CN112760108A - 一种提高煤热解焦油品质和可燃气体产率的方法 - Google Patents

一种提高煤热解焦油品质和可燃气体产率的方法 Download PDF

Info

Publication number
CN112760108A
CN112760108A CN202011452977.9A CN202011452977A CN112760108A CN 112760108 A CN112760108 A CN 112760108A CN 202011452977 A CN202011452977 A CN 202011452977A CN 112760108 A CN112760108 A CN 112760108A
Authority
CN
China
Prior art keywords
coal
pyrolysis
semicoke
yield
tar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011452977.9A
Other languages
English (en)
Inventor
靳立军
鲍振兴
胡浩权
朱家龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN202011452977.9A priority Critical patent/CN112760108A/zh
Publication of CN112760108A publication Critical patent/CN112760108A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Industrial Gases (AREA)

Abstract

本发明提供了一种提高煤热解焦油品质和可燃气体产率的方法,属于能源技术领域。该方法通过合理利用生物质半焦具有一定的催化提质活性的特点,将固定床中的煤原料与生物质半焦排布成上下两层式结构,生物质半焦在下层,煤原料在上层,于400‑1000℃在固定床上进行催化热解反应,该方法实现了煤热解挥发分和生物质半焦充分接触,促进了煤热解挥发分二次反应充分进行,达到了提高轻质焦油含量、产率和可燃气体产率的目的。该方法为提高煤热解焦油和气体品质提供了新途径。

Description

一种提高煤热解焦油品质和可燃气体产率的方法
技术领域
本发明涉及一种提高煤热解焦油品质和可燃气体产率的方法,属于能源技术领域。
背景技术
当今世界煤作为最主要的化石能源之一,在人类社会发展的过程中占据着重要的地位。由于大量的煤炭被直接燃烧利用造成了严重的环境污染问题,因此开展煤炭清洁高效利用势在必行。热解技术是实现煤炭清洁高效利用的重要途径之一。但是由于煤直接热解得到的焦油中重质组分含量高,导致热解过程管道堵塞、设备腐蚀以及油尘分离困难等,而轻质组分含量(沸点小于360℃)相对较少,尤其是富含高附加值精细化学品的产率较低,同时,热解气体中可燃气体(如氢气、甲烷、乙烷乙烯等)含量和产率较低,不利于热解气体的有效利用。因此提高煤焦油的轻质焦油含量和热解气体中可燃气体的收率、降低煤焦油中重质组分含量是煤炭热解过程中需要解决的重要问题。生物质作为一种可再生的、来源途径广的能源,其热解后产生的炭材料与传统的煤基炭材料相比,在降低碳排放和实现资源循环利用方面具有重要的意义。因此,利用生物质热解半焦对热解过程中的产物调控,尤其是在提升热解焦油品质和提高热解气体中可燃气体产率等方面具有非常重要的实际应用价值。
发明内容
针对目前存在的问题,本发明以不同热解温度下的生物质半焦为催化剂,利用生物质半焦中的活性位点来促进煤热解过程中的重质焦油发生二次裂解等反应,同时借助生物质半焦的多孔结构延长气相产物在生物质半焦表面的停留时间,进一步促进大分子自由基的分解。煤热解产生的焦油通过生物质半焦的催化作用后,降低了焦油中的重质组分含量,产生更多的轻质焦油和高热值的气体。本发明在固定床装置中,将煤粉与生物质半焦采用上下两层的紧密排布方式,达到了提高煤热解焦油品质和可燃气体产率的目的。
本发明采用的技术方案为:在一定的温度下制备生物质半焦,将用于进行反应的生物质半焦和煤原料干燥后研磨筛分至相同目数,将煤与生物质半焦采取上下两层排布的方式,在固定床装置中进行热解反应,反应温度为400-1000℃。热解后的半焦、焦油、水及气体产物分离后称重再分别收集。
进一步的,煤原料包含泥煤、褐煤、烟煤和无烟煤中任一种或多种。生物质半焦通过农作物、农作物废弃物、木材、木材废弃物中任一种或多种制得。更优选的,花生壳热解半焦碳含量高,对煤热解具有较好的催化提质效果。白音华煤作为一种煤阶处于中间的煤种,适合用于本发明的实施。
进一步的,本发明所述的上下两层排布方式是将煤原料和生物质半焦排布成上下两层结构,即采用花生壳半焦在下层,煤原料在上层的形式。
进一步的,本发明所述的生物质半焦和煤进料比介于0.05-2.0之间。优选的,进料比为0.1-1.0。
本发明所述的反应温度为400-1000℃,优选温度为500-800℃。
本发明的有益效果为:在生物质半焦催化煤热解过程中,由于生物质半焦比表面积大,使得煤热解产生的挥发分的停留时间增加,进而使得更多的大分子基团发生二次反应,分解成为更多的小分子自由基。此外,生物质半焦提供更多的活性位点,当煤热解产生的挥发分通过半焦层时,生物质半焦中的活性位点会促进大分子基团的二次裂解,从而产生更多的轻质焦油和可燃气体。该方法对于利用生物质半焦催化煤热解来实现煤炭的清洁、高效利用有着重要的意义。
附图说明
图1为生物质热解半焦催化煤热解焦油的上下两层结构示意图;
图2为不同温度制得的生物质半焦催化煤热解产物产率;
图3为不同温度制得的生物质半焦催化煤热解产生的轻质焦油产率;
图4为不同温度制得的生物质半焦催化煤热解产生的焦油中各组分含量分布;
图5为不同温度制得的生物质半焦催化煤热解产生的气体产率。
具体实施方式
下面通过三个具体的实施例对本方法进一步地说明,但是并不因此而限制本发明,下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。
下述实施例中所述试验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从商业途径获得。
附图1显示了一种提高煤热解焦油品质和可燃气体产率的方法。将600-800℃花生壳热解后产生的半焦作为生物质半焦,然后研磨筛分至与煤原料相同的目数,在600℃、升温速率20℃/s、生物质半焦和煤进料比为1/10、进料排布方式为上下两层式排布(生物质半焦在下层,煤在上层)的条件下,在固定床上进行花生壳半焦催化煤热解挥发产物实验,煤热解后的半焦、焦油及气体产物分离后称重再分别收集。
在上述方法的优选实施例中,选取白音华煤作为热解原料。生物质催化煤热解挥发物的提质实验是在内径为18mm、长度为340mm的石英管固定床反应器中进行。石英管上端通入200mL/min的N2,在石英管的恒温区下端,使用石英棉作为支撑,白音华煤和花生壳半焦之间使用石英棉隔开,方便后续的半焦收集。在恒温区放置热解反应的原料。采用模拟蒸馏对热解提质后的焦油进行馏分分析,其中170℃前的馏分为定义为轻油;170~210℃的馏分为酚油;210~230℃的馏分为萘油;230~300℃的馏分为洗油;300~360℃的馏分为蒽油;360℃后的馏分为沥青。其中,轻质焦油含量定义为360℃以下的组分含量。热解产生的气体经气袋收集后送气相色谱分析其中的组成及含量。
热解产物产率(干燥无灰基)计算如下:
Figure BDA0002832109480000031
Figure BDA0002832109480000032
Figure BDA0002832109480000033
Ygas=100%-Ytar-Ywater-Ychar
Ylight tar=Ytar×w
其中,Ytar、Ywater、Ychar、Ygas和Ylighttar是焦油产率、水产率、半焦产率、气体产率及轻质焦油产率,%;Wtar是焦油质量,g;W0是煤质量,g;w是煤焦油中轻质组分含量,%;Aad是煤中的灰分;Mad是煤中的水分;Wwater是水质量,g;Wchar是半焦质量,g。
实施例1
首先进行花生壳半焦的制备。在石英管中加入2.5g花生壳原料,热解温度为600℃、升温速率20℃/s、热解时间20min、氮气流率200mL/min条件下进行反应,待反应结束后取出反应器中剩余的物料,得到600℃下的花生壳半焦。
将制备的花生壳半焦和白音华煤研磨至60目。在石英管反应器以上下两层的方式加入2.5g白音华煤和0.25g花生壳半焦(花生壳半焦在下层,白音华煤在上层)。催化热解实验在600℃、升温速率20℃/s、热解时间20min、氮气流率200mL/min的条件下进行。反应后的气体产物经-20℃冷阱冷凝后收集液体产物,分离其中的水产物后得到油品,分别计算各个产物产率,并将所得焦油和气体进行分析。结果显示,白音华煤在600℃下热解产生的挥发物经过600℃下制得的花生壳半焦催化提质后,焦油产率和轻质焦油产率均高于白音华煤在600℃下非催化热解下的产率(附图2和3),说明焦油品质显著提升。从具体焦油馏分分布来看,煤热解产生的焦油经过花生壳半焦催化后,轻油、酚油、萘油等含量明显提高,沥青含量得到降低(图4)。
从气体组成来看,白音华煤600℃下热解挥发物经过600℃下制得的花生壳半焦提质后,氢气、甲烷、乙烯和乙烷产率高于白音华煤在600℃下非催化热解气体产物产率(图5)。
实施例2
首先进行花生壳半焦的制备。在石英管中加入2.5g花生壳原料,在热解温度700℃、升温速率20℃/s、热解时间20min、氮气流率200mL/min条件下制得700℃下的花生壳半焦。
将制备的花生壳半焦和白音华煤研磨至60目,在石英管反应器以上下两层的方式加入2.5g白音华煤和0.25g花生壳半焦(花生壳半焦在下层,白音华煤在上层)。催化热解实验在600℃、升温速率20℃/s、热解时间20min、氮气流率200mL/min的条件下进行。反应后的气体产物经-20℃冷阱冷凝后收集液体产物,分离其中的水产物后得到油品,分别计算各个产物产率,并将所得焦油和气体进行分析。结果显示,白音华煤在600℃下热解挥发物经过700℃下制得的花生壳半焦催化提质后,热解焦油产率和轻质焦油产率均高于白音华煤在600℃下非催化热解产率,说明焦油品质显著提升。在700℃下制得的花生壳半焦催化白音华煤在600℃下热解所得的气体产物中,甲烷和乙烷产率高于白音华煤在600℃下热解所得的气体产物中的甲烷和乙烷产率。
实施例3
首先进行花生壳半焦的制备。在石英管中加入2.5g花生壳原料,在热解温度为800℃、升温速率20℃/s、热解时间20min、氮气流率200mL/min条件下制得800℃下的花生壳半焦。
将制备的花生壳半焦和白音华煤研磨至60目,在石英管反应器以上下两层的方式加入2.5g白音华煤和0.25g花生壳半焦(花生壳半焦在下层,白音华煤在上层)。催化热解实验在600℃、升温速率20℃/s、热解时间20min、氮气流率200mL/min的条件下进行。反应后的气体产物经-20℃冷阱冷凝后收集液体产物,分离其中的水产物后得到油品,分别计算各个产物产率,并将所得焦油和气体进行分析。结果显示,白音华煤在600℃下热解挥发分经过800℃下制得的花生壳半焦的催化作用后,焦油产率和轻质焦油产率均高于白音华煤在600℃下非催化热解焦油产率。焦油中的酚油、萘油、洗油和蒽油的含量提高,对应沥青质含量降低。催化热解所得的气体产物中的氢气、甲烷、乙烯和乙烷产率高于白音华煤在600℃下单独热解气体产率。
对比例
在石英管反应器中加入2.5g白音华煤。热解实验在600℃、升温速率20℃/s、热解时间20min、氮气流率200mL/min的条件下进行。反应后的气体产物经-20℃冷阱冷凝后收集液体产物,分离其中的水产物后得到油品,分别计算各个产物产率,并将所得焦油和气体进行分析。
以上所述,仅为本发明创造较佳的具体实施方式,但本发明创造的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明创造披露的技术范围内,根据本发明创造的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明创造的保护范围之内。

Claims (5)

1.一种提高煤热解焦油品质和可燃气体产率的方法,其特征在于,将煤原料和生物质半焦按照上下两层式排布方式装填在固定床上,在一定反应温度、一定升温速率下进行热解,热解过程中产生的高温挥发分经冷阱冷却后收集;所述的上下两层式排布方式采用生物质半焦在下层,煤在上层的结构。
2.根据权利要求1所述的方法,其特征在于,所述煤原料包含泥煤、褐煤、烟煤和无烟煤中任一种或多种;生物质半焦通过农作物、农作物废弃物、木材、木材废弃物中任一种或多种制得。
3.根据权利要求1所述的方法,其特征在于,生物质半焦和煤的进料比为0.05-2.0。
4.根据权利要求1所述的方法,其特征在于,所述的反应温度为400-1000℃。
5.根据权利要求4所述的方法,其特征在于,所述的反应温度为500-800℃。
CN202011452977.9A 2020-12-11 2020-12-11 一种提高煤热解焦油品质和可燃气体产率的方法 Pending CN112760108A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011452977.9A CN112760108A (zh) 2020-12-11 2020-12-11 一种提高煤热解焦油品质和可燃气体产率的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011452977.9A CN112760108A (zh) 2020-12-11 2020-12-11 一种提高煤热解焦油品质和可燃气体产率的方法

Publications (1)

Publication Number Publication Date
CN112760108A true CN112760108A (zh) 2021-05-07

Family

ID=75693639

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011452977.9A Pending CN112760108A (zh) 2020-12-11 2020-12-11 一种提高煤热解焦油品质和可燃气体产率的方法

Country Status (1)

Country Link
CN (1) CN112760108A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113831927A (zh) * 2021-10-25 2021-12-24 西安建筑科技大学 一种利用生物质来提高低变质煤热解焦油产率的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106987261A (zh) * 2017-04-28 2017-07-28 神雾科技集团股份有限公司 一种煤粉和生物质热解制备还原气和活性炭的系统和方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106987261A (zh) * 2017-04-28 2017-07-28 神雾科技集团股份有限公司 一种煤粉和生物质热解制备还原气和活性炭的系统和方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113831927A (zh) * 2021-10-25 2021-12-24 西安建筑科技大学 一种利用生物质来提高低变质煤热解焦油产率的方法

Similar Documents

Publication Publication Date Title
Al-Rahbi et al. Hydrogen-rich syngas production and tar removal from biomass gasification using sacrificial tyre pyrolysis char
Shah et al. Co-pyrolysis of cotton stalk and waste tire with a focus on liquid yield quantity and quality
Ighalo et al. Flash pyrolysis of biomass: a review of recent advances
Wu et al. Co-pyrolysis behavior of microalgae biomass and low-quality coal: products distributions, char-surface morphology, and synergistic effects
Chen et al. Co-pyrolysis of light bio-oil leached bamboo and heavy bio-oil: Effects of mass ratio, pyrolysis temperature, and residence time on the biochar
Chen et al. Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating
Xin et al. Two-step gasification of cattle manure for hydrogen-rich gas production: effect of biochar preparation temperature and gasification temperature
Wang et al. Upgrading gas and oil products of the municipal solid waste pyrolysis process by exploiting in-situ interactions between the volatile compounds and the char
Sakhiya et al. Suitability of rice straw for biochar production through slow pyrolysis: Product characterization and thermodynamic analysis
Li et al. Semi-coke as solid heat carrier for low-temperature coal tar upgrading
Mong et al. Progress and challenges in sustainable pyrolysis technology: Reactors, feedstocks and products
Xu et al. Effects of operating parameters on products yield and volatiles composition during fast pyrolysis of food waste in the presence of hydrogen
Chang et al. Co-gasification of digestate and lignite in a downdraft fixed bed gasifier: Effect of temperature
Li et al. Microwave pyrolysis coupled with conventional pre-pyrolysis of the stalk for syngas and biochar
Joardder et al. The utilization of waste date seed as bio-oil and activated carbon by pyrolysis process
Li et al. A novel sludge pyrolysis and biomass gasification integrated method to enhance hydrogen-rich gas generation
Zhu et al. Comparative study on the evolution of physicochemical characteristics of biochar produced from bio-oil distillation residue under different induction atmosphere
Guo et al. Catalytic fast pyrolysis of Arundo donax in a two-stage fixed bed reactor over metal-modified HZSM-5 catalysts
Wang et al. High-quality tar production from coal in an integrated reactor: Rapid pyrolysis in a drop tube and downstream volatiles upgrading over char in a moving bed
Baloch et al. Catalytic co-liquefaction of sugarcane bagasse and polyethylene for bio-oil production under supercritical conditions: Effect of catalysts
Zhu et al. Upgrading biochar from bio-oil distillation residue by adding bituminous coal: Effects of induction conditions on physicochemical properties
Vamvuka et al. H2-rich gas production from steam gasification of a winery waste and its blends with industrial wastes. Effect of operating parameters on gas quality and efficiency
Guo et al. Co-pyrolysis characteristics of forestry and agricultural residues and waste plastics: thermal decomposition and products distribution
Garcıa-Garcıa et al. Unconverted chars obtained during biomass gasification on a pilot-scale gasifier as a source of activated carbon production
CN112063394A (zh) 一种废弃生物质气化生产富氢合成气的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210507