CN112727685B - 一种集成磁悬浮飞轮储能的风力发电机组 - Google Patents

一种集成磁悬浮飞轮储能的风力发电机组 Download PDF

Info

Publication number
CN112727685B
CN112727685B CN202011552699.4A CN202011552699A CN112727685B CN 112727685 B CN112727685 B CN 112727685B CN 202011552699 A CN202011552699 A CN 202011552699A CN 112727685 B CN112727685 B CN 112727685B
Authority
CN
China
Prior art keywords
energy storage
alternating current
magnetic suspension
generating set
wind generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011552699.4A
Other languages
English (en)
Other versions
CN112727685A (zh
Inventor
鲁晓军
王华军
陶守元
肖军
叶磊
黄涵
简巍
黄灿灿
王乙斐
段涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changjiang Institute of Survey Planning Design and Research Co Ltd
Original Assignee
Changjiang Institute of Survey Planning Design and Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changjiang Institute of Survey Planning Design and Research Co Ltd filed Critical Changjiang Institute of Survey Planning Design and Research Co Ltd
Priority to CN202011552699.4A priority Critical patent/CN112727685B/zh
Publication of CN112727685A publication Critical patent/CN112727685A/zh
Application granted granted Critical
Publication of CN112727685B publication Critical patent/CN112727685B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/12Combinations of wind motors with apparatus storing energy storing kinetic energy, e.g. using flywheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/30Arrangements for balancing of the load in a network by storage of energy using dynamo-electric machines coupled to flywheels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N15/00Holding or levitation devices using magnetic attraction or repulsion, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/50Bearings
    • F05B2240/51Bearings magnetic
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)
  • Wind Motors (AREA)

Abstract

本发明公开了一种集成磁悬浮飞轮储能的风力发电机组。它包括风力发电机组和磁悬浮飞轮储能系统;所述磁悬浮飞轮储能系统安装于风力发电机组的塔筒底部;风力发电机组与磁悬浮飞轮储能系统并联连接;磁悬浮飞轮储能系统为采用磁悬浮轴承的超高速飞轮储能系统;磁悬浮飞轮储能系统辅助维护电力系统安全稳定运行。本发明克服了现有技术由于储能单元控制器与交流系统无直接联系,需要建立交流系统频率与每一台风电机组内部储能控制单元的通讯;超级电容的使用寿命尚远小于风电机组的寿命等缺点;具有辅助实现一次调频、无功调节等有利于维护电力系统安全稳定运行;通过合理选择飞轮储能方案及安装形式,降低系统维护成本,提高系统可靠性和经济性。

Description

一种集成磁悬浮飞轮储能的风力发电机组
技术领域
本发明涉及电力系统新能源发电技术领域,更具体地说它是一种集成磁悬浮飞轮储能的风力发电机组。
背景技术
近年来,随着以光伏发电、风力发电为代表的新能源发电场站在电力系统电源中的占比逐渐升高,电力系统的频率惯性显著下降,常规火电机组的调频和调峰压力剧增,威胁了电力系统的安全稳定运行。
一次调频是指当电力系统频率偏离目标频率时,发电机组自动通过自发调整出力使得系统频率恢复正常,在保障电力系统安全稳定性运行中发挥了重要作用。以风力发电为例,为了实现一次调频功能,如果不配置储能等额外功率来源,则在系统频率跌出人工频率死区时,风电场需要预留一定量的备用发电容量以实现风电功率的快速支援;在系统频率超过人工频率死区时,通过桨距角控制等机械装置的调节来减少捕获的风能,实现风电功率的减小。前者会造成发电量的损失,长期运行时经济性较差;后者一方面调节速度较慢,另一方面机械装置的频繁动作可能会增大机械磨损,增加风机维修风险、减小风电机组寿命。因此,通过在风电项目中配置一定量的储能装置,实现风电并网点功率的快速调节,是一种应用前景广阔的方案。
储能技术主要包括电化学储能、机械储能等形式,其中电化学储能以锂电池为代表,机械储能以飞轮储能为代表。目前,锂电池储能具备成本优势,且能量密度大,但是锂电池面临起火爆炸的安全风险,并且存在运维成本高、回收价值低、对环境污染较大、频繁使用时寿命大大缩短等问题,不定期更换电池也面临循环投资的困境。随着飞轮储能技术的发展,磁悬浮飞轮技术突破了传统飞轮机械轴承的技术瓶颈(江卫良,陈烨.基于磁悬浮飞轮储能的脉冲功率电源系统设计[J].浙江电力,2020,39(05):50-54.),其采用磁悬浮轴承技术,实现了飞轮转速的跨量级提升,显著提高了能量密度和转化效率,减小了飞轮储能装置的体积。虽然磁悬浮飞轮储能一次性投资成本较大,但是使用寿命长,无循环投资负担。此外,飞轮本体可以实现循环利用,回收价值高,对环境压力小。
目前储能应用于风电场一次调频的方案有集中式方案(文劲宇,潘垣,程时杰,李程昊.专利公开号为CN102412590A,专利名称为《一种含储能装置的风电场群模块化直流并网拓扑》)和分布式方案(颜湘武,崔森,常文斐.考虑储能自适应调节的双馈感应发电机一次调频控制策略[J].电工技术学报,2020)。且现有公开号为CN202971050U,专利名称为《一种风力发电装置》,其公开的风力发电机与飞轮系统通过串联连接,风机与储能系统的功率等级相等,即风机发电,并驱动直流电机带动飞轮转动,随后飞轮带动发电机转动,发出交流电;其中的飞轮储能装置用于持续稳定放电,且利用飞轮储能将夜间风能发电和白天用电衔接起来,实现短周期储能,为一种集中式方案。
集中式方案仅在风电场并网点配置储能,而分布式方案可以将储能配置于单台风电机组。集中式方案关注风电并网点的频率波动,忽略了风电场的内部情况,其安全可靠性风险大于分布式储能。在分布式储能方案中,如果将锂电池储能配置于单台风电机组,其起火爆炸风险会极大危害风电机组的安全,特别是海上风电机组,可能造成巨大损失。并且,目前单台风电机组的使用寿命是20年,而锂电池储能的使用寿命往往较低,二者全生命周期内的维护时间窗口并不统一,运维成本较大。飞轮储能的可循环次数远大于锂电池储能,其使用寿命较长,全生命周期内的维护成本较低,且可以实现与风电机组的同期维护,进一步减少运维成本。
可以看到,在大规模风电场,尤其是建设和运维成本昂贵的海上风电场,如何选择一种控制灵活、安全可靠、经济性优的储能配置方案,是目前工程中亟待解决的问题。
发明内容
本发明的目的是为了提供一种集成磁悬浮飞轮储能的风力发电机组,能够实现一次调频、无功调节等有利于维护电力系统安全稳定运行的辅助服务;另一方面,通过合理选择飞轮储能方案及安装形式,降低系统维护成本,提高系统可靠性和经济性。
为了实现上述目的,本发明的技术方案为:一种集成磁悬浮飞轮储能的风力发电机组,其特征在于:包括风力发电机组和磁悬浮飞轮储能系统;
所述磁悬浮飞轮储能系统安装于风力发电机组的塔筒底部;
风力发电机组与磁悬浮飞轮储能系统并联连接;
磁悬浮飞轮储能系统为采用磁悬浮轴承的超高速飞轮储能系统;磁悬浮飞轮储能系统辅助维护电力系统安全稳定运行。
在上述技术方案中,所述磁悬浮飞轮储能系统包括磁悬浮轴承、飞轮、高速永磁同步发电机、整流器、逆变器、真空密封腔体和真空泵;
磁悬浮轴承和飞轮之间无接触,飞轮与高速永磁同步发电机的转子同轴相连,且共同安装于真空密封腔体中;真空泵与真空密封腔体连接;
高速永磁同步发电机定子的三相输出连接于整流器的交流侧;
整流器在直流侧通过电容与逆变器的直流侧相连;
逆变器的交流侧与风力发电机组的网侧逆变器的交流侧直接相连。
在上述技术方案中,风力发电机组选自永磁同步风力发电机组或者双馈感应风力发电机组。
在上述技术方案中,磁悬浮飞轮储能系统的功率等级与单台风力发电机组的功率等级按照一定的比例进行配比;其中,磁悬浮飞轮储能系统的容量配比小于风力发电机组的容量配比。
在上述技术方案中,集成磁悬浮飞轮储能的风力发电机组中磁悬浮飞轮储能系统与风力发电机组的协调运行方法,包括如下步骤:
S1:磁悬浮轴承产生的磁场承载飞轮的重力,并使飞轮悬浮于真空密封腔体中;真空泵监测并维持真空密封腔体的真空度,飞轮与高速永磁同步发电机的转子同轴相连,飞轮带动高速永磁同步发电机转子旋转,并在定子中感应出交流电压和电流;
S2:高速永磁同步发电机的定子的三相输出连接于整流器的交流侧,整流器将高速永磁同步发电机的定子产生的交流电压和交流电流转换成直流电压和直流电流;
S3:整流器在直流侧通过电容与逆变器的直流侧相连,逆变器再将直流电压和直流电流变换成工频交流电压和交流电流;
S4:逆变器的交流侧与风力发电机组的网侧逆变器交流侧直接相连,直接测量交流侧的频率或测量交流侧的电压幅值。
在上述技术方案中,在S4中,逆变器直接测量交流侧的频率,并主动或者接收到上层控制系统指令后,参与交流系统调频过程;
当监测到交流侧的频率与工频50Hz的偏差低于频率控制死区,或者接收到上层控制系统发出的增发有功功率指令时,逆变器调节其交流侧有功功率,实现有功功率从磁悬浮飞轮储能系统注入到风力发电机组交流侧,增大风力发电机组输出至交流电网的有功功率,辅助交流电网频率恢复到正常状态;
当监测到交流侧的频率与工频50Hz的偏差高于频率控制死区,或者接收到上层控制系统发出的减少有功功率指令时,逆变器调节其交流侧有功功率,实现有功功率从风力发电机组注入到磁悬浮飞轮储能系统中,减少风力发电机组输出至交流电网的有功功率,辅助交流电网频率恢复到正常状态。
在上述技术方案中,在S4中,逆变器直接测量交流侧的电压幅值,并主动或者接收到上层控制系统指令后,参与交流系统无功调节过程;
当监测到交流侧电压幅值与额定值的偏差低于幅值控制死区,或者接收到上层控制系统发出的指令时,逆变器向风力发电机组的交流侧提供容性无功功率,辅助交流电压回升到正常值;
当监测到交流侧电压幅值与额定值的偏差高于幅值控制死区,或者接收到上层控制系统发出指令时,逆变器向风力发电机组的交流侧提供感性无功功率,辅助交流电压回落至正常值。
与现有风电机组分布式储能方案相比,本发明具有如下优点:
(1)采用磁悬浮飞轮储能方案,安全可靠,不存在起火爆炸风险;
(2)磁悬浮飞轮储能系统的飞轮转速高,能量密度和功率密度较高,因此体积小,可以集成安装于风力发电机组的塔筒内部设备平台上,无需额外建设储能装置平台,建设成本小;
(3)磁悬浮飞轮储能系统的飞轮无机械轴承摩擦损耗,运行损耗低,能量转换效率高,运行成本低;
(4)磁悬浮飞轮储能系统的飞轮的循环运行次数可以达到百万次级别,全生命周期长,与风力发电机组具有相同量级的运行寿命,可以实现同期维护,因此维护成本低;
(5)磁悬浮飞轮储能系统与风电机组网侧逆变器的交流侧直接相连,可以实现风力发电机组交流侧有功功率和无功功率的双重调节控制,满足一次调频和无功调节的辅助服务需求;
(6)磁悬浮飞轮储能系统的循环运行次数几乎不受限制,因此不存在频繁运行缩短其使用寿命的顾虑,可以令其主动参与系统调频、无功补偿等有偿辅助服务项目,提高风电场的经济效益;
(7)磁悬浮飞轮储能系统直接采集本地交流频率和电压幅值信号并进行自发的有功功率和无功功率控制,无需能量管理系统对每个风电机组储能方案进行通讯,运行控制灵活可靠;
(8)在一次调频等应用场景下需要风电机组增发有功功率时,磁悬浮飞轮储能系统可以迅速响应,向风电机组交流侧输出有功功率;
(9)在一次调频等应用场景下需要风电机组降低有功功率时,磁悬浮飞轮储能系统可以从风电机组交流侧吸收有功功率,将风能转换为飞轮的动能,并高效率存储,并最终反馈回交流系统,避免风能的浪费,同时可避免网侧逆变器直流侧电容过电压,降低耗能电阻的使用频率,甚至可以取消耗能电阻,降低风机制造成本;
(10)在无功调节的应用场景下,磁悬浮飞轮储能系统的逆变器通过调节其输出交流电压与交流电流的相位,可实现灵活双向的无功功率控制,且对飞轮存储的能量影响极小,几乎不影响其存储的能量。
附图说明
图1是本发明中磁悬浮飞轮储能与风电机组的结构位置关系示意图。
图2是本发明中磁悬浮飞轮储能系统与采用永磁同步发电机类型的风电机组电气连接示意图。
图3是本发明中磁悬浮飞轮储能系统与采用双馈发电机类型的风电机组电气连接示意图。
图4是本发明实例参与调频过程的示意图。
图5是本发明实例参与调压过程的示意图。
图6是本发明中的磁悬浮飞轮储能系统的电气连接示意图。
图1中,A表示风力发电机组的塔筒内部设备平台。
图中1-风力发电机组,1.1-塔筒,2-磁悬浮飞轮储能系统,2.1-磁悬浮轴承,2.2-飞轮,2.3-高速永磁同步发电机,2.4-整流器,2.5-逆变器,2.6-真空密封腔体,2.7-真空泵。
具体实施方式
下面结合附图详细说明本发明的实施情况,但它们并不构成对本发明的限定,仅作举例而已。同时通过说明使本发明的优点更加清楚和容易理解。
本发明采用基于单台风电机组的分布式储能配置方案,兼顾可靠性与安全性,在电气关系上进行合理连接以实现一次调频、无功调节等多项功能,在结构上进行合理规划以减少平台建设和运维成本,在控制上进行合理设计以提高系统运行灵活性和稳定性;克服了现有的基于单台风电机组的分布式储能技术方案中,储能形式采用了超级电容,且通过DC/DC直接连接于双馈风电机组逆变器的直流侧,只能提供有功功率的支撑,无法兼顾无功功率调节;由于储能单元控制器与交流系统无直接联系,需要建立交流系统频率与每一台风电机组内部储能控制单元的通讯,成本较高;未能考虑结构上如何实现储能与风电机组的集成;超级电容的循环次数虽然较高,但是使用寿命尚远小于风电机组的20年使用寿命等缺点。
参阅附图可知:一种集成磁悬浮飞轮储能的风力发电机组,包括风力发电机组1和磁悬浮飞轮储能系统2;
将磁悬浮飞轮储能系统2安装于风力发电机组1的塔筒1.1内、且布置在塔筒1.1底部的设备平台上,由于磁悬浮飞轮的转速极高,因此单位质量的功率和能量密度较大,且磁悬浮飞轮不含机械轴承,放置于真空环境,机械摩擦及空气摩擦损耗极小,无需配备单独的散热设备,因此结构紧凑,占地面积和体积不大,可以直接安置于风力发电机塔筒内部的设备平台上、与设备平台上原有的变流柜等放在一起,实现风电机组与飞轮储能装置的集成化装配,无需额外为储能装置建设平台:对于陆上风电可以减少占地面积;对于海上风电,无需为储能装置建设海上平台或者增加既有平台载荷,且在塔筒内部也避免了海风、雨水侵蚀,延长使用寿命;
风力发电机组1与磁悬浮飞轮储能系统2并联连接;磁悬浮飞轮储能系统2为采用磁悬浮轴承的超高速飞轮储能系统;磁悬浮飞轮储能系统2辅助实现一次调频、无功调节等有利于维护电力系统安全稳定运行的服务。
进一步地,所述磁悬浮飞轮储能系统2包括磁悬浮轴承2.1、飞轮2.2、高速永磁同步发电机2.3、基于全控器件的整流器2.4和逆变器2.5,真空密封腔体2.6以及真空泵2.7;
磁悬浮轴承2.1和飞轮2.2之间无接触,飞轮2.2与高速永磁同步发电机2.3的转子同轴相连,且磁悬浮轴承2.1、飞轮2.2和高速永磁同步发电机2.3共同安装于真空密封腔体2.6中;真空泵2.7与真空密封腔体2.6连接;本发明中的磁悬浮轴承2.1承载飞轮2.2的重力,且和高速永磁同步发电机2.3共同安装于真空密封腔体2.6中,真空泵2.7监测和维持真空密封腔体2.6的真空度,因此飞轮高速旋转过程中不存在摩擦损耗及其产生的发热问题,使用寿命大大增加,可以达到和风电机组同样的使用寿命,实现同期维护,降低了维护成本;
高速永磁同步发电机2.3定子的三相输出连接于整流器2.4的交流侧;
整流器2.4在直流侧通过电容与逆变器2.5的直流侧相连;
逆变器2.5的交流侧与风力发电机组1的网侧逆变器的交流侧直接相连(如图1、图2、图3、图6所示);由于逆变器2.5可以直接测量交流侧的频率与电压幅值,故发明可以无通讯、自发地调节飞轮储能系统注入到风电机组交流侧的有功功率和无功功率,实现一次调频、无功调节等辅助服务。
进一步地,风力发电机组1为常规风力发电机组(常规风力发电机组为现有常用的风力发电机组),可选自永磁同步风力发电机组或者双馈感应风力发电机组(其中,自永磁同步风力发电机组或者双馈感应风力发电机组均为现有技术);磁悬浮飞轮储能系统2的逆变器2.4与风力发电机组1的网侧逆变器交流侧直接相连,该网侧逆变器可以是永磁同步风力发电机中全功率变流器中的网侧逆变器,也可以是双馈风力发力机组中的网侧逆变器,因此本发明适用于现有主流常规风力发电机组类型。
进一步地,磁悬浮飞轮储能系统2的功率等级与单台风力发电机组1的功率等级可以根据使用需求按照一定的比例进行配比;其中,磁悬浮飞轮储能系统2的容量配比小于风力发电机组1的容量配比;例如磁悬浮飞轮储能系统的额定功率按照单台风电机组的额定功率的10%进行配比,可以满足±10%的峰谷功率平抑需求;本发明中风机与飞轮储能系统是并联关系,磁悬浮飞轮储能系统辅助实现一次调频、无功调节等有利于维护电力系统安全稳定运行的服务。
本发明中的磁悬浮飞轮储能系统常态处于热备用状态;当系统需要风机进行一次调频等辅助服务的时候,本发明中的磁悬浮飞轮储能系统介入发电。
本发明所述的集成磁悬浮飞轮储能的风力发电机组中磁悬浮飞轮储能系统2与风力发电机组1的协调运行方法,包括如下步骤:
S1:磁悬浮轴承2.1产生的磁场承载飞轮2.2的重力,并使飞轮2.2悬浮于真空密封腔体2.6中,真空泵2.7监测并维持真空密封腔体2.6的真空度,飞轮2.2与高速永磁同步发电机2.3的转子同轴相连,飞轮2.2带动高速永磁同步发电机2.3转子旋转,并在定子中感应出交流电压和电流;
S2:高速永磁同步发电机2.3的定子的三相输出连接于整流器2.4的交流侧,整流器2.4将高速永磁同步发电机2.3的定子产生的交流电压和交流电流转换成直流电压和直流电流;
S3:整流器2.4在直流侧通过电容与逆变器2.5的直流侧相连,逆变器2.5再将直流电压和直流电流变换成工频交流电压和交流电流;
S4:逆变器2.5的交流侧与风力发电机组1的网侧逆变器交流侧直接相连,直接测量交流侧的频率或测量交流侧的电压幅值。
进一步地,在S4中,逆变器2.5直接测量交流侧的频率,并主动或者接收到上层控制系统指令后,参与交流系统调频过程;
当逆变器2.5监测到交流侧的频率与工频50Hz的偏差低于频率控制死区,或者接收到上层控制系统发出的增发有功功率指令时,逆变器2.5调节其交流侧有功功率,实现有功功率从磁悬浮飞轮储能系统2注入到风力发电机组1交流侧,从而增大风力发电机组1输出至交流电网的有功功率,辅助交流电网频率恢复到正常状态;
当逆变器2.5监测到交流侧的频率与工频50Hz的偏差高于频率控制死区,或者接收到上层控制系统发出的减少有功功率指令时,逆变器2.5调节其交流侧有功功率,实现有功功率从风力发电机组1注入到磁悬浮飞轮储能系统2中,从而减少风力发电机组1输出至交流电网的有功功率,辅助交流电网频率恢复到正常状态;
上层控制系统指令可以指风电场能量管理系统发出的一次调频指令或者自动发电(AGC)指令;频率调节过程中,当磁悬浮飞轮储能系统2发出有功功率时,飞轮2.2的转速会逐渐下降;当磁悬浮飞轮储能系统2吸收有功功率时,飞轮2.2的转速会逐渐上升。
进一步地,在S4中,逆变器2.5直接测量交流侧的电压幅值,并主动或者接收到上层控制系统指令后,参与交流系统无功调节过程;
当逆变器2.5监测到交流侧电压幅值与额定值的偏差低于幅值控制死区,或者接收到上层控制系统发出的指令时,逆变器2.5向风力发电机组1的交流侧提供容性无功功率,辅助交流电压回升到正常值;
当逆变器2.5监测到交流侧电压幅值与额定值的偏差高于幅值控制死区,或者接收到上层控制系统发出指令时,逆变器2.5向风力发电机组1的交流侧提供感性无功功率,辅助交流电压回落至正常值;
上层控制系统指令可以指风电场能量管理系统发出的自动调压(AVC)指令或者无功调节指令;无功调节过程中,磁悬浮飞轮储能系统2中飞轮2.2的转速几乎没有变化,其存储的能量几乎没有变化。
实施例
现以本发明中的磁悬浮飞轮储能系统应用于某单台永磁同步风力发电机组形成集成磁悬浮飞轮储能的风力发电机组为实施例对本发明进行详细说明,对本发明其它形式的应用同样具有指导作用。
实施例1
本实施例以单台5MW永磁同步风力发电机组为例,按照10%的容量配比,在其塔筒底部集成安装500kW的磁悬浮飞轮储能系统,磁悬浮飞轮的额定转速为30000转/秒。空间关系上,该储能系统柜与风机变流柜共同安装在塔筒底部的设备平台上(如图1所示);电气关系上,磁悬浮飞轮储能系统的交流输出端连接于永磁同步风力发电机组的网侧逆变器交流侧(如图2所示)。设置磁悬浮飞轮储能系统的频率控制死区为±0.05Hz,交流电压幅值控制死区为±5%。
如图4所示,t1时刻,当交流系统频率超过50.05Hz时,磁悬浮飞轮储能系统从风电机组交流侧吸收有功功率,其飞轮转速逐渐上升;t2时刻,交流系统频率回落到频率控制死区内,磁悬浮飞轮储能系统停止吸收有功功率;t3时刻,交流系统频率低于49.95Hz,磁悬浮飞轮储能系统向风电机组交流侧发出有功功率,其飞轮转速逐渐下降;t4时刻,交流系统频率回升到频率控制死区内,磁悬浮飞轮储能系统停止发出有功功率。
如图5所示,t5时刻,交流系统电压超过105%,磁悬浮飞轮储能系统向风电机组交流侧提供感性无功;t6时刻,交流电压回落至幅值控制死区内,磁悬浮飞轮储能系统停止无功功率调节;t7时刻,交流电压低于95%,磁悬浮飞轮储能系统向风电机组交流侧提供容性无功;t8时刻,交流电压回升至幅值控制死区,磁悬浮飞轮储能系统停止无功功率调节。这一过程中飞轮转速几乎没有变化。
可以看到,本实施例中的磁悬浮飞轮储能系统具备四象限运行能力,可以灵活地控制与风电机组交流侧之间传输的有功功率和无功功率,为交流系统提供调频和调压服务,因此集成磁悬浮飞轮储能系统的风力发电机组有利于维持交流系统稳定性。
实施例2
本实施例中的磁悬浮飞轮储能系统与风力发电机组的空间关系上及电气关系上的连接关系均同实施例1;不同之处在于:本实施例中的风力发电机组采用双馈感应风力发电机组(如图3所示)。
其它未说明的部分均属于现有技术。

Claims (4)

1.一种集成磁悬浮飞轮储能的风力发电机组,其特征在于:包括风力发电机组(1)和磁悬浮飞轮储能系统(2);
所述磁悬浮飞轮储能系统(2)安装于风力发电机组(1)的塔筒(1.1)底部;
风力发电机组(1)与磁悬浮飞轮储能系统(2)并联连接;
磁悬浮飞轮储能系统(2)为采用磁悬浮轴承的超高速飞轮储能系统;
磁悬浮飞轮储能系统(2)辅助维护电力系统安全稳定运行;
所述磁悬浮飞轮储能系统(2)包括磁悬浮轴承(2.1)、飞轮(2.2)、高速永磁同步发电机(2.3)、整流器(2.4)、逆变器(2.5)、真空密封腔体(2.6)和真空泵(2.7);
磁悬浮轴承(2.1)和飞轮(2.2)之间无接触,飞轮(2.2)与高速永磁同步发电机(2.3)的转子同轴相连,且共同安装于真空密封腔体(2.6)中;真空泵(2.7)与真空密封腔体(2.6)连接;
高速永磁同步发电机(2.3)定子的三相输出连接于整流器(2.4)的交流侧;
整流器(2.4)在直流侧通过电容与逆变器(2.5)的直流侧相连;
逆变器(2.5)的交流侧与风力发电机组(1)的网侧逆变器的交流侧直接相连;
集成磁悬浮飞轮储能的风力发电机组中磁悬浮飞轮储能系统(2)与风力发电机组(1)的协调运行方法,包括如下步骤:
S1:磁悬浮轴承(2.1)产生的磁场承载飞轮(2.2)的重力,并使飞轮(2.2)悬浮于真空密封腔体(2.6)中;真空泵(2.7)监测并维持真空密封腔体(2.6)的真空度,飞轮(2.2)与高速永磁同步发电机(2.3)的转子同轴相连,飞轮(2.2)带动高速永磁同步发电机(2.3)转子旋转,并在定子中感应出交流电压和电流;
S2:高速永磁同步发电机(2.3)的定子的三相输出连接于整流器(2.4)的交流侧,整流器(2.4)将高速永磁同步发电机(2.3)的定子产生的交流电压和交流电流转换成直流电压和直流电流;
S3:整流器(2.4)在直流侧通过电容与逆变器(2.5)的直流侧相连,逆变器(2.5)再将直流电压和直流电流变换成工频交流电压和交流电流;
S4:逆变器(2.5)的交流侧与风力发电机组(1)的网侧逆变器交流侧直接相连,直接测量交流侧的频率或测量交流侧的电压幅值;
在S4中,逆变器(2.5)直接测量交流侧的频率,并主动或者接收到上层控制系统指令后,参与交流系统调频过程;
当监测到交流侧的频率与工频50Hz的偏差低于频率控制死区,或者接收到上层控制系统发出的增发有功功率指令时,逆变器(2.5)调节其交流侧有功功率,实现有功功率从磁悬浮飞轮储能系统(2)注入到风力发电机组(1)交流侧,增大风力发电机组(1)输出至交流电网的有功功率,辅助交流电网频率恢复到正常状态;
当监测到交流侧的频率与工频50Hz的偏差高于频率控制死区,或者接收到上层控制系统发出的减少有功功率指令时,逆变器(2.5)调节其交流侧有功功率,实现有功功率从风力发电机组(1)注入到磁悬浮飞轮储能系统(2)中,减少风力发电机组(1)输出至交流电网的有功功率,辅助交流电网频率恢复到正常状态。
2.根据权利要求1所述的集成磁悬浮飞轮储能的风力发电机组,其特征在于:风力发电机组(1)选自永磁同步风力发电机组或者双馈感应风力发电机组。
3.根据权利要求2所述的集成磁悬浮飞轮储能的风力发电机组,其特征在于:磁悬浮飞轮储能系统(2)的功率等级与单台风力发电机组(1)的功率等级按照一定的比例进行配比;其中,磁悬浮飞轮储能系统(2)的容量配比小于风力发电机组(1)的容量配比。
4.根据权利要求3所述的集成磁悬浮飞轮储能的风力发电机组,其特征在于:在S4中,逆变器(2.5)直接测量交流侧的电压幅值,并主动或者接收到上层控制系统指令后,参与交流系统无功调节过程;
当监测到交流侧电压幅值与额定值的偏差低于幅值控制死区,或者接收到上层控制系统发出的指令时,逆变器(2.5)向风力发电机组(1)的交流侧提供容性无功功率,辅助交流电压回升到正常值;
当监测到交流侧电压幅值与额定值的偏差高于幅值控制死区,或者接收到上层控制系统发出指令时,逆变器(2.5)向风力发电机组(1)的交流侧提供感性无功功率,辅助交流电压回落至正常值。
CN202011552699.4A 2020-12-24 2020-12-24 一种集成磁悬浮飞轮储能的风力发电机组 Active CN112727685B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011552699.4A CN112727685B (zh) 2020-12-24 2020-12-24 一种集成磁悬浮飞轮储能的风力发电机组

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011552699.4A CN112727685B (zh) 2020-12-24 2020-12-24 一种集成磁悬浮飞轮储能的风力发电机组

Publications (2)

Publication Number Publication Date
CN112727685A CN112727685A (zh) 2021-04-30
CN112727685B true CN112727685B (zh) 2023-02-28

Family

ID=75615341

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011552699.4A Active CN112727685B (zh) 2020-12-24 2020-12-24 一种集成磁悬浮飞轮储能的风力发电机组

Country Status (1)

Country Link
CN (1) CN112727685B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113653598A (zh) * 2021-09-06 2021-11-16 中国华能集团清洁能源技术研究院有限公司 海上漂浮式风力发电机组的控制系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10016513A1 (de) * 2000-04-03 2001-10-11 Eugen Radtke Zentrifugal-Windkraftrad Nutzung der Zentrifugal- und Hebelkräfte zur optimierten Nutzung der Windenergie
EP1271741A2 (de) * 1997-04-14 2003-01-02 RWE Piller Gmbh Stabilisierungssystem für ein Stromversorgungsnetz
CN205992737U (zh) * 2016-09-22 2017-03-01 国家电网公司 抑制风电场强迫功率振荡的飞轮储能装置
CN109830973A (zh) * 2019-03-05 2019-05-31 长沙理工大学 一种飞轮储能系统转子
CN111577547A (zh) * 2020-06-17 2020-08-25 龙源(北京)风电工程设计咨询有限公司 一种带机械储能的风能驱动热电联产系统及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105591492A (zh) * 2014-10-31 2016-05-18 张瑞彬 一种立式磁悬浮飞轮储能系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1271741A2 (de) * 1997-04-14 2003-01-02 RWE Piller Gmbh Stabilisierungssystem für ein Stromversorgungsnetz
DE10016513A1 (de) * 2000-04-03 2001-10-11 Eugen Radtke Zentrifugal-Windkraftrad Nutzung der Zentrifugal- und Hebelkräfte zur optimierten Nutzung der Windenergie
CN205992737U (zh) * 2016-09-22 2017-03-01 国家电网公司 抑制风电场强迫功率振荡的飞轮储能装置
CN109830973A (zh) * 2019-03-05 2019-05-31 长沙理工大学 一种飞轮储能系统转子
CN111577547A (zh) * 2020-06-17 2020-08-25 龙源(北京)风电工程设计咨询有限公司 一种带机械储能的风能驱动热电联产系统及方法

Also Published As

Publication number Publication date
CN112727685A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
Qu et al. Constant power control of DFIG wind turbines with supercapacitor energy storage
Carrasco et al. Power-electronic systems for the grid integration of renewable energy sources: A survey
RU2597233C2 (ru) Способ функционирования комбинированной энергетической установки и комбинированная энергетическая установка
Nayar et al. Power electronics for renewable energy sources
CN101860043B (zh) 串联型风力发电机组低电压穿越控制装置及控制方法
CN101702610A (zh) 基于超级电容器和蓄电池混合储能的双馈风力发电机励磁系统
CN110071531A (zh) 一种大规模储能与永磁风力发电协调控制系统及方法
Islam et al. Power electronics for renewable energy sources
CN112727685B (zh) 一种集成磁悬浮飞轮储能的风力发电机组
CN201805236U (zh) 串联型风力发电机组低电压穿越控制装置
CN114094624B (zh) 一种波浪发电系统低电压穿越协调控制方法
CN114285049B (zh) 一种功率型电容协同pmsg风机参与一次调频的控制方法
Wu et al. Voltage control of offshore wind farm considering reactive ability of electrochemical energy storage
Ji et al. Collaborative Control of Integrated Generation and Storage for Offshore Wind Turbines
Abu-Siada et al. Applications of power electronics in renewable energy systems
Zhuying Study on low voltage ride through characteristic of full power converter direct-drive wind power system
Zhai et al. A Coordinated Control Strategy of Wind Power/Hydrogen Integrated System
CN109193698B (zh) 基于超级电容和直流母线电容实现风电场一次调频的方法
CN106787614A (zh) 一种电动发电机组
CN202117834U (zh) 一种双馈异步发电机变速恒频型海流发电系统
Li et al. Start-up strategy for DR-MMC paralleled hybrid HVDC integrated with offshore wind power
Singh et al. Performance Evaluation of a Grid Connected Variable Speed 3-Φ Doubly Fed Induction Generator in Wind Energy Conversion System Using Battery Energy Storage System
Sebastián et al. Sizing and simulation of a low cost flywheel based energy storage system for wind diesel hybrid systems
Wen et al. Retrospect and prospect of wind power participating in power system frequency regulation
Zhang et al. Technology Summary on the Application of Variable-Speed Pump-Turbine Units for Wind Storage Operation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant