CN112725370B - PRRSV ORF5 fusion gene DNA vaccine and preparation method thereof - Google Patents

PRRSV ORF5 fusion gene DNA vaccine and preparation method thereof Download PDF

Info

Publication number
CN112725370B
CN112725370B CN202011609207.0A CN202011609207A CN112725370B CN 112725370 B CN112725370 B CN 112725370B CN 202011609207 A CN202011609207 A CN 202011609207A CN 112725370 B CN112725370 B CN 112725370B
Authority
CN
China
Prior art keywords
orf5
lineage
prrsv
pca
delta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011609207.0A
Other languages
Chinese (zh)
Other versions
CN112725370A (en
Inventor
刘建奎
魏春华
林志锋
徐叶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Longyan University
Original Assignee
Longyan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Longyan University filed Critical Longyan University
Priority to CN202011609207.0A priority Critical patent/CN112725370B/en
Publication of CN112725370A publication Critical patent/CN112725370A/en
Application granted granted Critical
Publication of CN112725370B publication Critical patent/CN112725370B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • C07K14/08RNA viruses
    • C07K14/082Arteriviridae, e.g. EAV, PRRSV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/10011Arteriviridae
    • C12N2770/10022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/10011Arteriviridae
    • C12N2770/10034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Virology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Wood Science & Technology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Mycology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Communicable Diseases (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

The invention discloses a PRRSV ORF5 fusion gene DNA vaccine and a preparation method thereof. Belongs to the field of biotechnology. The invention utilizes the DNA shuffling technology to carry out in-vitro mutation recombination on PRRSV ORF5 genes of 4 lineages, and two recombinant plasmids PCA-delta ORF5-8 and PCA-delta ORF5-46 are screened, so that a neutralizing antibody can be generated more effectively, and a foundation is laid for further research and development of safe and effective PRRSV DNA vaccines.

Description

PRRSV ORF5 fusion gene DNA vaccine and preparation method thereof
Technical Field
The invention relates to the technical field of biology, in particular to a PRRSV ORF5 fusion gene DNA vaccine and a preparation method thereof.
Background
Porcine Reproductive and Respiratory Syndrome (PRRS) is a highly contagious disease caused by Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), has spread to most swine-breeding countries, becomes a global viral infectious disease of pigs, and causes huge economic losses in all countries of the world. At present, based on the Type 2PRRSV classification system, the epidemic strains in China are divided into four pedigrees: pedigree 1(NADC30-like), pedigree 3 (QYYYZ-like), pedigree 5 subline 5.1(VR2332-like) and pedigree 8 subline 8.7(JXA1-like and CH-1a), and the strain sequences of the various pedigrees have large differences, wherein HP-PRRSV in the pedigree 8 subline 8.7 and the NADC30-like strains in the pedigree 1 are the dominant strains of the epidemic strains in China. Particularly, the similar NADC30PRRSV which appears in 2012 domestically has high genome variation among strains, is easy to recombine with other strains including vaccine strains, so that the commercialized vaccine cannot provide good immune protection for the strains, and brings serious challenges to the pig industry in China.
The study shows that GP5 encoded by ORF5 is the most main protective antigen of PRRSV and can induce organism to generate neutralizing antibody. In addition, after the PRRSV invades the organism, a neutralizing antibody aiming at GP5 protein is mainly generated, so that GP5 protein becomes the first choice protein for developing a novel vaccine.
In conclusion, how to provide a PRRSV vaccine is a problem that needs to be solved urgently by those skilled in the art.
Disclosure of Invention
In view of the above, the invention utilizes the DNA shuffling technology to carry out in vitro mutation recombination on PRRSV ORF5 genes of 4 lineages, screens two recombinant plasmids PCA-delta ORF5-8 and PCA-delta ORF5-46, and prepares the porcine reproductive and respiratory syndrome vaccine by using the two recombinant plasmids.
In order to achieve the purpose, the invention adopts the following technical scheme:
a PRRSV ORF5 fusion gene, which contains partial ORF5 genes of 4 lineages at the same time;
the 4 lineages are lineage 1, lineage 3, lineage 5 subline 5.1, and lineage 8 subline 8.7.
Further, the nucleotide sequence is as follows:
ΔORF5-8:AACAGCAGCTCAAATTTACAGTTGATTTATAACCTGACGATATGTGAGCTGAATGGCACAGACTGGCTGGACAAAAAATTTGATTGGGCAGTGGAGACTTTCGTCATCTTCCCTGTATTGACTCACATAGTCTCTTACGGCGCCCTCACCACTAGTCATTTTCTTGACACGGTCGGCCTGGCCACTGTGTCTACCGCCGGTTATTATCATGGGCGGTATGTGTTGAGTAGTATTTACGCTGTCTGTGCCCTGGCTGCGTTGGTTTGCTTCGCCATTAGGTTGGCGAAAAATTGCATGTCCTGGCGTTACTCATGCACCAGATATACTAATTTTCTCCTGGATACTAAGGGCACACTCTACCGCTGGCGGTCACCCGTCATCATTGAGAAAGGGGGTAAAGTTGATGTCGGGGGTCATTTAATCGACCTCAAAAGAGTTGTGCTTGATGGTTCCGCGGCTACCCCT;SEQ ID No.1;
or Δ ORF 5-46: AACAGCAGCTCAAATTTACAGTTGATCTATAACCTGACGATATGTGAGCTGAATGGCACAGATTGGCTGGCACAAAAATTTGACTGGGCGGTGGAGATTTTTGTCATCTTCCCCGTGTTGACCCACATTGTTTCCTATGGGGCACTCACCACCAGCCATTTCCTTGACACAGTTGGTCTGGCCACTGTGTCCACTGCCGGATATTATCACGGGCGGTATGTCTTGAGTAGCATTTACGCAGTCTGTGCTCTGGCAGCGCTGATTTGCTTTGTCATTAGGCTTGCGAAGAACTGCATGTCCTGGCGCTACTCTTGTACCAGATATACCAACTTTCTTCTGGACACTAAGGGCAAAATCTATCGTTGGCGGTCACCCGTCATCATAGAGAAAGAGGGTAAAGTTGAGGTCGGTGGCCATCTCATTGACCTCAGGAGAGTCGTGCTTGATGGTTCCGCGGCTACCCCT, respectively; SEQ ID No. 2.
Further, the amino acid sequence encoded by Δ ORF5-8 is as follows:
NSSSNLQLIYNLTICELNGTDWLDKKFDWAVETFVIFPVLTHIVSYGALTTSHFLDTVGLATVSTAGYYHGRYVLSSIYAVCALAALVCFAIRLAKNCMSWRYSCTRYTNFLLDTKGTLYRWRSPVIIEKGGKVDVGGHLIDLKRVVLDGSAATP;SEQ ID No.3;
the amino acid sequence encoded by Δ ORF5-46 is as follows:
NSSSNLQLIYNLTICELNGTDWLAQKFDWAVEIFVIFPVLTHIVSYGALTTSHFLDTVGLATVSTAGYYHGRYVLSSIYAVCALAALICFVIRLAKNCMSWRYSCTRYTNFLLDTKGKIYRWRSPVIIEKEGKVEVGGHLIDLRRVVLDGSAATP;SEQ ID No.4。
a porcine reproductive and respiratory syndrome vaccine containing the fusion gene.
Further, a eukaryotic expression vector, PCAGGS-HA, was used for construction.
According to the technical scheme, compared with the prior art, the invention has the following beneficial effects: the DNA shuffling technology can enable the gene to be recombined at a molecular level, thereby screening out a mutant which has expected multiple parent genes. The invention utilizes the DNA shuffling technology to carry out in vitro mutation recombination on PRRSV ORF5 genes of 4 lineages and screen two recombinant plasmids PCA-delta ORF5-8 and PCA-delta ORF5-46, thereby being capable of more effectively generating neutralizing antibodies and laying a foundation for further developing safe and effective PRRSV DNA vaccines.
Drawings
In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings used in the description of the embodiments or the prior art will be briefly described below, it is obvious that the drawings in the following description are only embodiments of the present invention, and for those skilled in the art, other drawings can be obtained according to the provided drawings without creative efforts.
FIG. 1 is a graph showing the results of indirect immunofluorescence assay of protein expression in MARC-145 cells using recombinant plasmids according to example 3 of the present invention;
FIG. 2 is a drawing showing the results of the WesternBlot assay for protein expression in MARC-145 cells by recombinant plasmids in example 3 of the present invention, wherein 1 represents. DELTA. ORF5-8, and 2 represents. DELTA. ORF 5-46;
FIG. 3 is the result of GP5 protein detection in the serum of mouse in example 4 of the present invention.
Detailed Description
The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
The experimental materials required in the examples of the present invention are as follows:
the PCAGGS-HA (PCA-HA) vector plasmid is purchased from Hunan Fenghui Biotech Co., Ltd;
mouse anti-HA protein antibodies were purchased from Beijing-Qiao Shenzhou technologies, Inc.;
the Lp8000 transfection kit and the ECL hypersensitive luminescence kit are purchased from Biyuntian biotechnology limited company;
the PCA-ORF5-MLV (ORF5 gene from vaccine) plasmid is provided by livestock infectious disease prevention and treatment and biotechnology key laboratory in Fujian province;
the endotoxin-free large quality-improving particle kit is purchased from OMEGA company;
the mouse interleukin-4 and interferon-gamma ELISA kit is purchased from West pool science and technology limited company;
mouse PRRSV GP5 protein (PRRSV-GP5) ELISA kits were purchased from shanghai luyu biotechnology limited;
cell Counting kit (cck8) was purchased from Bilun sky Biotechnology, Inc.
Other biochemical reagents are all domestic analytical pure products.
8 PRRSV FJ-Chen, FJ-Huang and FJ-Yang (lineage 1), FJ-Deng and FJ-Liu (lineage 3 strain), FJ-Wang (lineage 5 subline 5.1 strain), FJ-Qiu and FJ-Fu (lineage 8 subline 8.7 strain) of different lineages, and Marc-145 cells used in the study were provided by livestock infectious disease control and biotechnology focus laboratories of Fujian province.
PMD-19T vector was purchased from Takara, PRRSV N protein monoclonal antibody (MAb) from Xiamen Ruibetai Biomedicine, Inc., FITC-labeled goat anti-mouse IgG from Biyunnan Biotechnology, Inc.
The unrecited experimental method is a conventional experimental method, and is not described in detail herein.
Example 1 construction of recombinant plasmid by DNA shuffling technology, screening of recombinant plasmid
(1) Viral RNAs were extracted from FJ-Chen (lineage 1), FJ-Huang (lineage 1), FJ-Yang (lineage 1), FJ-Deng (lineage 3), FJ-Liu (lineage 3), FJ-Wang (lineage 5 subline 5.1), FJ-Qiu (lineage 8 subline 8.7) and FJ-Fu (lineage 8 subline 8.7), and the ORF5 gene was amplified. The nucleotide sequence is as follows:
FJ-Chen:GACAGCAGCTCCCATTTACAGTTGATCTATAACCTGACGATATGTGAGCTGAATGGCACAGATTGGCTTGACAAGAAATTTGACTGGGCAGTGGAGACTTTCGTCATCTTCCCTGTGCTTACCCATATTGTCTCTTACGGTGCCCTCACCACCAGCCATTTTCTTGACACGGTCGGCCTGATCACTGTGTCCACCGCCGGTTATTATCATGGGCGGTATGTTTTGAGTAGCATCTACGCTGTCTGTGCCCTGGCTGCGTTTGTTTGCTTCACCATTAGGTTGGCTAAAAATTGCATGTCCTGGCGCTACTCATGCACCAGATATACTAATTTTCTTCTGGATACTAAGGGTAAACTCTATCGCTGGCGGTCATCCGTCATCATAGAGAAAGGGGGTAAAGTTGATGTTGGGGGTCATTTAATCGACCTCAAGAGAGTTGTGCTTGATGGTTCCGCGGCAACCCCT;SEQ ID No.5;
FJ-Huang:GACAGCAGCTCCCACTTACAATTGATTTATAACCTAACGATATGTGAGCTGAATGGCACAGATTGGCTGAACAAAAAATTTGACTGGGCAGTGGAGACTTTCGTTATTTTCCCTGTGTTGACTCATATTGTCTCTTACGGCGCCCTCACCACTAGCCATTTTCTTGACACGGTTGGCCTGATCACTGTATCCACCGCCGGTTACTATCGTGGGCGGTATGTATTGAGTAGCATCTACGCTGTCTGTGCCCTGGCTGCGTTTGTTTGCTTCGCCATTAGGTTGGCAAAAAATTGTGTGTCCTGGCGCTACTCATGCACCAGATATACCAATTTTCTTCTGGATACTAAGGGCAAGCTATATCGCTGGCAGTCATCCGTCATCATAGAGAAGGGGGGCAAAGTTGATGTGGGGGGTCATTTAATCGACCTCAAGAGAGTCGTGCTTGATGGTTCTGCGGCAACCCCT;SEQ ID No.6;
FJ-Yang:AACAGCAGCTCCCACTTACAGTCGATTTATAACCTGACGATATGTGAGCTGAATGGCACAGATTGGCTGAACAAAAATTTTGACTGGGCAGTAGAGACTTTCGTTATTTTTCCTGTGCTGACTCATATTGTCTCTTACGGCGCCCTCACCACTAGCCATTTTCTTGACACAATCGGCTTGATCACTGTGTCCACCGCCGGTTATTATCACGGGCGGTATGTATTGAGTAGCATCTACGCTGTCTGTGCCCTGGCTGCGTTCGTTTGCTTCGCCATTAGGTTGGCAAAAAATTGTATGTCCTGGCGCTACTCATGCACCAGATATACCAATTTTCTTCTGGATACCAAGGGCAAACTCTATCGCTGGCGGTCACCCGTCATCATAGAGAAAGGGGGCAAAGTTGATGTTGGGGGTCATTTAATCGACCTCAAGAGAGTTGTGCTTGATGGTTCCGCGGCAACCCCT;SEQ ID No.7;
FJ-Deng:AACAGCAGCTCTTATTCGCAGTTGATTTATAACCTAACGCTATGTGAGCTGAATGGCACAGAGTGGCTGGCCACTAGATTTGATTGGGCAGTGGAATGTTTTGTCATCTTTCCCGTGTTGACTCACATCATCTCCTACGGTGCCCTCACTACCAGCCATTTTCTTGACACAATTAGCCTGGTCACTGTATCCACCGCCGGGTATTATCACGGGCGGTATGTTTTGAGTAGTATCTACGCAGTCTGTGCTTTTGCTGCGTTAATCTGCTTTGTCATTAGGTTGGCGAAGAATTGCATGTCTTGGCGCTGCTCATGTACCAGGTATACTAATTTTCTTCTTGATACTAAGGGCAAAATCTATCGTTGGCGGTCACCCGTCATCATAGAGAAAGAGGGTAAAGTTGAGGTCGGTGGCCATCTCATTGACCTCAAGAGAGTCGTGCTTGATGGTTCCGCGGCAACCCTT;SEQ ID No.8;
FJ-Liu:AACAGCAGCTCTTATTCGCAGTTGATTTATAACCTAACGCTATGTGAGCTGAATGGCACAGAGTGGCTGGCCACTAGATTTGATTGGGCAGTGGAATGTTTTGTCATCTTTCCCGTGTTGACTCACATCATCTCCTACGGTGCCCTCACTACCAGCCATTTTCTTGACACAGTTAGCCTGGTCACTGTATCCACCGCCGGGTATTATCACGGGCGGTATGTTTTGAGTAGTATCTACGCAGTCTGTGCTTTTGCTGCGTTAATCTGCTTTGTCATTAGGTTGGCGAAGAATTGCATGTCTTGGCGCTACTCATGTACCAGGTATACTAATTTTCTTCTTGATACTAAGGGCAAAATCTATCGTTGGCGGTCACCCGTCATCATAGAGAAAGAGGGTAAAGTTGAGGTCGGTGGCCATCTCATTGACCTCAAGAGAGTCGTGCTTGATGGTTCCGCGGCAACCCTT;SEQ ID No.9;
FJ-Wang:GACAGCAGCTCCCATCTACAGCTGATTTACAACTTGACGCTATGTGAGCTGAATGGCACAGATTGGCTAGCTAACAAATTTGATTGGGCAGTGGAGAGTTTTGTCATCTTTCCCGTTTTGACTCACATTGTCTCCTATGGTGCCCTCACTACCAGCCATTTCCTTGACACAGTCGCTTTAGTCACTGTGTCTACCGCCGGGTTTGTTCACGGGCGGTATGTCCTAAGTAGCATCTACGCGGTCTGTGCCCTGGCTGCGTTGACTTGCTTCGTCATTAGGTTTGCAAAGAATTGCATGTCCTGGCGCTACGCGTGTACCAGATATACCAACTTTCTTCTGGACACTAAGGGCGGACTCTATCGTTGGCGGTCGCCTGTCATCATAGAGAAAAGGGGCAAAGTTGAGGTCGAAGGTCATCTGATCGACCTCAAAAGAGTTGTGCTTGATGGTTCCGTGGCAACCCCT;SEQ ID No.10;
FJ-Qiu:GACAACAGCTCTCATATTCAGTTGATTTATAACTTAACGTTATGTGAGCTGAATGGCACAGATTGGCTGGCACAAAAATTTGACTGGGCAGTGGAGACTTTTGTCATCTTCCCCGTGTTGACTCACATTGTTTCCTATGGGGCACTCACCACCAGCCATTTCCTTGACACAGTTGGTCTGGCCACTGTGTCCACCGCCGGATATTATCACGGGCGGTATGTCTTGAGTAGCATTTACGCAGTCTGTGCTCTGGCTGCGCTGATTTGCTTTGTCATTAGGCTTGCGAAGAACTGCATGTCCTGGCGCTACTCTTGTACCAGATATACCAACTTCCTTCTGGACACTAAGGGCAGACTCTATCGTTGGCGGTCGCCCGTCATTGTGGAGAAAGGGGGTAAGGTTGAGGTCGAAGGTCACCTGATCGACCTCAAGAGAGTTGTGCTTGATGGTTCCGCGGCAACCCCT;SEQ ID No.11;
FJ-Fu:AACCACAGCTCTCATATTCAGTTGATTTATAACTTAACGCTATGTGAGCTGAATGGCACAGATTGGCTGGCACAAAAATTTGACTGGGCAGTGGAGATTTTTGTCATCTTCCCCGTGTTGACTCACATTGTTTCCTATGGGGCACTCACCACCAGCCATTTCCTTGACACAGTTGGTCTGGCCACTGTGTCCACCGCCGGATATTATCACGGGCGGTATGTCTTGAGTAGCATTTACGCAGTCTGTGCTCTGGCAGCGCTGATTTGCTTTGTCATTAGGCTTGCGAAGAACTGCATGTCCTGGCGCTACTCTTGTACCAGATATACCAACTTCCTTCTGGACACTAAGGGCAGACTTTATCGTTGGCGGTCACCCGTCATTGTGGAGAAAGGGGGTAAGGTTGAGGTCGAAGGTCACCTGATCGACCTCAAGAGAGTTGTGCTTGATGGTTCCGCGGCAACCCCT;SEQ ID No.12。
(2) DNA shuffling technique:
(21) PCR amplification was performed using the selected ORF5 gene of each group as a template, PCR products were analyzed by 1% gel electrophoresis, a band of interest was cut, and the DNA was recovered using a DNA purification recovery kit.
(22) And carrying out enzyme digestion on the recovered PCR product.
(23) Analyzing the enzyme digestion product by gel electrophoresis, observing a target band after enzyme digestion under an ultraviolet lamp of a gel imaging system, cutting the target band, and recovering by using a DNA purification recovery kit.
(24) Primer-free amplification of fragmented genes: and carrying out PCR amplification by taking the mixed segmented DNA as a template and a primer, analyzing a PCR product by gel electrophoresis, cutting a target band under an ultraviolet lamp of a gel imaging system, and recovering by using a DNA purification recovery kit.
(25) Amplification with primers: using the recovered product of the primer-free amplified fragment as a template, carrying out PCR amplification by using a specific primer, configuring 1% agarose gel for analyzing the PCR product, and recovering by using a DNA purification recovery kit. The specific primer sequences are as follows:
P1:CCGGAATTCATGAACAGCAGCTCAAATTTACAG;SEQ ID No.13;P2:CCGCTCGAGTTAAGGGGTAGCCGCGGAACCAT;SEQ ID No.14。
(3) and (3) connecting the PCR product recovered and purified in the step (25) to a PMD-19T vector for transformation, selecting 200 bacterial liquids containing recombinant plasmids, sending the bacterial liquids to Beijing Rui Boxing biological limited company for sequencing, analyzing the sequencing result by using DNAstar and MEGA 6.0 software for nucleotide and amino acid, and finally screening 2 fusion genes which simultaneously contain partial ORF5 genes of 4 pedigrees and are named as delta ORF5-8 and delta ORF 5-46.
The nucleotide sequence of Δ ORF5-8 is as follows:
AACAGCAGCTCAAATTTACAGTTGATTTATAACCTGACGATATGTGAGCTGAATGGCACAGACTGGCTGGACAAAAAATTTGATTGGGCAGTGGAGACTTTCGTCATCTTCCCTGTATTGACTCACATAGTCTCTTACGGCGCCCTCACCACTAGTCATTTTCTTGACACGGTCGGCCTGGCCACTGTGTCTACCGCCGGTTATTATCATGGGCGGTATGTGTTGAGTAGTATTTACGCTGTCTGTGCCCTGGCTGCGTTGGTTTGCTTCGCCATTAGGTTGGCGAAAAATTGCATGTCCTGGCGTTACTCATGCACCAGATATACTAATTTTCTCCTGGATACTAAGGGCACACTCTACCGCTGGCGGTCACCCGTCATCATTGAGAAAGGGGGTAAAGTTGATGTCGGGGGTCATTTAATCGACCTCAAAAGAGTTGTGCTTGATGGTTCCGCGGCTACCCCT;SEQ ID No.1。
the amino acid sequence encoded by Δ ORF5-8 is as follows:
NSSSNLQLIYNLTICELNGTDWLDKKFDWAVETFVIFPVLTHIVSYGALTTSHFLDTVGLATVSTAGYYHGRYVLSSIYAVCALAALVCFAIRLAKNCMSWRYSCTRYTNFLLDTKGTLYRWRSPVIIEKGGKVDVGGHLIDLKRVVLDGSAATP;SEQ ID No.3。
the nucleotide sequence of Δ ORF5-46 is as follows:
AACAGCAGCTCAAATTTACAGTTGATCTATAACCTGACGATATGTGAGCTGAATGGCACAGATTGGCTGGCACAAAAATTTGACTGGGCGGTGGAGATTTTTGTCATCTTCCCCGTGTTGACCCACATTGTTTCCTATGGGGCACTCACCACCAGCCATTTCCTTGACACAGTTGGTCTGGCCACTGTGTCCACTGCCGGATATTATCACGGGCGGTATGTCTTGAGTAGCATTTACGCAGTCTGTGCTCTGGCAGCGCTGATTTGCTTTGTCATTAGGCTTGCGAAGAACTGCATGTCCTGGCGCTACTCTTGTACCAGATATACCAACTTTCTTCTGGACACTAAGGGCAAAATCTATCGTTGGCGGTCACCCGTCATCATAGAGAAAGAGGGTAAAGTTGAGGTCGGTGGCCATCTCATTGACCTCAGGAGAGTCGTGCTTGATGGTTCCGCGGCTACCCCT;SEQ ID No.2。
the amino acid sequence encoded by Δ ORF5-46 is as follows:
NSSSNLQLIYNLTICELNGTDWLAQKFDWAVEIFVIFPVLTHIVSYGALTTSHFLDTVGLATVSTAGYYHGRYVLSSIYAVCALAALICFVIRLAKNCMSWRYSCTRYTNFLLDTKGKIYRWRSPVIIEKEGKVEVGGHLIDLRRVVLDGSAATP;SEQ ID No.4。
EXAMPLE 2 construction and transfection of recombinant plasmids
The fusion genes (delta ORF5-8 and delta ORF5-46) selected in example 1 and the eukaryotic expression vector PCAGGS-HA were digested with BamHI and XhoI, respectively, and ligated and transformed. Selecting positive bacteria liquid, sending to Beijing Rui Boxing biological limited company for sequencing, and adopting DNA star software to compare and analyze sequencing results. PCA-. DELTA.ORF 5-8 and PCA-. DELTA.ORF 5-46 were obtained.
MARC-145 cells were plated evenly on 6-well fine-pored cell culture plates at 37 ℃ with 5% CO one day prior to transfection experiments 2 Culturing, and when the cells grow to about 80%, performing transfection according to the operation instruction of a kit (Lp8000 transfection kit).
Example 3 Indirect immunofluorescence and Western Blot detection
MARC-145 cells (1 cell slide per well) in 6-well transfected culture plates of example 2 were cultured for 48h and fixed with 4% paraformaldehyde, primary antibodies (PRRSV protein monoclonal antibody (MAb) (1:800 fold dilution), incubated at 37 ℃ for 1h, FITC-labeled goat anti-mouse IgG (1:1600 fold dilution) as secondary antibodies, washed with PBS, mounted on neutral resin, air dried, observed under a confocal laser microscope and photographed. The results are shown in FIG. 1. The results show that the transfected recombinant plasmid can detect specific green fluorescence in MARC-145 cells, and normal control cells have no specific fluorescence.
At the same time, MARC-145 cells transfected for 48h were sampled, RIPA protein lysate was added to dissolve the cell membrane, SDS-PAGE was performed and membrane-converted, and Western Blot detection was performed using mouse anti-HA protein antibody (diluted 1:800 fold) as the primary antibody and FITC-labeled goat anti-mouse IgG as the secondary antibody (diluted 1:1600 fold). The results are shown in FIG. 2. A sample of MARC-145 cells transfected with recombinant plasmids showed a band of interest at 17kDa, indicating that the two recombinant plasmids PCA- Δ ORF5-8 and PCA- Δ ORF5-46 were efficiently expressed in MARC-145.
Example 4 mouse immunization experiment
Plasmids used as vaccine for immunizing mice are extracted by an endotoxin-free large quality-improving particle kit. 56 female BALB/c mice 6-8 weeks old were randomly divided into 7 groups of 8 mice each, the first group was PBS blank control group, the second group was PCAGGS-HA empty vector group, the third group was attenuated vaccine group, the fourth group was PCA-ORF5-MLV (ORF5 gene from MLV vaccine) group, the fifth group was PCA- Δ ORF5-8 group, the sixth group was PCA- Δ ORF5-46 group, and the seventh group was PCA- Δ 2ORF5 (containing pedigree 1, 5 and 8 partial strain sequences). The PCA-ORF5-MLV group, PCA-Delta ORF5-8 group, PCA-Delta ORF5-46 group, PCA-Delta 2ORF5 group and PCAGGS-HA empty vector group each group immunized with 100. mu.g of endotoxin-free recombinant plasmid per medial thigh muscle of mice, PBS blank control group immunized with 100. mu.L of PBS per medial thigh muscle of mice, and attenuated vaccine group immunized with 100. mu.L of attenuated vaccine per medial thigh muscle of mice, all immunized 3 times with 14 days interval.
Wherein the nucleotide sequence of Δ 2ORF5 is as follows:
AACAGCAGCTCAcATTTACAGTTGATTTATAACTTGACGCTATGTGAGCTGAATGGCACAGATTGGCTGGCACAAAATTTTGACTGGGCAGTGGAGACTTTTGTCATCTTCCCCGTTTTGACTCACAtTGTTTCCTATGGGGCACTCACCACCAGCCATTTCCTTGACACAGTTGGTCTGatcACTGTGTCCACCGCCGGATATTATCACaGGCGGTATGTCTTGAGTAGCATTTACGCAGTCTGTGCCCTGGCTGCGTTGaCTTGCTTCGCCATTAGGTTGGTGAAAAATTGTATgTCCTGGCGCTACTCATGCACTAGATACACTAATTTTCTTCTGGATACTAAGGGCAAACTCTACCGTTGGCGGTCACCCGTCATCATAGAGAAGGGGGGTAAGGTTGAgGTTGAGGGTCATTTAATTGACCTCAAGAGAGTTGTGCTTGATGGTTCCGCGGCTACCCCT;SEQ ID No.15。
after two weeks (42d) and two weeks (56d) after the second immunization, whole blood of the mice is collected, and after serum is separated out, the GP5 protein antibody in the serum of the mice is detected by using an ELISA kit of PRRSV GP5 protein (PRRSV-GP 5). The results are shown in FIG. 3.
The results show that the PCA-delta ORF5-8, PCA-delta ORF5-46, PCA-ORF5-MLV, PCA-delta 2ORF5 and the attenuated vaccine can significantly enhance the level of specific antibodies induced in immunized mice (P <0.01) compared with the PCAGGS-HA empty vector group and the PBS blank control group. The PCA- Δ ORF5-46 group produced higher levels of GP5 antibody at 56d than the attenuated vaccine MLV group but less than the PCA-ORF5-MLV group compared to 42 d. The two recombinant DNA vaccines PCA-delta ORF5-8 and PCA-delta ORF5-46 are shown to stimulate the body to produce specific antibodies.
Example 5 serum neutralization assay
Mice were immunized as in example 4, and the experiment was carried out 14 days after the third immunization.
After inactivation of the collected murine sera, a fold-wise dilution was performed in combination with equal volumes of the FJ-Yang (lineage 1), FJ-Liu (lineage 3), FJ-Wang (lineage 5) and FJ-Fu (lineage 8.7) strains of 100TCID50, respectively, for seroneutralization experiments.
The neutralizing capacity of the immune mouse serum against PRRSV of different lineages was further evaluated by a method of fixing virus and diluting blood, and the results are shown in Table 1. 14 days after the third immunization, the sera of mice in the PCA-delta ORF5-46 group all produced higher levels of specific neutralizing antibodies against 4 different lineage strains, the average titer of neutralizing antibodies produced by FJ-Chen for lineage 1 was 12, the average titer of neutralizing antibodies produced by FJ-Liu for lineage 3 and FJ-Wang for lineage 5 was 11, and the average titer of neutralizing antibodies produced by FJ-Fu for lineage 8 was 16; the sera of mice in the PCA-delta ORF5-8 group were able to produce higher levels of specific neutralizing antibody titers against lineage 1, 3, and 8 representative strains, the mean titer of neutralizing antibodies produced by strain FJ-Chen was 16 for lineage 1, the mean titer of neutralizing antibodies produced by strain FJ-Liu was 10 for lineage 3, and the mean titer of neutralizing antibodies produced by strain FJ-Fu was 12 for lineage 8; while the serum of mice in the PCA-ORF5-MLV group represented high specific neutralizing antibodies produced by the strains to pedigrees 5 and 8 with average titers of 17 and 11, respectively, the serum of mice in the PCA-Delta 2ORF5 group represented high specific neutralizing antibodies produced by the strains to pedigrees 5 and 8 with average titers of 10 and 11, respectively, and the control group of immune vehicle and PBS failed to produce neutralizing antibodies, these results indicate that the PCA-Delta ORF5-8 and PCA-Delta ORF5-46 can induce the body to produce more effective neutralizing antibodies, especially for the newly circulating pedigree 1 and pedigree 3 strains.
TABLE 1 mouse serum neutralization assay
Figure BDA0002872637460000101
Note: "-" indicates no result.
The embodiments in the present description are described in a progressive manner, each embodiment focuses on differences from other embodiments, and the same and similar parts among the embodiments are referred to each other.
The previous description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Sequence listing
<110> Longyan college
<120> PRRSV ORF5 fusion gene DNA vaccine and preparation method
<160> 15
<170> SIPOSequenceListing 1.0
<210> 1
<211> 465
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 1
aacagcagct caaatttaca gttgatttat aacctgacga tatgtgagct gaatggcaca 60
gactggctgg acaaaaaatt tgattgggca gtggagactt tcgtcatctt ccctgtattg 120
actcacatag tctcttacgg cgccctcacc actagtcatt ttcttgacac ggtcggcctg 180
gccactgtgt ctaccgccgg ttattatcat gggcggtatg tgttgagtag tatttacgct 240
gtctgtgccc tggctgcgtt ggtttgcttc gccattaggt tggcgaaaaa ttgcatgtcc 300
tggcgttact catgcaccag atatactaat tttctcctgg atactaaggg cacactctac 360
cgctggcggt cacccgtcat cattgagaaa gggggtaaag ttgatgtcgg gggtcattta 420
atcgacctca aaagagttgt gcttgatggt tccgcggcta cccct 465
<210> 2
<211> 465
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 2
aacagcagct caaatttaca gttgatctat aacctgacga tatgtgagct gaatggcaca 60
gattggctgg cacaaaaatt tgactgggcg gtggagattt ttgtcatctt ccccgtgttg 120
acccacattg tttcctatgg ggcactcacc accagccatt tccttgacac agttggtctg 180
gccactgtgt ccactgccgg atattatcac gggcggtatg tcttgagtag catttacgca 240
gtctgtgctc tggcagcgct gatttgcttt gtcattaggc ttgcgaagaa ctgcatgtcc 300
tggcgctact cttgtaccag atataccaac tttcttctgg acactaaggg caaaatctat 360
cgttggcggt cacccgtcat catagagaaa gagggtaaag ttgaggtcgg tggccatctc 420
attgacctca ggagagtcgt gcttgatggt tccgcggcta cccct 465
<210> 3
<211> 155
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 3
Asn Ser Ser Ser Asn Leu Gln Leu Ile Tyr Asn Leu Thr Ile Cys Glu
1 5 10 15
Leu Asn Gly Thr Asp Trp Leu Asp Lys Lys Phe Asp Trp Ala Val Glu
20 25 30
Thr Phe Val Ile Phe Pro Val Leu Thr His Ile Val Ser Tyr Gly Ala
35 40 45
Leu Thr Thr Ser His Phe Leu Asp Thr Val Gly Leu Ala Thr Val Ser
50 55 60
Thr Ala Gly Tyr Tyr His Gly Arg Tyr Val Leu Ser Ser Ile Tyr Ala
65 70 75 80
Val Cys Ala Leu Ala Ala Leu Val Cys Phe Ala Ile Arg Leu Ala Lys
85 90 95
Asn Cys Met Ser Trp Arg Tyr Ser Cys Thr Arg Tyr Thr Asn Phe Leu
100 105 110
Leu Asp Thr Lys Gly Thr Leu Tyr Arg Trp Arg Ser Pro Val Ile Ile
115 120 125
Glu Lys Gly Gly Lys Val Asp Val Gly Gly His Leu Ile Asp Leu Lys
130 135 140
Arg Val Val Leu Asp Gly Ser Ala Ala Thr Pro
145 150 155
<210> 4
<211> 155
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 4
Asn Ser Ser Ser Asn Leu Gln Leu Ile Tyr Asn Leu Thr Ile Cys Glu
1 5 10 15
Leu Asn Gly Thr Asp Trp Leu Ala Gln Lys Phe Asp Trp Ala Val Glu
20 25 30
Ile Phe Val Ile Phe Pro Val Leu Thr His Ile Val Ser Tyr Gly Ala
35 40 45
Leu Thr Thr Ser His Phe Leu Asp Thr Val Gly Leu Ala Thr Val Ser
