺寸为2厘米。
具体实施方式
实施例1 LcSRT1和LcSRT2基因的克隆与序列分析
本发明通过之前获得的山苍子的转录组数据(见NCBI的SRA数据库中accessionnumber SRA080286),从中筛选出两个注释信息为Sir2家族蛋白的转录本,并且两个转录本都具有完全开放的阅读框架(ORF)。根据ORF序列设计了两个基因的引物,通过RT-PCR从山苍子中克隆了Sir2家族基因。Sir2家族基因被命名为LcSRT1和LcSRT2,分别具有1,359bp(全CDS序列如Seq ID No:1所示的核苷酸序列)和1,158bp(全CDS序列如Seq ID No:2所示的核苷酸序列)的长度,分别编码452个氨基酸(如Seq ID No:3所示的氨基酸序列)和385个氨基酸(如Seq ID No:4所示的氨基酸序列)。
其中,LcSRT1基因的CDS扩增引物为:5’------3’
F:ATGACTGAAGTTTTCGACCCACCTC
R:TTACAGAGTCAAAGACCACTTGGGT
LcSRT2基因的CDS扩增引物为:5’------3’
F:ATGTCCGCCACTGCATCTCAGCTTT
R:TCATCGGATAACAGCAGGCACGGTG
实施例2 LcSRT1和LcSRT2基因的过表达能够增加植物单萜类物质的产量
将实施例1获得的LcSRT1和LcSRT2基因分别在烟草(N.benthamiana)中异源表达后,本发明发现在各自的阳性转基因植株中,两个基因较烟草中的SRT基因的表达量分别上升了3,373倍和2,512倍,如图1所示。本发明使用顶空-SPME-GC-MS法对比分析了LcSRT1ox、LcSRT2ox和野生型植物WT中精油的化学成分,具体发现(配合图2所示):
与对照野生型植物相比,LcSRT1和LcSRT2基因的过表达能够显著提高(1R)-(+)-α-蒎烯、D-柠檬烯、桉树脑、β-环柠檬醛和香叶醛的产量,这些代谢产物是精油中单萜的重要成分。
相比之下,LcSRT1ox植物中桉树脑的产量为野生型植物中的2.2倍,β-环柠檬醛为1.3倍;LcSRT2ox植物中桉树脑的产量为野生型植物中的1.2倍,β-环柠檬醛为1.5倍。
此外,在野生型对照植物中未检出精油的主要成分D-柠檬烯、(1R)-(+)-α-蒎烯和香叶醛,但这几种成分在LcSRT1ox和LcSRT2ox植物中均检测到,且D-柠檬烯的含量明显很高。该结果表明,LcSRT1和LcSRT2基因的转基因过表达可有效地提升精油植物中主成分单萜类次生代谢产物的产量。
与萜类物质合成代谢相关的MVA和MEP途径在植物中相当保守,产萜植物的这两条代谢通路基本都是一致的。因此,本研究结论虽然是在烟草中进行转基因过表达试验而获得的,但是同样适用于其他植物,在其他植物中进行基因过表达试验同样能获得这些表型。
实施例3 LcSRT1和LcSRT2基因的过表达能够增大植物营养器官
将实施例1获得的LcSRT1和LcSRT2基因分别在烟草(N.benthamiana)中异源表达,还发现两个基因的转基因阳性植株较野生型均有植物器官增大的表型,体现在同发育时期的叶片增大、茎直径增加(也可称为茎粗增加)、植株高度增加(也可称为长度增加)以及植株鲜重增加的表型。
具体为:在烟草中异源表达LcSRT1和LcSRT2基因。通过PCR扩增和测序筛选阳性转基因品系后,本发明比较了转基因植株与野生型的1个月大烟草幼苗的长度,茎直径和植株鲜重(指全株所有器官的总重量,也就是一株苗洗净根部土壤后全株称重所得)以及2个月大烟草植物(盛花期,最终成型期)的高度等。如图3-5所示的结果表明,1个月大的LcSRT1ox植物的幼苗长度约为对照的1.6倍,茎的直径约为对照的1.4倍,鲜重约为对照的2.5倍;1个月大的LcSRT2ox植物的幼苗长度约为对照的1.4倍,茎的直径约为对照的1.3倍,鲜重约为对照的1.8倍。此外,LcSRT1ox和LcSRT2ox植物的叶子明显大于野生型对照的叶子。
如图6所示,2个月大的植株各项指标与1个月大的植株各项指标增长趋势基本一致,如2个月大的LcSRT1ox植株的高度约为对照的1.4倍,植株的上部,中部和下部的叶子也明显更大;2个月大的LcSRT2ox植株的高度也约为对照的1.4倍。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,本领域技术人员利用上述揭示的技术内容做出些许简单修改、等同变化或修饰,均落在本发明的保护范围范围。
序列表
<110> 中国林业科学研究院亚热带林业研究所
<120> 一种Sir2家族基因或蛋白在调控植物萜类物质产量中的应用
<160> 4
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1359
<212> DNA
<213> 木姜子属山苍子(Litsea cubeba Lour. Pers. )
<400> 1
atgactgaag ttttcgaccc acctcacatt ttgcagagga agattgaaga gcttgcttcg 60
atgatacaaa agagtaagca tctggtagtg tttacaggag cagggatttc aacttcttgt 120
ggaatacctg attttcgggg tcccaaaggt gtttggactc ttcagcgtga aggcaaaggt 180
gtgcctgaag catccttgcc gtttcatcgt gcaatgccga gtttaactca catggctttg 240
gtagcactcg aaaaggctgg tttcttgaag tttgttatta gccagaatgt ggacagcctc 300
catctccgat ctggaatacc gagagagaaa ctggctgaat tgcatgggaa ttcctttagg 360
gagctttgcc cctcttgtgg aatagaatat gttcgagact tcgaggtaga gactattgga 420
atgaaggaga catctagacg ttgttctgat ctaaaatgtg gagcaaaact taaggacacg 480
gttcttgact gggaggatgc attaccacca aaggagatgg atcctgcaga aatgcactgt 540
aaaatggctg atcttgtttt atgtttgggg accagtttgc agattacacc agcatgcaac 600
ctgcctttaa aatctcttcg tggtggggga aagcttgtta ttgttaacct tcagcaaact 660
ccaaaggaca agaaagcaag tctggtgatc catgggaacg tagataaggt tattgcaggc 720
gttatggact ttcttaatct tcagattcct ccatacgtcc gcattgatct tgtccagctc 780
agcctttctc aattccctaa aaggaacaaa tctgtgaaat ggacgctcag gattgctagt 840
gtccatggtc agagagcgcc attgcctttc ctcaaaacag ttgaggtttc atttccagat 900
agaccagatc tgaaggctgc tgttctacac aagcagccat ttgtcttgaa aagagagact 960
gtgaagacaa ggccatttaa aatggtgttg gatctcaatt ttggtgatgg ttgtgcgtgt 1020
ccatgtgctc gaatcaggtg gccaattgat ttccaggttt tgacagatga cttcgaccat 1080
gataggggtg tagtctttca gaagcttagt gatgcagcag tccaggattc atgctgtgga 1140
cagtatgcag ctgttgagaa aaagacgagt gaatcaccta gaacagaagc ttttgtttac 1200
gccattgtaa cggacattgt cagacacaac agtttagcaa ccacaactaa agctttccct 1260
cctgttccca aaggtacccg caatggagtt agaaagttaa agagtgagaa tggtaactcc 1320
gagtgtccaa agagacccaa gtggtctttg actctgtaa 1359
<210> 2
<211> 1158
<212> DNA
<213> 木姜子属山苍子(Litsea cubeba Lour. Pers. )
<400> 2
atgtccgcca ctgcatctca gcttttcttc accaaacttc tcagtagcag aagagaagtg 60
tgtgggacag tgttcagagg catgtattgc cgtcacatgt ctcttagcca aaaaacaaga 120
gcaagcgttt cccttcaggg ctctgcaaaa caagtgcaag catgcacaca ctatattact 180
gggactacat caaaaaatca agacaaagct tctttgaacg ttctgaggga caagaagata 240
cttccggatt cagatccacc aagcggcgac gatgtcaacc ttttgtatca atttattgat 300
catagtcaca agcttatggt attgacggga gcaggaataa gcacagagag tggaattcct 360
gattacagaa gtccaaatgg agcttatagt tcaggtttca aacccattac tcatcaggac 420
tttgtccgct caagcagagc acgcaagcga tattgggcta ggagctatgc tggatggaga 480
aggttcacgg ctgcaaagcc cggtccaact catactgctc tggcagctct ggagaaagtc 540
ggtcgaataa attttatggt cacacaaaat gtggacaggt tgcatcaccg cgctgggagc 600
aacccacttg aaatacatgg aactgtttat tctgtgattt gtttacagtg tggtttttcc 660
tttagccgga atgtatttca agacctagtg aagaccctga atccaaagtg ggctttggct 720
gttgaaagtt tggactgtgg aaaccctggt tcagacaaga gctttggcat gcagcaaagg 780
cctgacggtg atatcgagat tgacgagaaa tactgggagg aggatttcca tatcccaaac 840
tgccagaaat gtgatggagt gctaaaacca gatgtcgtct tttttggtga taatgtccca 900
aaggataggg ccaataaagc aatggaagct gcaaaaggat gcgatgcttt gcttgtgctc 960
ggttcatcac taatgactat gtctgctttc cgacttgtga gagctgcttc tgaggcaggc 1020
gctgctactg caatcgtgaa tataggagtg acacgagctg atgatttcgt tcccttgaaa 1080
attagtgccc gatgtgggga gatactcccc agattgctgg atgtgggatg cctcaccgtg 1140
cctgctgtta tccgatga 1158
<210> 3
<211> 452
<212> PRT
<213> 木姜子属山苍子(Litsea cubeba Lour. Pers. )
<400> 3
Met Thr Glu Val Phe Asp Pro Pro His Ile Leu Gln Arg Lys Ile Glu
1 5 10 15
Glu Leu Ala Ser Met Ile Gln Lys Ser Lys His Leu Val Val Phe Thr
20 25 30
Gly Ala Gly Ile Ser Thr Ser Cys Gly Ile Pro Asp Phe Arg Gly Pro
35 40 45
Lys Gly Val Trp Thr Leu Gln Arg Glu Gly Lys Gly Val Pro Glu Ala
50 55 60
Ser Leu Pro Phe His Arg Ala Met Pro Ser Leu Thr His Met Ala Leu
65 70 75 80
Val Ala Leu Glu Lys Ala Gly Phe Leu Lys Phe Val Ile Ser Gln Asn
85 90 95
Val Asp Ser Leu His Leu Arg Ser Gly Ile Pro Arg Glu Lys Leu Ala
100 105 110
Glu Leu His Gly Asn Ser Phe Arg Glu Leu Cys Pro Ser Cys Gly Ile
115 120 125
Glu Tyr Val Arg Asp Phe Glu Val Glu Thr Ile Gly Met Lys Glu Thr
130 135 140
Ser Arg Arg Cys Ser Asp Leu Lys Cys Gly Ala Lys Leu Lys Asp Thr
145 150 155 160
Val Leu Asp Trp Glu Asp Ala Leu Pro Pro Lys Glu Met Asp Pro Ala
165 170 175
Glu Met His Cys Lys Met Ala Asp Leu Val Leu Cys Leu Gly Thr Ser
180 185 190
Leu Gln Ile Thr Pro Ala Cys Asn Leu Pro Leu Lys Ser Leu Arg Gly
195 200 205
Gly Gly Lys Leu Val Ile Val Asn Leu Gln Gln Thr Pro Lys Asp Lys
210 215 220
Lys Ala Ser Leu Val Ile His Gly Asn Val Asp Lys Val Ile Ala Gly
225 230 235 240
Val Met Asp Phe Leu Asn Leu Gln Ile Pro Pro Tyr Val Arg Ile Asp
245 250 255
Leu Val Gln Leu Ser Leu Ser Gln Phe Pro Lys Arg Asn Lys Ser Val
260 265 270
Lys Trp Thr Leu Arg Ile Ala Ser Val His Gly Gln Arg Ala Pro Leu
275 280 285
Pro Phe Leu Lys Thr Val Glu Val Ser Phe Pro Asp Arg Pro Asp Leu
290 295 300
Lys Ala Ala Val Leu His Lys Gln Pro Phe Val Leu Lys Arg Glu Thr
305 310 315 320
Val Lys Thr Arg Pro Phe Lys Met Val Leu Asp Leu Asn Phe Gly Asp
325 330 335
Gly Cys Ala Cys Pro Cys Ala Arg Ile Arg Trp Pro Ile Asp Phe Gln
340 345 350
Val Leu Thr Asp Asp Phe Asp His Asp Arg Gly Val Val Phe Gln Lys
355 360 365
Leu Ser Asp Ala Ala Val Gln Asp Ser Cys Cys Gly Gln Tyr Ala Ala
370 375 380
Val Glu Lys Lys Thr Ser Glu Ser Pro Arg Thr Glu Ala Phe Val Tyr
385 390 395 400
Ala Ile Val Thr Asp Ile Val Arg His Asn Ser Leu Ala Thr Thr Thr
405 410 415
Lys Ala Phe Pro Pro Val Pro Lys Gly Thr Arg Asn Gly Val Arg Lys
420 425 430
Leu Lys Ser Glu Asn Gly Asn Ser Glu Cys Pro Lys Arg Pro Lys Trp
435 440 445
Ser Leu Thr Leu
450
<210> 4
<211> 385
<212> PRT
<213> 木姜子属山苍子(Litsea cubeba Lour. Pers. )
<400> 4
Met Ser Ala Thr Ala Ser Gln Leu Phe Phe Thr Lys Leu Leu Ser Ser
1 5 10 15
Arg Arg Glu Val Cys Gly Thr Val Phe Arg Gly Met Tyr Cys Arg His
20 25 30
Met Ser Leu Ser Gln Lys Thr Arg Ala Ser Val Ser Leu Gln Gly Ser
35 40 45
Ala Lys Gln Val Gln Ala Cys Thr His Tyr Ile Thr Gly Thr Thr Ser
50 55 60
Lys Asn Gln Asp Lys Ala Ser Leu Asn Val Leu Arg Asp Lys Lys Ile
65 70 75 80
Leu Pro Asp Ser Asp Pro Pro Ser Gly Asp Asp Val Asn Leu Leu Tyr
85 90 95
Gln Phe Ile Asp His Ser His Lys Leu Met Val Leu Thr Gly Ala Gly
100 105 110
Ile Ser Thr Glu Ser Gly Ile Pro Asp Tyr Arg Ser Pro Asn Gly Ala
115 120 125
Tyr Ser Ser Gly Phe Lys Pro Ile Thr His Gln Asp Phe Val Arg Ser
130 135 140
Ser Arg Ala Arg Lys Arg Tyr Trp Ala Arg Ser Tyr Ala Gly Trp Arg
145 150 155 160
Arg Phe Thr Ala Ala Lys Pro Gly Pro Thr His Thr Ala Leu Ala Ala
165 170 175
Leu Glu Lys Val Gly Arg Ile Asn Phe Met Val Thr Gln Asn Val Asp
180 185 190
Arg Leu His His Arg Ala Gly Ser Asn Pro Leu Glu Ile His Gly Thr
195 200 205
Val Tyr Ser Val Ile Cys Leu Gln Cys Gly Phe Ser Phe Ser Arg Asn
210 215 220
Val Phe Gln Asp Leu Val Lys Thr Leu Asn Pro Lys Trp Ala Leu Ala
225 230 235 240
Val Glu Ser Leu Asp Cys Gly Asn Pro Gly Ser Asp Lys Ser Phe Gly
245 250 255
Met Gln Gln Arg Pro Asp Gly Asp Ile Glu Ile Asp Glu Lys Tyr Trp
260 265 270
Glu Glu Asp Phe His Ile Pro Asn Cys Gln Lys Cys Asp Gly Val Leu
275 280 285
Lys Pro Asp Val Val Phe Phe Gly Asp Asn Val Pro Lys Asp Arg Ala
290 295 300
Asn Lys Ala Met Glu Ala Ala Lys Gly Cys Asp Ala Leu Leu Val Leu
305 310 315 320
Gly Ser Ser Leu Met Thr Met Ser Ala Phe Arg Leu Val Arg Ala Ala
325 330 335
Ser Glu Ala Gly Ala Ala Thr Ala Ile Val Asn Ile Gly Val Thr Arg
340 345 350
Ala Asp Asp Phe Val Pro Leu Lys Ile Ser Ala Arg Cys Gly Glu Ile
355 360 365
Leu Pro Arg Leu Leu Asp Val Gly Cys Leu Thr Val Pro Ala Val Ile
370 375 380
Arg
385

Claims (4)

1.一种Sir2家族基因或蛋白在调控植物萜类物质产量中的应用,其特征在于,所述Sir2家族基因为LcSRT1基因或LcSRT2基因;
所述LcSRT1基因如Seq ID No:1所示的核苷酸序列;
所述LcSRT2基因如Seq ID No:2所示的核苷酸序列;
所述Sir2家族蛋白为LcSRT1基因的编码蛋白或LcSRT2基因的编码蛋白;
所述LcSRT1基因的编码蛋白如Seq ID No:3所示的氨基酸序列;
所述LcSRT2基因的编码蛋白如Seq ID No:4所示的氨基酸序列;
所述植物为烟草;
所述萜类物质为单萜类物质;所述单萜类物质为(1R)-(+)-α-蒎烯、D-柠檬烯、桉树脑、β-环柠檬醛和/或香叶醛。
2.根据权利要求1所述应用,其特征在于,所述应用为将Sir2家族基因在植物中进行转基因过表达来增加萜类物质产量。
3.根据权利要求1所述的应用,其特征在于,所述Sir2家族基因或蛋白来源于山苍子。
4.根据权利要求2所述的应用,其特征在于,增加的所述萜类物质,通过提取进一步用于制备植物精油、香水、食品调味品、农药或杀虫剂。
CN202110267837.2A 2021-03-11 2021-03-11 一种Sir2家族基因或蛋白在调控植物萜类物质产量中的应用 Active CN112760332B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110267837.2A CN112760332B (zh) 2021-03-11 2021-03-11 一种Sir2家族基因或蛋白在调控植物萜类物质产量中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110267837.2A CN112760332B (zh) 2021-03-11 2021-03-11 一种Sir2家族基因或蛋白在调控植物萜类物质产量中的应用

Publications (2)

Publication Number Publication Date
CN112760332A CN112760332A (zh) 2021-05-07
CN112760332B true CN112760332B (zh) 2022-05-13

Family

ID=75690966

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110267837.2A Active CN112760332B (zh) 2021-03-11 2021-03-11 一种Sir2家族基因或蛋白在调控植物萜类物质产量中的应用

Country Status (1)

Country Link
CN (1) CN112760332B (zh)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2440821C2 (ru) * 2007-10-01 2012-01-27 Колгейт-Палмолив Компани Композиции для ухода за полостью рта, содержащие растительные экстракты

Also Published As

Publication number Publication date
CN112760332A (zh) 2021-05-07

Similar Documents

Publication Publication Date Title
Booth et al. Terpene synthases from Cannabis sativa
Wen et al. Using the combined analysis of transcripts and metabolites to propose key genes for differential terpene accumulation across two regions
Iijima et al. Characterization of geraniol synthase from the peltate glands of sweet basil
Keilwagen et al. The terpene synthase gene family of carrot (Daucus carota L.): identification of QTLs and candidate genes associated with terpenoid volatile compounds
Schnee et al. The maize gene terpene synthase 1 encodes a sesquiterpene synthase catalyzing the formation of (E)-β-farnesene,(E)-nerolidol, and (E, E)-farnesol after herbivore damage
Du et al. Volatile composition and classification of Lilium flower aroma types and identification, polymorphisms, and alternative splicing of their monoterpene synthase genes
Matarese et al. Analysis of the expression of terpene synthase genes in relation to aroma content in two aromatic Vitis vinifera varieties
Chen et al. The family of terpene synthases in plants: a mid‐size family of genes for specialized metabolism that is highly diversified throughout the kingdom
Sharon‐Asa et al. Citrus fruit flavor and aroma biosynthesis: isolation, functional characterization, and developmental regulation of Cstps1, a key gene in the production of the sesquiterpene aroma compound valencene
Kollner et al. The variability of sesquiterpenes emitted from two Zea mays cultivars is controlled by allelic variation of two terpene synthase genes encoding stereoselective multiple product enzymes
Koeduka et al. The multiple phenylpropene synthases in both Clarkia breweri and Petunia hybrida represent two distinct protein lineages
Zhuang et al. Dynamic evolution of herbivore‐induced sesquiterpene biosynthesis in sorghum and related grass crops
Tsaballa et al. Use of the de novo transcriptome analysis of silver-leaf nightshade (Solanum elaeagnifolium) to identify gene expression changes associated with wounding and terpene biosynthesis
Niu et al. Cloning, characterization, and functional analysis of acetyl-CoA C-acetyltransferase and 3-hydroxy-3-methylglutaryl-CoA synthase genes in Santalum album
Toluei et al. Comparative chemical composition analysis of essential oils in different populations of Damask rose from Iran
Bustos‐Segura et al. Transcriptome analysis of terpene chemotypes of Melaleuca alternifolia across different tissues
Huang et al. De novo transcriptome sequencing of Camellia sasanqua and the analysis of major candidate genes related to floral traits
Panara et al. Comparative transcriptomics between high and low rubber producing Taraxacum kok-saghyz R. plants
Ibdah et al. Carrot volatile terpene metabolism: terpene diversity and biosynthetic genes
Li et al. Molecular cloning and expression analysis of a terpene synthase gene, HcTPS2, in Hedychium coronarium
Bao et al. Allelic variation of terpene synthases drives terpene diversity in the wild species of the Freesia genus
Abbas et al. Metabolome and transcriptome analysis of terpene synthase genes and their putative role in floral aroma production in Litchi chinensis
TW200300171A (en) Sesquiterpene synthases from grand fir (abies grandis), and methods of use
Eisen et al. Among‐and within‐population variation in morphology, rewards, and scent in a hawkmoth‐pollinated plant
Khakdan et al. Water deficit stress responses of monoterpenes and sesquiterpenes in different Iranian cultivars of basil

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant