CN112751343A - 基于分布式协同控制的配电网双层优化方法 - Google Patents

基于分布式协同控制的配电网双层优化方法 Download PDF

Info

Publication number
CN112751343A
CN112751343A CN202011539284.3A CN202011539284A CN112751343A CN 112751343 A CN112751343 A CN 112751343A CN 202011539284 A CN202011539284 A CN 202011539284A CN 112751343 A CN112751343 A CN 112751343A
Authority
CN
China
Prior art keywords
distribution network
power
power distribution
microgrid
energy storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011539284.3A
Other languages
English (en)
Other versions
CN112751343B (zh
Inventor
徐艳春
张进
汪平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Zhongxin Funeng New Energy Technology Co ltd
Original Assignee
China Three Gorges University CTGU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Three Gorges University CTGU filed Critical China Three Gorges University CTGU
Priority to CN202011539284.3A priority Critical patent/CN112751343B/zh
Publication of CN112751343A publication Critical patent/CN112751343A/zh
Application granted granted Critical
Publication of CN112751343B publication Critical patent/CN112751343B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

基于分布式协同控制的配电网双层优化方法,结合含高渗透率分布式电源的配电网特征,分析适用于配电网的分布式电源控制方式,建立双层优化模型;双层优化模型的上层模型对一致性算法权重进行改进,以微电网容量利用比为一致性变量,维持配电网电压稳定性;双层优化模型的下层模型中考虑微电网内不同设备运行约束条件,将可再生能源的实时预测数据和模型预测控制方法相结合,进行滚动优化,维持配电网运行经济性。与传统的配电网优化控制模型相比,本发明方法考虑到高渗透率可再生能源的出力不确定性,将配电网电压稳定性问题与运行经济问题解耦,可以在配电网电压稳定前提下实现运行经济成本最低,具有较强的鲁棒性。

Description

基于分布式协同控制的配电网双层优化方法
技术领域
本发明涉及涉及含高渗透率分布式电源的配电网优化控制技术领域,具体涉及一种基于分布式协同控制的配电网双层优化方法。
背景技术
随着电力系统规模的不断扩大和具有强随机性、波动性的可再生能源大规模接入,电力系统能量管理和运行控制面临着严峻挑战,传统配电网的调度与运行方法已经无法满足社会对电力系统的需求。集中式控制方式需要中央控制器根据配电网内各个设备上传的自身信息进行集中计算,然后将命令下发到各个设备中,可靠性差;在分散式控制方式中,各个设备可以根据自身信息进行更新控制,协同性差。相对于传统的集中式和分散式控制来说,分布式控制系统具有更好的控制鲁棒性、通信灵活性和系统可扩展性,可以实现电力元件的“即插即用”,灵活方便。采用一致性协议的分布式控制的基本思想是:系统中的控制器通过通讯链路与相邻的控制器信息交互,并根据所得信息及自身状态做出决策,最终实现所有对象的状态一致。分布式协同控制已在多个工程领域得到大量研究和应用,例如自动发电控制、无人机编队飞行、多智能体的趋同控制等问题。
风机与光伏出力具有时间互补的特性,将微电网作为整合分布式电源(distributed generator,DG)的有效单元一定程度上降低可再生能源出力的波动,同时使微电网不必直接面对数量庞大、分散接入的DG,为高比例的可再生能源接入运行提供了思路。在现有文献研究中,将配电网内DG的耗量微增率设为一致性变量,通过一致性算法可以实现运行成本最低。在自动发电控制领域将一致性算法与贪婪策略相结合,有效提高了一致性算法在动态随机环境中的适应性。虽然基于一致性算法的分布式控制方法在配电网中DG运行控制中已经出现,但是只能做到运行成本最低或者维持配电网电压稳定性的单一目标,而无法通过分布式控制方式在配电网电压稳定前提下实现运行成本最低。因而研究一种基于分布式协同控制的配电网双层优化方法具有重要的意义。
发明内容
针对现有高渗透率DG接入配电网后,传统控制方式无法有效处理配电网电压稳定性与运行成本的问题。本发明提供了一种基于分布式协同控制的配电网双层优化方法,能够将配电网的电压稳定性与运行经济性问题解耦,降低可再生能源出力波动性的影响,实现电力元件“即插即用”等技术要求。
本发明采取的技术方案为:
基于分布式协同控制的配电网双层优化方法,
步骤1:结合含高渗透率分布式电源的配电网特征,分析适用于配电网的分布式电源控制方式,建立双层优化模型;
步骤2:双层优化模型的上层模型对一致性算法权重进行改进,以微电网容量利用比为一致性变量,维持配电网电压稳定性;
步骤3:双层优化模型的下层模型中考虑微电网内不同设备运行约束条件,将可再生能源的实时预测数据和模型预测控制方法相结合,进行滚动优化,维持配电网运行经济性。
通过上述步骤,实现配电网的电压稳定性与运行经济双层优化。
所述步骤1中,含高渗透率分布式电源的配电网特征包括:
①、可再生能源的出力占全网发电机出力比重大,具有随机性和波动性;
②、分布式电源接入位置灵活,能够通过并网逆变器控制其输出功率;
③、光伏与风机出力在时间上具有互补的特征。
所述步骤1中,分布式电源控制方式包括集中式控制方式、分散式控制方式,其中,集中式控制方式指的是通过中央控制器与各个分布式电源建立通讯链路;分散式控制方式指的是各个分布式电源只根据自身信息更新控制。通过基于分布式协同控制的配电网双层优化方法可以使各个受控节点的运行状态趋向于一致,达到特定的控制目标,同时具有良好的经济性和可扩展性。
分布式控制中通讯链路的建立可以用图论知识来解释:
G={V,ε,A}为一个多智能体网络的拓扑结构图,其中V={v1,…,vn}表示具有n个节点的分布式拓扑结构点集。,
Figure BDA0002854094680000021
表示图G的有向边集;图G的邻接矩阵A(G)计算如公式(1)所示:
A(G)={aij}n×n (1)
其中,对角线元素aii为0,非对角元素为aij表示顶点i、j之间边的权重。
图G的度矩阵D(G)计算如公式(2)所示:
D(G)=diag(d1,…,dn) (2)
其中,di表示节点vi的度。
图G的Laplace矩阵计算公式如公式(3)所示:
L(G)=D(G)-A(G)=[lij] (3)
其中,D(G)为图G的度矩阵;A(G)为图G的邻接矩阵;lij为图G的Laplace矩阵中对应位置元素。
所述步骤2中,上层模型由配电网以及各个微电网对应的智能体组成,其中智能体之间存在通信链路可以互相通信,主要涉及一致性算法。各个智能体通过一致性算法对所在微电网的有功出力进行迭代求解,实现对节点电压的分布式协同控制。在一致性算法中,以微电网容量利用比设为一致性变量。上层模型中一致性变量迭代计算公式如公式(4)所示:
Figure BDA0002854094680000031
其中,k为迭代次数;N为微电网数量;m为微电网编号;
Figure BDA0002854094680000032
表示微电网j在第k次迭代后更新得到的容量利用比;dj,m表示微电网j接收到微电网m信息
Figure BDA0002854094680000033
的权重;
Figure BDA0002854094680000034
为在第k次迭代时,微电网i容量利用比的参考值;ω为迭代步长,其取值范围为0~1,一般而言,迭代步长越大则收敛速度越快,但收敛精度越差。
为计算微电网容量利用比参考值,定义电压控制性能评估函数如公式(5)所示:
Figure BDA0002854094680000035
其中,VCP,i表示待控制微电网接入节点i电压。
根据网络潮流方程可得公式(6):
Figure BDA0002854094680000036
其中,VCP,i表示待控制微电网接入节点i电压;Gii表示并网点i处的网络自导纳;Pi表示微电网i的有功出力。
所述步骤2中,上层模型使用一致性算法,将微电网容量利用比设为一致性变量,其中微电网i容量利用比的参考值
Figure BDA0002854094680000037
计算方法如公式(7)所示:
Figure BDA0002854094680000038
其中:fv,i为电压控制性能评估函数;VCP,i为被控节点i电压;Pi为节点i注入有功功率;
Figure BDA0002854094680000039
为微电网i容量利用比;Gii为并网点i处的网络自导纳;Si为微电网i容量;
Figure BDA00028540946800000310
为微电网i的功率因数。
根据不同微电网向外传输信息的不同重要程度,对一致性算法中通讯链路所占权重进行改进,将接入控制节点微电网与其他微电网的通讯链路权重加大,权重的设置应遵守公式(8)和公式(9),即:
Figure BDA0002854094680000041
Figure BDA0002854094680000042
其中:zi,j为微电网i与微电网j之间的通讯链路权重因子;lij为通信网络拓扑图的Laplace矩阵对应位置元素;di,j为微电网i与微电网j之间的通讯链路权重。
根据一致性算法,定义第j个微电网的容量利用比更新公式,如式(10)所示:
Figure BDA0002854094680000043
其中:k为迭代序列;
Figure BDA0002854094680000044
Figure BDA0002854094680000045
分别为第k+1次和第k次微电网容量利用比矩阵;D(k)为第k次迭代通讯线路权重矩阵;ω表示迭代步长;
Figure BDA0002854094680000046
为第k次迭代微电网容量利用比参考矩阵。
所述步骤3中,下层模型由微电网以及微电网对应的智能体组成,可以实现微电网运行成本最低。考虑微电网内风机、光伏、柴油发电机和储能装置的约束条件,如公式(11)所示:
PRES(t)+Pfuel(t)+PESS(t)-Pload(t)=Ptotal(t) (11)
其中,PRES(t)、Pfuel(t)和PESS(t)分别为t时刻微电网内可再生能源、柴油发电机和储能装置的有功出力;Pload(t)为t时刻微电网内负荷消耗功率;Ptotal(t)为t时刻上层控制下发的有功出力。
微电网内,风机、光伏、柴油发电机有功出力应满足有功出力上下界限约束,如公式(12)所示:
Figure BDA0002854094680000047
其中,Pwind(t)、Ppv(t)和Pfuel(t)分别表示t时刻微电网内风机、光伏和柴油发电机的有功出力;
Figure BDA0002854094680000048
Figure BDA0002854094680000049
分别表示风机和光伏t时刻有功出力的日前预测数据;Pfuel,max为柴油发电机最大有功出力。
微电网内柴油发电机的有功出力变化应符合其爬坡约束限制,如公式(13)所示:
Figure BDA0002854094680000051
其中,Pfuel(t)和Pfuel(t+1)分别为t时刻和t+1时刻柴油发电机有功出力;
Figure BDA0002854094680000052
Figure BDA0002854094680000053
分别为柴油发电机最大下爬坡功率和最大上爬坡功率;ΔT为单位时间。
微电网内储能装置运行应满足公式(14)和公式(15),即:
Figure BDA0002854094680000054
Figure BDA0002854094680000055
其中,PESS(t)为t时刻储能装置有功出力;
Figure BDA0002854094680000056
Figure BDA0002854094680000057
分别表示储能装置最大充电功率和最大放电功率;σ表示储能装置的自放电率;ηc和ηd分别表示储能装置充电效率和放电效率;Q表示储能装置总容量;SOCmin和SOCmax表示储能装置SOC(State of Charge)限制;SOC(t)和SOC(t+1)分别表示t时刻和t+1时刻储能装置SOC数值;ΔT为单位时间。所述步骤3中,储能装置运行成本包括储能单元的运行维护和折旧费用,不计充电成本,可以等效为充放电功率的二次函数,如公式(16)所示:
Figure BDA0002854094680000058
其中,CESS为储能装置运行成本函数;PESS(t)为t时刻储能装置的充放电功率;α为储能成本系数。
柴油发电机的运行成本与发电机的有功出力有关,成本函数如公式(17)所示:
Figure BDA0002854094680000059
其中,Cfuel为柴油发电机运行成本函数;Pfuel(t)为t时刻柴油发电机有功出力;a、b、c分别为柴油发电机成本的二次项系数、一次项系数和常数项系数。
对于可再生能源成本用弃风弃光成本来代替,如公式(18)所示:
Figure BDA00028540946800000510
其中,CRES表示可再生能源成本函数;PRES(t)为t时刻可再生能源有功出力;
Figure BDA00028540946800000511
为预测得到的t时刻可再生能源出力;γ为弃风弃光惩罚项。
所述步骤3中,微电网运行成本函数为二次函数,求取符合约束条件下日前调度各设备出力安排属于二次规划问题,可以使用商业求解器进行求解。下层模型优化目标函数如公式(19)所示:
Figure BDA0002854094680000061
其中,T为优化时间段;PRES(t)、Pfuel(t)、PESS(t)分别为t时刻微电网内可再生能源、柴油发电机和储能装置的有功出力;CESS为储能装置运行成本函数;Cfuel为柴油发电机运行成本函数;CRES表示可再生能源成本函数。
所述步骤3中,为防止柴油发电机因爬坡功率或输出功率等限制,无法执行调度命令的情况发生。本发明采用模型预测控制方法,结合可再生能源的实时预测数据,对微电网内部各个设备出力滚动优化,目标函数如公式(20)所示,补充添加约束条件如公式(21)所示。具体方式如下:
微电网运行过程中,可再生能源的小幅度出力波动可以通过储能装置进行平滑调节,但对于短时间内的剧烈波动还是需要柴油发电机出力进行补充。为避免储能装置在短时间内由于成本较低而出现过充过放,导致调整裕量不足。对求解目标函数和约束条件做出改进。改进后的目标函数如公式(20)所示:
Figure BDA0002854094680000062
其中,T为优化时间段;PRES(t)、Pfuel(t)、PESS(t)分别为t时刻微电网内可再生能源、柴油发电机和储能装置的有功出力;CESS为储能装置运行成本函数;Cfuel为柴油发电机运行成本函数;CRES表示可再生能源成本函数;
Figure BDA0002854094680000063
表示日前计划中t时刻的储能装置充电点功率;λ表示储能装置充放电功率惩罚项,数值越大表示该阶段优化结果越接近全局优化结果,反之则接近局部优化结果。
约束条件添加储能SOC状态约束,如公式(21)所示:
SOC(t)≤β·SOC(t)fore (21)
其中,β为储能SOC限制因子;SOC(t)为t时刻储能装置SOC数值;SOC(t)fore表示日前计划中t时刻储能装置SOC数值。日前调度计划可以利用日前1h级的负荷及可再生能源预测数据按照公式(19)计算得到。
步骤4:建立含有风机、光伏、柴油发电机以及储能装置多微网的配电网模型,通过双层优化方法实现提高配电网电压稳定性,降低运行经济成本。
本发明一种基于分布式协同控制的配电网双层优化方法,技术效果如下:
1)、本发明的双层优化方法中各个微电网之间使用分布式协同控制,无中央处理器,通信成本低,协同性好,可以实现电力元件的“即插即用”。
2)、本发明对一致性算法中迭代过程所使用的权重因子做出改进,加快了算法收敛速度。
3)、本发明针对高渗透率可再生能源出力不确定性问题,利用模型预测控制和可再生能源最新预测数据对微电网内各设备出力合理分配,降低可再生能源出力不确定的影响。。
4)、本发明提出了一种基于分布式协同控制的配电网双层优化方法。可以实现配电网电压稳定性问题与运行经济性问题的解耦,可以对并网设备有功出力合理分配。
附图说明
图1为双层模型结构示意图。
图2为模型预测控制示意图。
图3为改进后的IEEE33节点系统结构示意图。
图4为并网微电网组成图。
图5为各个微电网容量利用比变化图。
图6为被控节点电压变化图。
图7(1)为11节点处微电网内各设备实际出力与日前计划出力图;
图7(2)为19节点处微电网内各设备实际出力与日前计划出力图;
图7(3)为26节点处微电网内各设备实际出力与日前计划出力图;
图7(4)为28节点处微电网内各设备实际出力与日前计划出力图。
图8为配电网优化前各节点电压24h分布图。
图9为配电网优化后各节点电压24h分布图。
具体实施方式
基于分布式协同控制的配电网双层优化方法,包括:
1、含高渗透率分布式电源配电网特征:
(1)风机、光伏等可再生能源的出力占全网发电机出力比重大,具有强随机性和波动性。
(2)分布式电源接入位置灵活,可以通过并网逆变器控制其输出功率。
(3)光伏与风机出力在时间上具有互补的特征。
2、现有的分布式电源控制方式分类:
(1)集中式控制:所有DG受中央控制器直接管理,彼此之间没有通讯连接。中央控制器根据各个DG上传的自身信息进行集中计算,将命令下发到各个DG设备中,可靠性差;
(2)分散式控制:各个DG根据自身信息进行更新控制,协同性差:
(3)分布式控制:相邻DG间存在通讯链路,临近节点间通过交互必要的信息进行控制,使各个受控节点的运行状态趋向于一致,达到特定的控制目标,减小了中央处理器计算负荷,具有良好的经济性和可扩展性。
3、分布式控制中通讯链路建立过程中所涉及的图论知识:
G={V,ε,A}为一个多智能体网络的拓扑结构图,其中V={v1,…,vn}表示具有n个节点的分布式拓扑结构点集,
Figure BDA0002854094680000081
表示图G的有向边集;图G的邻接矩阵A(G)计算公式如公式(1)所示:
A(G)={aij}n×n (1)
其中,邻接矩阵A(G)中对角线元素aii为0,非对角元素为aij表示顶点i、j之间边的权重。
图G的度矩阵D(G)计算公式如公式(2)所示:
D(G)=diag(d1,…,dn) (2)
其中,di表示节点Vi的度。
图G的Laplace矩阵计算公式如公式(3)所示:
L(G)=D(G)-A(G)=[lij] (3)
其中,D(G)为图G的度矩阵;A(G)为图G的邻接矩阵;lij为图G的Laplace矩阵中对应位置元素。
4、上层模型中一致性算法在维持配电网电压稳定性的应用:
上层模型由配电网以及各个微电网对应的智能体组成,其中智能体之间存在通信链路可以互相通信,实现对电压的分布式协同控制。在上层模型中利用风光出力互补特性,将风光储互补微电网系统接入配电网,降低可再生能源出力的随机性和波动性对配电网的影响。采用基于一致性算法分布式控制方式,将微电网容量利用比设为一致性变量,进行迭代计算,微电网容量利用比计算如公式(4)所示:
Figure BDA0002854094680000082
其中,N为并网微电网数量;
Figure BDA0002854094680000083
表示微电网j在第k次迭代后更新得到的容量利用比;dj,m表示微电网j接收到微电网m信息
Figure BDA0002854094680000084
的权重;
Figure BDA0002854094680000085
为在第k次迭代时,微电网i容量利用比的参考值;ω为迭代步长,其取值范围为0~1,一般而言,迭代步长越大则收敛速度越快,但收敛精度越差。
定义电压控制性能评估函数如式(5)所示:
Figure BDA0002854094680000091
其中,VCP,i表示待控制微电网接入节点i电压。
根据网络潮流方程可得公式(6):
Figure BDA0002854094680000092
其中,VCP,i表示待控制微电网接入节点i电压;Gii表示并网点i处的网络自导纳;Pi表示微电网i的有功出力。
微电网i容量利用比的参考值
Figure BDA0002854094680000093
的计算公式如公式(7)所示:
Figure BDA0002854094680000094
其中,fv,i为电压控制性能评估函数;VCP,i表示待控制微电网接入节点i电压;Si表示微电网i的容量,
Figure BDA0002854094680000095
表示该微电网的功率因数,Pi表示微电网i的有功出力。
5、对一致性算法中权重的改进:
根据不同微电网向外传输信息的不同重要程度,对一致性算法中通讯链路所权重进行改进,将接入控制节点微电网与其他微电网的通讯链路权重加大,加快算法收敛速度。权重的设置应遵守公式(8)和公式(9),即:
Figure BDA0002854094680000096
Figure BDA0002854094680000097
其中,n为接入微电网个数;zi,j为权重因子;lij为Laplace矩阵元素;di,j为通讯链路矩阵D(k)中元素。
将微电网容量利用比迭代过程写成矩阵形式,如公式(10)所示:
Figure BDA0002854094680000098
其中,k为迭代序列;
Figure BDA0002854094680000099
Figure BDA00028540946800000910
分别为第k+1次和第k次微电网容量利用比矩阵;
Figure BDA00028540946800000911
为第k次迭代微电网容量利用比参考矩阵;D(k)为第k次迭代通讯线路权重矩阵;ω表示迭代步长。
微电网容量利用比矩阵
Figure BDA0002854094680000101
中,
Figure BDA0002854094680000102
表示微电网i的容量利用比;微电网容量利用比参考矩阵
Figure BDA0002854094680000103
中,
Figure BDA0002854094680000104
为微电网容量利用比参考值。
6、下层模型中微电网内各个设备的运行约束条件:
微电网内各个电力元件有功出力应符合上层模型经过一致性算法计算出的容量利用比,满足功率等式约束,如公式(11)所示:
PRES(t)+Pfuel(t)+PESS(t)-Pload(t)=Ptotal(t) (11)
其中,PRES(t)、Pfuel(t)和PESS(t)分别为t时刻微电网内可再生能源、柴油发电机和储能装置的有功出力;Pload(t)为t时刻微电网内负荷消耗功率;Ptotal(t)为t时刻上层控制下发的有功出力。
微电网内,风机、光伏、柴油发电机有功出力应满足有功出力上下界限约束,如公式(12)所示:
Figure BDA0002854094680000105
其中,Pwind(t)、Ppv(t)和Pfuel(t)分别表示t时刻微电网内风机、光伏和柴油发电机的有功出力;
Figure BDA0002854094680000106
Figure BDA0002854094680000107
分别表示风机和光伏有功出力的日前预测数据;Pfuel,max为柴油发电机最大有功出力。
微电网内柴油发电机的有功出力变化应符合其爬坡约束限制,如公式(13)所示:
Figure BDA0002854094680000108
其中,Pfuel(t)和Pfuel(t+1)分别为t时刻和t+1时刻柴油发电机有功出力;
Figure BDA0002854094680000109
Figure BDA00028540946800001010
分别为柴油发电机最大下爬坡功率和最大上爬坡功率。
微电网内储能装置运行应满足公式(14)和公式(15),即:
Figure BDA00028540946800001011
Figure BDA00028540946800001012
其中,PESS(t)为t时刻储能装置有功出力;
Figure BDA00028540946800001013
Figure BDA00028540946800001014
分别表示储能装置最大充电功率和最大放电功率;σ表示储能装置的自放电率;ηc和ηd分别表示储能装置充电效率和放电效率;Q表示储能装置总容量;SOCmin和SOCmax表示储能装置SOC限制。
7、下层模型中微电网运行成本计算方法以及优化目标函数:
微电网运行成本包括储能装置运行成本、柴油发电机运行成本和可再生能源运行成本三部分。
(1)储能装置运行成本包括储能单元的运行维护和折旧费用,不计充电成本,可以等效为充放电功率的二次函数,如公式(16)所示:
Figure BDA0002854094680000111
其中,CESS为储能装置运行成本函数;PESS(t)为t时刻储能装置的充放电功率;α为储能成本系数。
(2)柴油发电机的运行成本与发电机的有功出力有关,成本函数如公式(17)所示:
Figure BDA0002854094680000112
其中,Cfuel为柴油发电机运行成本函数;Pfuel(t)为t时刻柴油发电机有功出力;a、b、c分别为柴油发电机成本的二次项系数、一次项系数和常数项系数。
(3)可再生能源成本用弃风弃光成本来代替,如公式(18)所示:
Figure BDA0002854094680000113
其中,CRES表示可再生能源成本函数;PRES(t)为t时刻可再生能源有功出力;
Figure BDA0002854094680000114
为预测得到的t时刻可再生能源出力;γ为弃风弃光惩罚项。
微电网运行成本函数为二次函数,求取符合约束条件下日前调度各设备出力安排属于二次规划问题,可以使用商业求解器进行求解。下层模型优化目标函数如公式(19)所示:
Figure BDA0002854094680000115
其中,T为控制总时间段;PRES(t)、Pfuel(t)、PESS(t)分别为t时刻微电网内可再生能源、柴油发电机和储能装置的有功出力;CESS为储能装置运行成本函数;Cfuel为柴油发电机运行成本函数;CRES表示可再生能源成本函数。
8、模型预测控制方法与可再生能源预测数据结合的滚动优化:
微电网运行过程中,可再生能源的小幅度出力波动可以通过储能装置进行平滑调节,但对于短时间内的剧烈波动还是需要柴油发电机出力进行补充。为避免储能装置在短时间内由于成本较低而出现过充过放,导致调整裕量不足。对求解目标函数和约束条件做出改进。改进后的目标函数如公式(20)所示:
Figure BDA0002854094680000121
其中,T为控制总时间段;PRES(t)、Pfuel(t)、PESS(t)分别为t时刻微电网内可再生能源、柴油发电机和储能装置的有功出力;CESS为储能装置运行成本函数;Cfuel为柴油发电机运行成本函数;CRES表示可再生能源成本函数;
Figure BDA0002854094680000122
表示日前计划中t时刻的储能装置充电点功率;λ表示储能装置充放电功率惩罚项,数值越大表示该阶段优化结果越接近全局优化结果,反之则接近局部优化结果。
约束条件添加储能SOC状态约束,如公式(21)所示:
SOC(t)≤β·SOC(t)fore (21)
其中,β为储能SOC限制因子;SOC(t)为t时刻储能装置SOC数值;SOC(t)fore表示日前计划中t时刻储能装置SOC数值。
日前调度计划可以利用日前1h级的负荷及可再生能源预测数据按照公式(19)计算得到。同时,在对目标函数进行求解时,可再生能源出力的上限使用每15min刷新的最新预测数据。
本发明通过模型预测控制方法,利用最新实时可再生能源预测数对微电网内设备出力分配进行滚动优化,双层模型结构示意图如图1所示,下层模型中滚动优化控制模型示意图如图2所示,每次优化过程中都使用可再生能源的最新预测数据,从而可以防止柴油发电机因爬坡功率或输出功率等限制,无法执行调度命令的情况发生。
9、以改进后的IEEE-33节点系统作为案例,对本发明有效性进行分析:
改进后的IEEE-33节点系统结构如图3所示,配电网电压上限为1.05p.u.,电压下限为0.95p.u.,分别在11、19、26、28节点处接入微电网,微电网并网功率因数为0.9,选取11节点为电压控制节点。绿色虚线表示不同微电网内多智能体间的通讯链路。其中并网微电网结构组成如图4所示。各个微电网内设备参数如表1所示:
表1微电网内设备参数
Figure BDA0002854094680000123
Figure BDA0002854094680000131
改进后的微电网通讯链路权重矩阵D(k)设置如公式(22)所示:
Figure BDA0002854094680000132
设置各个微电网并网时的初始容量利用比从10%开始,当使用一致性算法迭代100次时,在配电网第7节点增加100kW负荷,该过程中各个微电网容量利用比变化及电压变化如图5和图6所示。
由图5和图6可以看出微电网内分布式智能体通过彼此信息交换,不同微电网容量利用比最终收敛达到一致,节点电压稳定为1p.u.。微电网容量利用比收敛稳定后的数值较低,主要因为本发明中微电网容量是指各个微电网该时刻的最大可出力功率,即可再生能源预测功率与柴油发电机最大功率的和。负荷增加后,微电网出力容量比例以及被控节点电压能够快速达到新的平衡,证明了一致性算法能够正确计算出各微电网容量利用比,及时向下层微电网下发命令,维持被控节点电压。
与未考虑改变通讯链路权重矩阵相比,本发明将收敛次数从78次缩减到59次,加快了收敛速度。
通过目标函数公式(19)以及微电网内可再生能源、柴油发电机以及储能装置的运行约束条件,根据可再生能源与配电网负荷的日前预测数据计算日前调度安排。
在实际控制过程中,利用可再生能源15min更新的最新预测数据和MPC进行滚动优化,优化目标函数如公式(20),添加的约束条件中储能装置充放电功率惩罚项λ设置为10,储能SOC限制因子β设置为0.5。
图7(1)~图7(4)为11节点处微电网、19节点处微电网、26节点处微电网、28节点处微电网内各设备实际出力与日前计划出力。可以看出储能装置与柴油发电机出力在一定程度上遵循了日前调度安排,考虑全天经济性,同时MPC滚动优化降低了可再生能源出力随机性对微电网总输出功率的影响,柴油发电机能够在可再生能源发生大幅度波动前提前做出准备,有利于微电网系统安全稳定运行。
图8为配电网优化前各节点电压24h分布,可以发现高渗透率DG的接入会导致配电网出现电压越限的情况。图9为配电网优化前各节点电压24h分布,对比图8和图9的电压数值可以看出通过本发明可以有效降低电压波动,提高电压稳定性,证明了本发明的有效性。

Claims (8)

1.基于分布式协同控制的配电网双层优化方法,其特征在于:
步骤1:结合含高渗透率分布式电源的配电网特征,分析适用于配电网的分布式电源控制方式,建立双层优化模型;
步骤2:双层优化模型的上层模型对一致性算法权重进行改进,以微电网容量利用比为一致性变量,维持配电网电压稳定性;
步骤3:双层优化模型的下层模型中考虑微电网内不同设备运行约束条件,将可再生能源的实时预测数据和模型预测控制方法相结合,进行滚动优化,维持配电网运行经济性;
通过上述步骤,实现配电网的电压稳定性与运行经济双层优化。
2.根据权利要求1所述基于分布式协同控制的配电网双层优化方法,其特征在于:所述步骤1中,含高渗透率分布式电源的配电网特征包括:
①、可再生能源的出力占全网发电机出力比重大,具有随机性和波动性;
②、分布式电源接入位置灵活,能够通过并网逆变器控制其输出功率;
③、光伏与风机出力在时间上具有互补的特征。
3.根据权利要求1所述基于分布式协同控制的配电网双层优化方法,其特征在于:所述步骤1中,分布式电源控制方式包括集中式控制方式、分散式控制方式,其中,
集中式控制方式指的是通过中央控制器与各个分布式电源建立通讯链路;
分散式控制方式指的是各个分布式电源只根据自身信息更新控制。
4.根据权利要求1所述基于分布式协同控制的配电网双层优化方法,其特征在于:所述步骤2中,上层模型使用一致性算法,将微电网容量利用比设为一致性变量,
微电网i容量利用比的参考值
Figure FDA0002854094670000011
计算方法如公式(7)所示:
Figure FDA0002854094670000012
其中:fv,i为电压控制性能评估函数;VCP,i为被控节点i电压;Pi为节点i注入有功功率;
Figure FDA0002854094670000013
为微电网i容量利用比;Gii为并网点i处的网络自导纳;Si为微电网i容量;
Figure FDA0002854094670000014
为微电网i的功率因数;
根据不同微电网向外传输信息的不同重要程度,对一致性算法中通讯链路所占权重进行改进,如公式(8)和公式(9)所示:
Figure FDA0002854094670000021
Figure FDA0002854094670000022
其中:zi,j为微电网i与微电网j之间的通讯链路权重因子;lij为通信网络拓扑图的Laplace矩阵对应位置元素;di,j为微电网i与微电网j之间的通讯链路权重;
根据一致性算法,定义第j个微电网的容量利用比更新公式,如式(10)所示:
Figure FDA0002854094670000023
其中:k为迭代序列;
Figure FDA0002854094670000024
Figure FDA0002854094670000025
分别为第k+1次和第k次微电网容量利用比矩阵;D(k)为第k次迭代通讯线路权重矩阵;ω表示迭代步长;
Figure FDA0002854094670000026
为第k次迭代微电网容量利用比参考矩阵。
5.根据权利要求1所述基于分布式协同控制的配电网双层优化方法,其特征在于:
所述步骤3中,下层模型优化目标函数如公式(19)所示:
Figure FDA0002854094670000027
其中,T为优化时间段;PRES(t)、Pfuel(t)、PESS(t)分别为t时刻微电网内可再生能源、柴油发电机和储能装置的有功出力;CESS为储能装置运行成本函数;Cfuel为柴油发电机运行成本函数;CRES表示可再生能源成本函数。
6.根据权利要求1或5所述基于分布式协同控制的配电网双层优化方法,其特征在于:所述步骤3中,下层模型考虑微电网内风机、光伏、柴油发电机和储能装置的约束条件,如公式(11)-(15)所示:
PRES(t)+Pfuel(t)+PESS(t)-Pload(t)=Ptotal(t) (11)
Figure FDA0002854094670000028
Figure FDA0002854094670000029
Figure FDA00028540946700000210
Figure FDA0002854094670000031
其中:Ptotal(t)为t时刻上层控制下发的有功出力;Pload(t)为t时刻微电网内部负荷消耗的有功功率;PRES(t)、Pfuel(t)、PESS(t)分别为t时刻微电网内可再生能源、柴油发电机和储能装置的有功出力;
Figure FDA0002854094670000032
Figure FDA0002854094670000033
为风机和光伏在t时刻预测出力;Pfuel,max为柴油发电机最大输出功率;
Figure FDA0002854094670000034
Figure FDA0002854094670000035
分别为柴油发电机最大下爬坡功率和最大上爬坡功率;
Figure FDA0002854094670000036
Figure FDA0002854094670000037
分别为储能装置最大充电功率和最大放电功率;σ为储能装置的自放电率;ηc和ηd分别为储能装置充电效率和放电效率;Q为储能装置总容量;SOCmin和SOCmax为储能装置SOC(State of Charge)限制;ΔT为单位时间。
7.根据权利要求6所述基于分布式协同控制的配电网双层优化方法,其特征在于:所述步骤3中,储能装置运行成本包括储能单元的运行维护和折旧费用,不计充电成本,可以等效为充放电功率的二次函数,如公式(16)所示:
Figure FDA0002854094670000038
其中,CESS为储能装置运行成本函数;PESS(t)为t时刻储能装置的充放电功率;α为储能成本系数;
柴油发电机的运行成本与发电机的有功出力有关,成本函数如公式(17)所示:
Figure FDA0002854094670000039
其中,Cfuel为柴油发电机运行成本函数;Pfuel(t)为t时刻柴油发电机有功出力;a、b、c分别为柴油发电机成本的二次项系数、一次项系数和常数项系数;
对于可再生能源成本用弃风弃光成本来代替,如公式(18)所示:
Figure FDA00028540946700000310
其中,CRES表示可再生能源成本函数;PRES(t)为t时刻可再生能源有功出力;
Figure FDA00028540946700000311
为预测得到的t时刻可再生能源出力;γ为弃风弃光惩罚项。
8.根据权利要求1所述基于分布式协同控制的配电网双层优化方法,其特征在于:所述步骤3中,采用模型预测控制方法,结合可再生能源的实时预测数据,对微电网内部各个设备出力滚动优化,目标函数如公式(20)所示,补充添加约束条件如公式(21)所示;
Figure FDA0002854094670000041
SOC(t)≤β·SOC(t)fore (21);
其中,T为优化时间段;为CESS(PESS(t))为储能装置运行成本;Cfuel(Pfuel(t))为柴油发电机运行成本;CRES(PRES(t))为可再生能源装置的发电成本;PESS(t)为储能装置的有功出力;
Figure FDA0002854094670000042
和SOC(t)fore分别为日前计划中t时刻的储能装置充电点功率和SOC数值;SOC(t)为t时刻储能装置SOC数值;日前调度计划可以利用日前1h级的负荷及可再生能源预测数据计算。
CN202011539284.3A 2020-12-23 2020-12-23 基于分布式协同控制的配电网双层优化方法 Active CN112751343B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011539284.3A CN112751343B (zh) 2020-12-23 2020-12-23 基于分布式协同控制的配电网双层优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011539284.3A CN112751343B (zh) 2020-12-23 2020-12-23 基于分布式协同控制的配电网双层优化方法

Publications (2)

Publication Number Publication Date
CN112751343A true CN112751343A (zh) 2021-05-04
CN112751343B CN112751343B (zh) 2022-03-08

Family

ID=75647417

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011539284.3A Active CN112751343B (zh) 2020-12-23 2020-12-23 基于分布式协同控制的配电网双层优化方法

Country Status (1)

Country Link
CN (1) CN112751343B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118432065A (zh) * 2024-04-26 2024-08-02 东北电力大学 基于等效投影理论的多微电网配电系统协同优化运行方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140018497A (ko) * 2012-08-01 2014-02-13 한국전력공사 단기 풍속 예측을 통한 풍력 발전량 예측 방법과, 그 기능을 이용한 배전선로 전압 예측 방법
US20140277599A1 (en) * 2013-03-13 2014-09-18 Oracle International Corporation Innovative Approach to Distributed Energy Resource Scheduling
CN110224444A (zh) * 2019-05-16 2019-09-10 广东电网有限责任公司 一种海岛微电网多时间尺度协调控制方法
CN111342461A (zh) * 2020-03-30 2020-06-26 国网福建省电力有限公司 一种考虑网架动态重构的配电网优化调度方法及系统
CN111725798A (zh) * 2020-07-24 2020-09-29 安徽工业大学 一种用于直流微电网集群的分布式经济调度预测控制方法
CN111740443A (zh) * 2020-06-19 2020-10-02 中国电建集团青海省电力设计院有限公司 多分布式电源的独立微电网多时间尺度协同优化调度方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140018497A (ko) * 2012-08-01 2014-02-13 한국전력공사 단기 풍속 예측을 통한 풍력 발전량 예측 방법과, 그 기능을 이용한 배전선로 전압 예측 방법
US20140277599A1 (en) * 2013-03-13 2014-09-18 Oracle International Corporation Innovative Approach to Distributed Energy Resource Scheduling
CN110224444A (zh) * 2019-05-16 2019-09-10 广东电网有限责任公司 一种海岛微电网多时间尺度协调控制方法
CN111342461A (zh) * 2020-03-30 2020-06-26 国网福建省电力有限公司 一种考虑网架动态重构的配电网优化调度方法及系统
CN111740443A (zh) * 2020-06-19 2020-10-02 中国电建集团青海省电力设计院有限公司 多分布式电源的独立微电网多时间尺度协同优化调度方法
CN111725798A (zh) * 2020-07-24 2020-09-29 安徽工业大学 一种用于直流微电网集群的分布式经济调度预测控制方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
YANG HAN ET AL.: "MAS-Based Distributed Coordinated Control and Optimization in Microgrid and Microgrid Clusters:A Comprehensive Overview", 《IEEE TRANSACTIONS ON POWER ELECTRONICS》 *
乐健等: "基于分布式协同的配电网电压和功率优化控制方法研究", 《中国电机工程学报》 *
席 磊等: "基于虚拟狼群策略的分层分布式自动发电控制", 《电力系统自动化》 *
蒋贤强等: "含分布式电源的交直流配网双层规划研究", 《电力工程技术》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118432065A (zh) * 2024-04-26 2024-08-02 东北电力大学 基于等效投影理论的多微电网配电系统协同优化运行方法

Also Published As

Publication number Publication date
CN112751343B (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
CN107887903B (zh) 考虑元件频率特性的微电网鲁棒优化调度方法
CN105552940B (zh) 基于交替方向乘子算法的分布式全局最优能量管理系统
CN110826880B (zh) 一种大规模电动汽车接入的主动配电网优化调度方法
CN109034587B (zh) 一种协调多种可控单元的主动配电系统优化调度方法
CN109167347B (zh) 基于云自适应粒子群多目标电动汽车充放电优化调度方法
CN110137981B (zh) 一种基于一致性算法的分布式储能聚合器agc方法
Xu et al. Research on the bi-level optimization model of distribution network based on distributed cooperative control
CN117060470B (zh) 一种基于灵活性资源的配电网电压优化控制方法
CN115036914A (zh) 考虑灵活性与新能源消纳的电网储能双层优化方法及系统
CN117559526A (zh) 一种基于光储充一体化充电站的拟路由器能量调控方法
CN113224769A (zh) 考虑光伏多状态调节的多时间尺度配电网电压优化方法
CN115099590B (zh) 计及光荷不确定性的主动配电网经济优化调度方法及系统
CN112751343B (zh) 基于分布式协同控制的配电网双层优化方法
CN109038654B (zh) 一种考虑分布式风电高渗透并网的配电系统优化运行方法
CN114784831A (zh) 一种基于移动储能的主动配电网多目标无功优化方法
CN110011298B (zh) 一种构建自治型可重构微网群系统的运行控制策略
Yang et al. Multiagent-based coordination consensus algorithm for state-of-charge balance of energy storage unit
CN114970096A (zh) 基于概率最优潮流的电力系统灵活性量化评估方法及系统
CN114362169A (zh) 一种计及光储型虚拟电厂边际成本的分层协调调控方法
CN114421479A (zh) 交直流微电网群协同互供的电压控制方法
CN107104429B (zh) 一种计及分布式储能系统的电力系统负荷调度方法
CN116488254A (zh) 一种电力电子设备日前优化控制方法
CN116073417A (zh) 考虑综合性能的配电网源-网-荷-储联合规划方法
Miao et al. Recent advances in distributed cooperative droop control of DC microgrids: A brief survey
CN114398777A (zh) 一种基于巴什博弈理论的电力系统灵活性资源配置方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240813

Address after: 518000 1104, Building A, Zhiyun Industrial Park, No. 13, Huaxing Road, Henglang Community, Longhua District, Shenzhen, Guangdong Province

Patentee after: Shenzhen Hongyue Information Technology Co.,Ltd.

Country or region after: China

Address before: 443002 No. 8, University Road, Xiling District, Yichang, Hubei

Patentee before: CHINA THREE GORGES University

Country or region before: China

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240826

Address after: 2508, Huabang World Trade Center, No. 190, Qianshan Road, Shushan District, Hefei, Anhui, 230031

Patentee after: Anhui Zhongxin Funeng New Energy Technology Co.,Ltd.

Country or region after: China

Address before: 518000 1104, Building A, Zhiyun Industrial Park, No. 13, Huaxing Road, Henglang Community, Longhua District, Shenzhen, Guangdong Province

Patentee before: Shenzhen Hongyue Information Technology Co.,Ltd.

Country or region before: China