50 55 60
Thr Ala Gly Tyr Tyr His Gly Arg Tyr Val Leu Ser Ser Ile Tyr Ala
65 70 75 80
Val Cys Ala Leu Ala Ala Leu Ile Cys Phe Val Ile Arg Leu Ala Lys
85 90 95
Asn Cys Met Ser Trp Arg Tyr Ser Cys Thr Arg Tyr Thr Asn Phe Leu
100 105 110
Leu Asp Thr Lys Gly Lys Ile Tyr Arg Trp Arg Ser Pro Val Ile Ile
115 120 125
Glu Lys Glu Gly Lys Val Glu Val Gly Gly His Leu Ile Asp Leu Arg
130 135 140
Arg Val Val Leu Asp Gly Ser Ala Ala Thr Pro
145 150 155
<210> 5
<211> 465
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 5
gacagcagct cccatttaca gttgatctat aacctgacga tatgtgagct gaatggcaca 60
gattggcttg acaagaaatt tgactgggca gtggagactt tcgtcatctt ccctgtgctt 120
acccatattg tctcttacgg tgccctcacc accagccatt ttcttgacac ggtcggcctg 180
atcactgtgt ccaccgccgg ttattatcat gggcggtatg ttttgagtag catctacgct 240
gtctgtgccc tggctgcgtt tgtttgcttc accattaggt tggctaaaaa ttgcatgtcc 300
tggcgctact catgcaccag atatactaat tttcttctgg atactaaggg taaactctat 360
cgctggcggt catccgtcat catagagaaa gggggtaaag ttgatgttgg gggtcattta 420
atcgacctca agagagttgt gcttgatggt tccgcggcaa cccct 465
<210> 6
<211> 465
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 6
gacagcagct cccacttaca attgatttat aacctaacga tatgtgagct gaatggcaca 60
gattggctga acaaaaaatt tgactgggca gtggagactt tcgttatttt ccctgtgttg 120
actcatattg tctcttacgg cgccctcacc actagccatt ttcttgacac ggttggcctg 180
atcactgtat ccaccgccgg ttactatcgt gggcggtatg tattgagtag catctacgct 240
gtctgtgccc tggctgcgtt tgtttgcttc gccattaggt tggcaaaaaa ttgtgtgtcc 300
tggcgctact catgcaccag atataccaat tttcttctgg atactaaggg caagctatat 360
cgctggcagt catccgtcat catagagaag gggggcaaag ttgatgtggg gggtcattta 420
atcgacctca agagagtcgt gcttgatggt tctgcggcaa cccct 465
<210> 7
<211> 465
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 7
aacagcagct cccacttaca gtcgatttat aacctgacga tatgtgagct gaatggcaca 60
gattggctga acaaaaattt tgactgggca gtagagactt tcgttatttt tcctgtgctg 120
actcatattg tctcttacgg cgccctcacc actagccatt ttcttgacac aatcggcttg 180
atcactgtgt ccaccgccgg ttattatcac gggcggtatg tattgagtag catctacgct 240
gtctgtgccc tggctgcgtt cgtttgcttc gccattaggt tggcaaaaaa ttgtatgtcc 300
tggcgctact catgcaccag atataccaat tttcttctgg ataccaaggg caaactctat 360
cgctggcggt cacccgtcat catagagaaa gggggcaaag ttgatgttgg gggtcattta 420
atcgacctca agagagttgt gcttgatggt tccgcggcaa cccct 465
<210> 8
<211> 465
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 8
aacagcagct cttattcgca gttgatttat aacctaacgc tatgtgagct gaatggcaca 60
gagtggctgg ccactagatt tgattgggca gtggaatgtt ttgtcatctt tcccgtgttg 120
actcacatca tctcctacgg tgccctcact accagccatt ttcttgacac aattagcctg 180
gtcactgtat ccaccgccgg gtattatcac gggcggtatg ttttgagtag tatctacgca 240
gtctgtgctt ttgctgcgtt aatctgcttt gtcattaggt tggcgaagaa ttgcatgtct 300
tggcgctgct catgtaccag gtatactaat tttcttcttg atactaaggg caaaatctat 360
cgttggcggt cacccgtcat catagagaaa gagggtaaag ttgaggtcgg tggccatctc 420
attgacctca agagagtcgt gcttgatggt tccgcggcaa ccctt 465
<210> 9
<211> 465
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 9
aacagcagct cttattcgca gttgatttat aacctaacgc tatgtgagct gaatggcaca 60
gagtggctgg ccactagatt tgattgggca gtggaatgtt ttgtcatctt tcccgtgttg 120
actcacatca tctcctacgg tgccctcact accagccatt ttcttgacac agttagcctg 180
gtcactgtat ccaccgccgg gtattatcac gggcggtatg ttttgagtag tatctacgca 240
gtctgtgctt ttgctgcgtt aatctgcttt gtcattaggt tggcgaagaa ttgcatgtct 300
tggcgctact catgtaccag gtatactaat tttcttcttg atactaaggg caaaatctat 360
cgttggcggt cacccgtcat catagagaaa gagggtaaag ttgaggtcgg tggccatctc 420
attgacctca agagagtcgt gcttgatggt tccgcggcaa ccctt 465
<210> 10
<211> 465
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 10
gacagcagct cccatctaca gctgatttac aacttgacgc tatgtgagct gaatggcaca 60
gattggctag ctaacaaatt tgattgggca gtggagagtt ttgtcatctt tcccgttttg 120
actcacattg tctcctatgg tgccctcact accagccatt tccttgacac agtcgcttta 180
gtcactgtgt ctaccgccgg gtttgttcac gggcggtatg tcctaagtag catctacgcg 240
gtctgtgccc tggctgcgtt gacttgcttc gtcattaggt ttgcaaagaa ttgcatgtcc 300
tggcgctacg cgtgtaccag atataccaac tttcttctgg acactaaggg cggactctat 360
cgttggcggt cgcctgtcat catagagaaa aggggcaaag ttgaggtcga aggtcatctg 420
atcgacctca aaagagttgt gcttgatggt tccgtggcaa cccct 465
<210> 11
<211> 465
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 11
gacaacagct ctcatattca gttgatttat aacttaacgt tatgtgagct gaatggcaca 60
gattggctgg cacaaaaatt tgactgggca gtggagactt ttgtcatctt ccccgtgttg 120
actcacattg tttcctatgg ggcactcacc accagccatt tccttgacac agttggtctg 180
gccactgtgt ccaccgccgg atattatcac gggcggtatg tcttgagtag catttacgca 240
gtctgtgctc tggctgcgct gatttgcttt gtcattaggc ttgcgaagaa ctgcatgtcc 300
tggcgctact cttgtaccag atataccaac ttccttctgg acactaaggg cagactctat 360
cgttggcggt cgcccgtcat tgtggagaaa gggggtaagg ttgaggtcga aggtcacctg 420
atcgacctca agagagttgt gcttgatggt tccgcggcaa cccct 465
<210> 12
<211> 465
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 12
aaccacagct ctcatattca gttgatttat aacttaacgc tatgtgagct gaatggcaca 60
gattggctgg cacaaaaatt tgactgggca gtggagattt ttgtcatctt ccccgtgttg 120
actcacattg tttcctatgg ggcactcacc accagccatt tccttgacac agttggtctg 180
gccactgtgt ccaccgccgg atattatcac gggcggtatg tcttgagtag catttacgca 240
gtctgtgctc tggcagcgct gatttgcttt gtcattaggc ttgcgaagaa ctgcatgtcc 300
tggcgctact cttgtaccag atataccaac ttccttctgg acactaaggg cagactttat 360
cgttggcggt cacccgtcat tgtggagaaa gggggtaagg ttgaggtcga aggtcacctg 420
atcgacctca agagagttgt gcttgatggt tccgcggcaa cccct 465
<210> 13
<211> 33
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 13
ccggaattca tgaacagcag ctcaaattta cag 33
<210> 14
<211> 32
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 14
ccgctcgagt taaggggtag ccgcggaacc at 32
<210> 15
<211> 465
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 15
aacagcagct cacatttaca gttgatttat aacttgacgc tatgtgagct gaatggcaca 60
gattggctgg cacaaaattt tgactgggca gtggagactt ttgtcatctt ccccgttttg 120
actcacattg tttcctatgg ggcactcacc accagccatt tccttgacac agttggtctg 180
atcactgtgt ccaccgccgg atattatcac aggcggtatg tcttgagtag catttacgca 240
gtctgtgccc tggctgcgtt gacttgcttc gccattaggt tggtgaaaaa ttgtatgtcc 300
tggcgctact catgcactag atacactaat tttcttctgg atactaaggg caaactctac 360
cgttggcggt cacccgtcat catagagaag gggggtaagg ttgaggttga gggtcattta 420
attgacctca agagagttgt gcttgatggt tccgcggcta cccct 465

Claims (4)

1. A PRRSV ORF5 fusion gene, which is characterized in that the fusion gene simultaneously contains partial ORF5 genes of 4 lineages;
the 4 lineages are lineage 1, lineage 3, lineage 5 subline 5.1, and lineage 8 subline 8.7;
the nucleotide sequence is as follows:
ΔORF5-8:AACAGCAGCTCAAATTTACAGTTGATTTATAACCTGACGATATGTGAGCTGAATGGCACAGACTGGCTGGACAAAAAATTTGATTGGGCAGTGGAGACTTTCGTCATCTTCCCTGTATTGACTCACATAGTCTCTTACGGCGCCCTCACCACTAGTCATTTTCTTGACACGGTCGGCCTGGCCACTGTGTCTACCGCCGGTTATTATCATGGGCGGTATGTGTTGAGTAGTATTTACGCTGTCTGTGCCCTGGCTGCGTTGGTTTGCTTCGCCATTAGGTTGGCGAAAAATTGCATGTCCTGGCGTTACTCATGCACCAGATATACTAATTTTCTCCTGGATACTAAGGGCACACTCTACCGCTGGCGGTCACCCGTCATCATTGAGAAAGGGGGTAAAGTTGATGTCGGGGGTCATTTAATCGACCTCAAAAGAGTTGTGCTTGATGGTTCCGCGGCTACCCCT;SEQ ID No.1;
or Δ ORF 5-46: AACAGCAGCTCAAATTTACAGTTGATCTATAACCTGACGATATGTGAGCTGAATGGCACAGATTGGCTGGCACAAAAATTTGACTGGGCGGTGGAGATTTTTGTCATCTTCCCCGTGTTGACCCACATTGTTTCCTATGGGGCACTCACCACCAGCCATTTCCTTGACACAGTTGGTCTGGCCACTGTGTCCACTGCCGGATATTATCACGGGCGGTATGTCTTGAGTAGCATTTACGCAGTCTGTGCTCTGGCAGCGCTGATTTGCTTTGTCATTAGGCTTGCGAAGAACTGCATGTCCTGGCGCTACTCTTGTACCAGATATACCAACTTTCTTCTGGACACTAAGGGCAAAATCTATCGTTGGCGGTCACCCGTCATCATAGAGAAAGAGGGTAAAGTTGAGGTCGGTGGCCATCTCATTGACCTCAGGAGAGTCGTGCTTGATGGTTCCGCGGCTACCCCT, respectively; SEQ ID No. 2.
2. The PRRSV ORF5 fusion gene of claim 1, wherein Δ ORF5-8 encodes the amino acid sequence:
NSSSNLQLIYNLTICELNGTDWLDKKFDWAVETFVIFPVLTHIVSYGALTTSHFLDTVGLATVSTAGYYHGRYVLSSIYAVCALAALVCFAIRLAKNCMSWRYSCTRYTNFLLDTKGTLYRWRSPVIIEKGGKVDVGGHLIDLKRVVLDGSAATP;SEQ ID No.3;
the amino acid sequence encoded by Δ ORF5-46 is as follows:
NSSSNLQLIYNLTICELNGTDWLAQKFDWAVEIFVIFPVLTHIVSYGALTTSHFLDTVGLATVSTAGYYHGRYVLSSIYAVCALAALICFVIRLAKNCMSWRYSCTRYTNFLLDTKGKIYRWRSPVIIEKEGKVEVGGHLIDLRRVVLDGSAATP;SEQ ID No.4。
3. a porcine reproductive and respiratory syndrome vaccine comprising the fusion gene of any one of claims 1 to 2.
4. The porcine reproductive and respiratory syndrome vaccine of claim 3, constructed using the eukaryotic expression vector PCAGGS-HA.
CN202011609207.0A 2020-12-30 2020-12-30 PRRSV ORF5 fusion gene DNA vaccine and preparation method thereof Active CN112725370B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011609207.0A CN112725370B (en) 2020-12-30 2020-12-30 PRRSV ORF5 fusion gene DNA vaccine and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011609207.0A CN112725370B (en) 2020-12-30 2020-12-30 PRRSV ORF5 fusion gene DNA vaccine and preparation method thereof

Publications (2)

Publication Number Publication Date
CN112725370A CN112725370A (en) 2021-04-30
CN112725370B true CN112725370B (en) 2022-09-06

Family

ID=75611764

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011609207.0A Active CN112725370B (en) 2020-12-30 2020-12-30 PRRSV ORF5 fusion gene DNA vaccine and preparation method thereof

Country Status (1)

Country Link
CN (1) CN112725370B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2240779A1 (en) * 1998-06-16 1999-12-16 Boroushan Pirzadeh Porcine reproductive and respiratory syndrome virus (prrsv) dna vaccines
CN101219216A (en) * 2008-01-24 2008-07-16 山东省农业科学院畜牧兽医研究所 Method for preparing coexpression PRRSV ORF3 and ORF5 double-gene nucleic acid vaccine
CN107653254A (en) * 2017-09-22 2018-02-02 龙岩学院 A kind of porcine reproductive and respiratory syndrome virus restructuring ORF5 genes and preparation method thereof
CN111057145A (en) * 2019-11-22 2020-04-24 中国农业科学院哈尔滨兽医研究所(中国动物卫生与流行病学中心哈尔滨分中心) Porcine reproductive and respiratory syndrome virus Nsp2 protein nano antibody and application thereof
CN111978411A (en) * 2020-08-07 2020-11-24 武汉科前生物股份有限公司 Porcine reproductive and respiratory syndrome subunit vaccine and preparation method and application thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2240779A1 (en) * 1998-06-16 1999-12-16 Boroushan Pirzadeh Porcine reproductive and respiratory syndrome virus (prrsv) dna vaccines
CN101219216A (en) * 2008-01-24 2008-07-16 山东省农业科学院畜牧兽医研究所 Method for preparing coexpression PRRSV ORF3 and ORF5 double-gene nucleic acid vaccine
CN107653254A (en) * 2017-09-22 2018-02-02 龙岩学院 A kind of porcine reproductive and respiratory syndrome virus restructuring ORF5 genes and preparation method thereof
CN111057145A (en) * 2019-11-22 2020-04-24 中国农业科学院哈尔滨兽医研究所(中国动物卫生与流行病学中心哈尔滨分中心) Porcine reproductive and respiratory syndrome virus Nsp2 protein nano antibody and application thereof
CN111978411A (en) * 2020-08-07 2020-11-24 武汉科前生物股份有限公司 Porcine reproductive and respiratory syndrome subunit vaccine and preparation method and application thereof

Also Published As

Publication number Publication date
CN112725370A (en) 2021-04-30

Similar Documents

Publication Publication Date Title
CN112980852B (en) Novel coronavirus B.1.351 south Africa mutant RBD gene and application thereof
CN111848753A (en) Novel coronavirus epitope and application thereof
Stucker et al. The role of evolutionary intermediates in the host adaptation of canine parvovirus
EP4056687A1 (en) F-genotype mumps virus attenuated strain and construction method therefor and application thereof
CN113201507B (en) Recombinant pseudorabies virus and vaccine composition thereof
Feng et al. Multi-epitope vaccine design using an immunoinformatics approach for 2019 novel coronavirus (SARS-CoV-2)
JP2009529868A5 (en)
CN115850396B (en) RSV nanoparticle vaccine and preparation method and application thereof
CN110904153A (en) Construction method and application of recombinant porcine reproductive and respiratory syndrome virus for expressing African swine fever virus p12 or p17 protein
CN113461788A (en) Cat coronavirus recombinant antigen, genetic engineering subunit vaccine thereof and application
CN113151196A (en) Recombinant vaccinia virus, vaccinia virus vector vaccine, application and preparation method thereof
CN101838658B (en) O type foot-and-mouth disease virus variant as well as coding gene and application thereof
CN113073106B (en) Novel coronavirus B.1.525 Nigeria mutant RBD gene and application thereof
CN112725370B (en) PRRSV ORF5 fusion gene DNA vaccine and preparation method thereof
Chen et al. Emerging Omicron subvariants evade neutralizing immunity elicited by vaccine or BA. 1/BA. 2 infection
Croft et al. Surprisingly effective priming of CD8+ T cells by heat-inactivated vaccinia virus virions
CN116376850A (en) B3 genotype chimeric measles virus attenuated strain and preparation method and application thereof
Tao et al. Attenuated porcine-derived type 2 bovine viral diarrhea virus as vector stably expressing viral gene
US20240148850A1 (en) N protein epitope mutation marker for preparing epitope deletion-marked vaccine strain of type ii porcine reproductive and respiratory syndrome virus (prrsv) and use thereof
Li et al. Protection against SHIV-KB9 infection by combining rDNA and rFPV vaccines based on HIV multiepitope and p24 protein in Chinese rhesus macaques
Jung et al. Genetic and immunological characterization of commercial infectious bronchitis virus vaccines used in Korea
CN1059927C (en) Reconstituted hepatitis B vaccine with corboxy end having anterior surface antigen 1 determinant
CN107964035B (en) Limited replication type mucosal immune vaccine for influenza virus
Sun et al. Recombinant pseudorabies virus (PRV) expressing stabilized E2 of classical swine fever virus (CSFV) protects against both PRV and CSFV
Zhang et al. Development of stable HEK293T cell pools expressing CSFV E2 protein: A potential antigen expression platform

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant