CN112725254B - L-homoserine production strain and construction method and application thereof - Google Patents

L-homoserine production strain and construction method and application thereof Download PDF

Info

Publication number
CN112725254B
CN112725254B CN202110031779.3A CN202110031779A CN112725254B CN 112725254 B CN112725254 B CN 112725254B CN 202110031779 A CN202110031779 A CN 202110031779A CN 112725254 B CN112725254 B CN 112725254B
Authority
CN
China
Prior art keywords
thra
strain
seq
psoe
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110031779.3A
Other languages
Chinese (zh)
Other versions
CN112725254A (en
Inventor
谢新开
徐伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Lier Biotechnology Co ltd
Original Assignee
Hunan Lier Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Lier Biotechnology Co ltd filed Critical Hunan Lier Biotechnology Co ltd
Priority to CN202110031779.3A priority Critical patent/CN112725254B/en
Publication of CN112725254A publication Critical patent/CN112725254A/en
Application granted granted Critical
Publication of CN112725254B publication Critical patent/CN112725254B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1096Transferases (2.) transferring nitrogenous groups (2.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/06Alanine; Leucine; Isoleucine; Serine; Homoserine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01003Homoserine dehydrogenase (1.1.1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y206/00Transferases transferring nitrogenous groups (2.6)
    • C12Y206/01Transaminases (2.6.1)
    • C12Y206/01021D-Amino-acid transaminase (2.6.1.21), i.e. D-alanine aminotransferase/transaminase or D-aspartic aminotransferase/transaminase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01039Homoserine kinase (2.7.1.39)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01031Phosphoenolpyruvate carboxylase (4.1.1.31)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli

Abstract

The invention provides a strain for producing L-homoserine, which is characterized in that: it has a single stable chromosome, does not contain plasmid forms or other episomal DNA vectors, has one or more genes associated with L-threonine synthesis knocked out or weakened on its chromosomal DNA, and/or has been mutated to enhance, and/or has integrated copies of one or more genes associated with the L-homoserine metabolic pathway on its chromosomal DNA.

Description

L-homoserine production strain and construction method and application thereof
The application is a divisional application of an invention patent application with the application date of 2017, 10-13, the application number of 201710953111.8 and the invention name of 'an L-homoserine production strain, a construction method and application'.
Technical Field
The invention belongs to the field of genetic engineering, and particularly relates to a production strain of L-homoserine, and a construction method and application thereof.
Background
L-homoserine is a naturally occurring non-protein amino acid and is present in small amounts in many species as an intermediate common to the biosynthesis of threonine, methionine and lysine. Because L-homoserine has a basic skeleton of L-type-alpha amino acid and gamma-hydroxyl has various chemical activities, the L-homoserine and the derivatives thereof have important application prospects in the aspects of pharmacy, physiology and the like as medical intermediates.
At present, the L-homoserine produced at home and abroad mainly comprises the following methods:
(1) A chemical process; the method adopts relatively expensive L-methionine as a raw material, takes methyl iodide or methyl bromide with serious biotoxicity as a methylation reagent, protects amino by nucleophilic attack, and hydrolyzes under the weak alkaline condition to obtain a product. The method has high cost, needs iodide and sulfide generation, and is not friendly to the environment;
(2) Chemical chiral resolution method; the method utilizes the property difference of non-corresponding isomers after the mixed homoserine reacts with chiral reagent, thereby separating L-homoserine. The method has low yield, high reagent cost and large amount of organic solvent, and has great environmental pollution threat.
(3) A biological enzyme catalysis method; the method utilizes pyruvic acid and formaldehyde to produce amino acid homoserine under the combined action of aldolase and L-amino acid dehydrogenase. The method has the main problems of high cost, the need of using toxic raw materials formaldehyde and formic acid, the need of using expensive coenzyme and the like.
(4) A microbial fermentation process; the method has the advantages of low cost, mild condition, less environmental pollution and the like, and has become the first choice process for producing various amino acids in recent years. However, the current L-homoserine fermentation relies on a gene overexpression system using a plasmid as a vector, and has the disadvantage of poor strain passage stability.
Disclosure of Invention
The first technical problem to be solved by the present invention is to provide a stable L-homoserine producing strain.
The second technical problem to be solved by the invention is to provide a genetic engineering method for constructing an L-homoserine producing strain.
Accordingly, the present invention provides a strain producing L-homoserine, characterized in that: it has a single stable chromosome, does not contain plasmid forms or other episomal DNA vectors, has one or more genes associated with L-threonine synthesis knocked out or weakened on its chromosomal DNA, and/or has been mutated to enhance, and/or has integrated copies of one or more genes associated with the L-homoserine metabolic pathway on its chromosomal DNA.
Preferably, the knocked out or weakened gene is thrB and/or thrL; the genes mutated to enhance are thrA and/or rhtA, and the genes of the integrated copy are one or more of thrA, ppc, pntA, pntB, asd, aspA and aspC.
Preferably, the L-homoserine producing strain belongs to the species Escherichia coli.
Further preferably, the strain is E.coli K-12 wild-type MG1655.
The invention also provides a construction method of the L-homoserine production strain, which comprises one or more of the following steps:
A. one or more genes related to the L-homoserine metabolic pathway in the constructed strain are knocked out or weakened;
B. constructing one or more genes related to the L-homoserine metabolic pathway in the strain to be over-expressed or have enhanced functions through point mutation;
C. one or more genes related to the L-homoserine metabolic pathway in the constructed strain are integrated into chromosomal DNA in multiple copies for overexpression.
Preferably, the knocked out or weakened gene in step a is thrB and/or thrL;
the mutated genes in the step B are thrA and/or rhtA;
in step B, thrA and/or rhtA genes are mutated to thrA and/or rthA23 genes, respectively. The mutant thrA has the characteristic of inhibiting feedback inhibition of a product, and the mutant rhtA23 has the effect of increasing the expression quantity;
the genes over-expressed by increasing chromosome copy number described in step C are one or more of thrA, ppc, pntA, pntB, apsA, aspC and asd.
Preferably, the constructed strain described in the above step belongs to the species E.coli.
Further preferably, the strain is E.coli K-12 wild-type MG1655.
The invention also provides application of the L-homoserine producing strain in producing L-homoserine.
Compared with the prior art, the technical scheme provided by the invention has the following advantages:
(1) The invention can realize the purpose of stable and high yield by integrating and expressing multiple copies of specific genes related to the L-homoserine metabolic pathway. Compared with the prior reported mode of over-expression through a plasmid vector, the strain disclosed by the invention has the advantages of good passage stability, stable fermentation result and higher yield.
(2) The L-homoserine production strain constructed by the invention has less byproducts and high sugar acid conversion rate compared with the strain with plasmid form in the fermentation process.
(3) The L-homoserine producing strain does not need antibiotics in the whole fermentation process, and avoids the pollution of the antibiotics to the environment and the possibility of potential resistance genes flowing into the environment.
Detailed Description
In the embodiment, the Escherichia coli MG1655 is adopted to construct an L-homoserine production strain, and the knockout and editing of genes in the Escherichia coli genome are mainly based on Lambda-Red recombination, FLP-FRT recombination and CRISPR/Cas9 technology. Reference may be made to the literature "Lambda Red Recombination One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products", "Proc Natl Acad Sci usa.2000 Jun 6;97 6640-5 and "Development of a fast and easy method for Escherichia coli genome editing with CRISPR/cas9", "Microb Cell face.2016 Dec 1;15 (1):205..
The temperature sensitive plasmid used in the examples has the document Cell face.2016 Dec 1;15 205. DNA sequence structure shown in temperature sensitive plasmid; the original strain, escherichia coli MG1655, was purchased from ATCC; it should be noted that the materials are all commercially available, and products of different manufacturers and different specifications do not affect the implementation of the present invention for the purpose of the present invention. In an embodiment, the arabinose induction conditions are specifically: induced culture at 30℃in LB medium containing 20mM arabinose.
Example 1
Construction of thrB Gene knockout, rhtA Gene overexpression, thrL Gene knockout, mutant thrA Gene enhancement Strain MG1655 (Deltathr B, rhtA23, deltathr L, thrA x (G433R)).
The L-homoserine producing strain constructed in this example is constructed by a strain MG1655 (Deltathr B, rhtA23, deltathr L, thrA) which knocks out thrB gene, overexpresses rhtA gene, knocks out thrL gene and mutates thrA gene, and the construction method is shown in Chinese patent application CN201710106474.8.
Example 2
Construction of genetically engineered strains MG1655 (Deltathr B, rhtA23, deltathr L, thrA (G433R), deltatA:: thrA-ppc-aspA-pntAB) expressing thrA, ppc, aspA, pntA and pntB in single copy on chromosomal DNA.
The L-homoserine production strain constructed in the embodiment is a genetically engineered bacterium MG1655 (DeltathrB, rhtA23, deltathrL, thrA (G433R) which simultaneously integrates and expresses thrA, ppc, aspA, pntA and pntB on chromosome DNA, deltatcadA:: thrA-ppc-aspA-pntAB), and the construction method can refer to the literature of Microb Cell face.2016Dec 1;15 205, specifically comprising the following steps:
(1) The chromosomal DNA of the strain obtained in example 1 was used as a template, and pSOE-thrA-f and pSOE-ppc-thrA-r were used as templates; pSOE-thrA-ppc-f, pSOE-aspA-ppc-r; pSOE-ppc-aspA-f, pSOE-pntA-aspA-r; pSOE-aspA-pntA-f and pntB-r are used as primers, amplified by an overlap extension PCR method (namely SOE-PCR method), and genes thrA, ppc, aspA, pntAB and the like under the corresponding natural promoters in template bacteria are connected to obtain an integrated inserted gene DNA fragment;
wherein the primer pSOE-thrA-f has a sequence shown as SEQ ID No.1, the primer pSOE-ppc-thrA-r has a sequence shown as SEQ ID No.2, the primer pSOE-thrA-ppc-f has a sequence shown as SEQ ID No.3, the primer pSOE-aspA-ppc-r has a sequence shown as SEQ ID No.4, the primer pSOE-ppc-aspA-f has a sequence shown as SEQ ID No.5, the primer pSOE-pntA-aspA-r has a sequence shown as SEQ ID No.6, the primer pSOE-aspA-pntA-f has a sequence shown as SEQ ID No.7, the primer pntB-r has a sequence shown as SEQ ID No.8,
the method comprises the following steps:
SEQ ID No.1:5’-GCTCATATTGGCACTGGAAG-3’;
SEQ ID No.2:5’-CTTATGGAAATGTTAAAAAATCGCCAAGCTTTACGCGAACGAG-3’;
SEQ ID No.3:5’-CTCGTTCGCGTAAAGCTTGGCGATTTTTTAACATTTCCATAAG-3’;
SEQ ID No.4:5’-CATTTTCCTTTATGTCTATATTGAGATTTCCCTTAAGGATATCTGAAGGTATATTCAG-3’;
SEQ ID No.5:5’-CTGAATATACCTTCAGATATCCTTAAGGGAAATCTCAATATAGACATAAAGGAAAATG-3’;
SEQ ID No.6:5’-GTACTGAAAATTATGCCTGTGATCTGTGCCTTTTTTATTTGTACTACCCT-3’;
SEQ ID No.7:5’-AGGGTAGTACAAATAAAAAAGGCACAGATCACAGGCATAATTTTCAGTAC-3’;
SEQ ID No.8:5’-TCTCAATAAAGAGTGACGGC-3’。
(2) Using MG1655 genome DNA as a template, pSOE-cadA-H1-f, pSOE-cadA-H1-r; pSOE-cadA-H2-f and pSOE-cadA-H2-r are used as primers to respectively obtain upstream and downstream integrated homology arms of cadA, and then amplified by an overlap extension PCR method (namely SOE-PCR method) and the fragment DNA obtained in the step (1) to form an integrated donor DNA. Cloning the combined pcadA-N20-f and pcadA-N20-r into a temperature sensitive plasmid, wherein the temperature sensitive plasmid contains a recombinant enzyme of Lambda phage and a Cas9DNA endonuclease for expressing Gam, bet and Exo 3 by induction;
the primer pSOE-cadA-H1-f has a sequence shown as SEQ ID No.9, the primer pSOE-cadA-H1-r has a sequence shown as SEQ ID No.10, the primer pSOE-cadA-H2-f has a sequence shown as SEQ ID No.11, the primer pSOE-cadA-H2-r has a sequence shown as SEQ ID No.12, the primer pcadA-N20-f has a sequence shown as SEQ ID No.13, the primer pcadA-N20-r has a sequence shown as SEQ ID No.14,
the method comprises the following steps:
SEQ ID No.9:5’-GTGCAGCGCCAGAGCCAC-3’;
SEQ ID No.10:5’-GCCGTCACTCTTTATTGAGAGCTTTAGTCAGCGGAGGC-3’;
SEQ ID No.11:5’-CTTCCAGTGCCAATATGAGCACTGTTTAAATATGTTCGTGAAGG-3’;
SEQ ID No.12:5’-GAGCTGGATGGATTTCACATCCAGTG-3’;
SEQ ID No.13:5’-AGCGGCCTCCGCTGACTAAAGCAT-3’;
SEQ ID No.14:5’-AAACATGCTTTAGTCAGCGGAGGC-3’;
the integrated inserted gene DNA fragment has a sequence shown as SEQ ID No.15, and is specifically as follows:
SEQ ID No.15:5’-GCTCATATTGGCACTGGAAGCCGGGGCATAAACTTTAACCATGTCAGACTCCTAACTTCCATGAGAGGGTACGTAGCAGATCAGCAAAGACACCGGCAGCTGTAACGTCATTGCCCGCACCATATCCGCGCAGTACCAACGGCAGCGGCTGATAATAGTGGCTATAGAAGGCCAGGGCGTTTTCGCCATTTTTCACTTTGAACAGCGGATCATTACCATCCACTTCGGCAATCTTCACGCGGCAGACGCCATCTTCATCAATATTGCCAACATAGCGCAAAACTTTTCCTTCATCACGGGCCTTCGCCACGCGCGCGGCAAAGAGATCGTCGAGTTGTGACAGATTCGCCATAAAAGCGGCAACATCACCCTCGGCGTTAAACTCTGCGGGCAGCACAGGTTCAATTTCAATATCCGCCAGCTCCAGTTCACGTCCCGTTTCACGAGCGAGAATCAATAGTTTACGCGCCACATCCATACCAGAAAGATCATCTCGCGGGTCCGGTTCGGTATAACCCATTTCCCGCGCCAGCGTGGTCGCCTCGGAGAAACTCATGCCTTCGTCTAACTTGCCGAAGATATAAGAAAGCGAACCAGAAAGAATGCCGGAGAACTTCATCAATTCATCACCTGCATTGAGCAGATTTTGCAGGTTCTCAATAACCGGTAATCCAGCCCCAACGTTGGTGTCATAGAGGAATTTACGCCGCGATTTTTCCGCCGCATAACGCAACTGATGGTAGTAATCCATCGACGAGGTGTTGGCCTTTTTGTTCGGCGTGACAACGTGGAAACCTTCGCGCAGGAAGTCGGCATATTGATCCGCCACTGCCTGGCTGGAAGTGCAGTCAACAATGACCGGGTTCAGCAGATGATATTCTTTCACGAGGCGAATTAAGCGCCCGAGATTAAACGGCTCTTTGGCTTGCGCCAGTTCTTCCTGCCAGTTTTCCAGATTAAGGCCATGTACATTGGTGAGCAGAGCCTTCGAGTTGGCAACACCGCAGACACGTAAGTCGATATGTTTATTCTTCAGCCAGCTTTGCTGACGCTTCAGTTGCTCCAGCAGCGCACCGCCAACGCCACCGACGCCAATCACAAACACTTCGATAACCTGATCGGTATTGAACAGCATCTGATGAGTAACGCGCACGCCAGTGGTCGCATCATCGTTATTTACCACGACAGAGATTGAGCGTTCAGAAGATCTCTGAGCAATGGCGACAATGTTGATATTGGCGCGGGCCAGTGCGGCAAAGAATTTCGCCGAGATCCCACGCAAGGTGCGCATACCATCACCTACCACCGAGATAATGGCCAGCCGTTCCGTCACTGCCAGCGGCTCCAGTAAGCCTTCTTTCAGTTCCAGGTAGAACTCTTCCTGCATTGCCCGTTCAGCTCGCACACAGTCGCTTTGTGGAACGCAGAAACTGATGCTGTATTCGGAAGATGATTGCGTAATCAGCACCACGGAAATACGGGCGCGTGACATCGCTGCAAAGACGCGCGCCGCCATGCCGACCATCCCTTTCATCCCCGGACCAGAAACGCTGAACATTGCCATGTTATTCAGATTGGAAATGCCCTTGACCGGTAATTCGTCTTCATCACGGCTGGCACCAATGAGCGTACCTGGTGCTTGAGGATTTCCGGTATTTTTAATCAGGCAAGGGATCTGGAACTGGGCGATGGGGGTAATGGTGCGGGGGTGAAGAACTTTAGCGCCGAAGTAGGAAAGCTCCATCGCTTCCTGGTAGGACATCGACTTCAACAACCTCGCATCGGGCACCTGACGCGGGTCGCAGGTATAGACCCCGTCAACGTCCGTCCAAATCTCGCAACAATCGGCGCGTAAACAGGCAGCCAGCACCGCAGCAGAGTAGTCGGAACCGTTGCGTCCAAGCACCACCAGTTCGCCTTTTTCATTACCGGCGGTGAAACCTGCCATCAGCACCATGTGATCAGCCGGAATGCGGCTTGCCGCAATACGGCGGGTGGACTCAGCAATATCGACGGTAGATTCGAGGTAATGCCCCACTGCCAGCAGTTTTTCGACCGGATCGATAACAGTAACGTTGTGACCGCGCGCTTCTAATACGCCGGCCATAATGGCGATCGACATTTTCTCGCCACGGCAAATCAGCGCAGCGTTGATGCTATCCGGGCACTGCCCCAACAAACTAATGCCATGCAGGACATGTTTTATTTGGGCAAATTCCTGATCGACGAAAGTTTTCAATTGCGCCAGCGGGAACCCCGGCTGGGCGGCGGCGAGTCCCGTCAAAAGTTCGGCAAAAATACGTTCGGCATCGCTGATATTGGGTAAAGCATCCTGGCCGCTAATGGTTTTTTCAATCATCGCCACCAGGTGGTTGGTGATTTTGGCGGGGGCAGAGAGGACGGTGGCCACCTGCCCCTGCCTGGCATTGCTTTCCAGAATATCGGCAACACGCAGAAAACGTTCTGCATTTGCCACTGATGTACCGCCGAACTTCAACACTCGCATGGTTGTTACCTCGTTACCTTTGGTCGGACTCTAGAGTCTTTATCTGTCTGTGCGCTATGCCTATATTGGTTAAAGTATTTAGTGACCTAAGTCAATAAAATTTTAATTTACTCACGGCAGGTAACCAGTTCAGAAGCTGCTATCAGACACTCTTTTTTTAATCCACACAGAGACATATTGCCCGTTGCAGTCAGAATGAAAAGCTGAAAAATACTTACTAAGGCGTTTTTTATTTGGTGATATTTTTTTCAATATCATGCAGCAAACGGTGCAACATTGCCGTGTCTCGTTGCTCTAAAAGCCCCAGGCGTTGTTGTAACCAGTCGACCAGTTTTATGTCATCTGCCACTGCCAGAGTCGTCAGCAATGTCATGGCTCGTTCGCGTAAAGCTTGGCGATTTTTTAACATTTCCATAAGTTACGCTTATTTAAAGCGTCGTGAATTTAATGACGTAAATTCCTGCTATTTATTCGTTTGCTGAAGCGATTTCGCAGCATTTGACGTCACCGCTTTTACGTGGCTTTATAAAAGACGACGAAAAGCAAAGCCCGAGCATATTCGCGCCAATGCGACGTGAAGGATACAGGGCTATCAAACGATAAGATGGGGTGTCTGGGGTAATATGAACGAACAATATTCCGCATTGCGTAGTAATGTCAGTATGCTCGGCAAAGTGCTGGGAGAAACCATCAAGGATGCGTTGGGAGAACACATTCTTGAACGCGTAGAAACTATCCGTAAGTTGTCGAAATCTTCACGCGCTGGCAATGATGCTAACCGCCAGGAGTTGCTCACCACCTTACAAAATTTGTCGAACGACGAGCTGCTGCCCGTTGCGCGTGCGTTTAGTCAGTTCCTGAACCTGGCCAACACCGCCGAGCAATACCACAGCATTTCGCCGAAAGGCGAAGCTGCCAGCAACCCGGAAGTGATCGCCCGCACCCTGCGTAAACTGAAAAACCAGCCGGAACTGAGCGAAGACACCATCAAAAAAGCAGTGGAATCGCTGTCGCTGGAACTGGTCCTCACGGCTCACCCAACCGAAATTACCCGTCGTACACTGATCCACAAAATGGTGGAAGTGAACGCCTGTTTAAAACAGCTCGATAACAAAGATATCGCTGACTACGAACACAACCAGCTGATGCGTCGCCTGCGCCAGTTGATCGCCCAGTCATGGCATACCGATGAAATCCGTAAGCTGCGTCCAAGCCCGGTAGATGAAGCCAAATGGGGCTTTGCCGTAGTGGAAAACAGCCTGTGGCAAGGCGTACCAAATTACCTGCGCGAACTGAACGAACAACTGGAAGAGAACCTCGGCTACAAACTGCCCGTCGAATTTGTTCCGGTCCGTTTTACTTCGTGGATGGGCGGCGACCGCGACGGCAACCCGAACGTCACTGCCGATATCACCCGCCACGTCCTGCTACTCAGCCGCTGGAAAGCCACCGATTTGTTCCTGAAAGATATTCAGGTGCTGGTTTCTGAACTGTCGATGGTTGAAGCGACCCCTGAACTGCTGGCGCTGGTTGGCGAAGAAGGTGCCGCAGAACCGTATCGCTATCTGATGAAAAACCTGCGTTCTCGCCTGATGGCGACACAGGCATGGCTGGAAGCGCGCCTGAAAGGCGAAGAACTGCCAAAACCAGAAGGCCTGCTGACACAAAACGAAGAACTGTGGGAACCGCTCTACGCTTGCTACCAGTCACTTCAGGCGTGTGGCATGGGTATTATCGCCAACGGCGATCTGCTCGACACCCTGCGCCGCGTGAAATGTTTCGGCGTACCGCTGGTCCGTATTGATATCCGTCAGGAGAGCACGCGTCATACCGAAGCGCTGGGCGAGCTGACCCGCTACCTCGGTATCGGCGACTACGAAAGCTGGTCAGAGGCCGACAAACAGGCGTTCCTGATCCGCGAACTGAACTCCAAACGTCCGCTTCTGCCGCGCAACTGGCAACCAAGCGCCGAAACGCGCGAAGTGCTCGATACCTGCCAGGTGATTGCCGAAGCACCGCAAGGCTCCATTGCCGCCTACGTGATCTCGATGGCGAAAACGCCGTCCGACGTACTGGCTGTCCACCTGCTGCTGAAAGAAGCGGGTATCGGGTTTGCGATGCCGGTTGCTCCGCTGTTTGAAACCCTCGATGATCTGAACAACGCCAACGATGTCATGACCCAGCTGCTCAATATTGACTGGTATCGTGGCCTGATTCAGGGCAAACAGATGGTGATGATTGGCTATTCCGACTCAGCAAAAGATGCGGGAGTGATGGCAGCTTCCTGGGCGCAATATCAGGCACAGGATGCATTAATCAAAACCTGCGAAAAAGCGGGTATTGAGCTGACGTTGTTCCACGGTCGCGGCGGTTCCATTGGTCGCGGCGGCGCACCTGCTCATGCGGCGCTGCTGTCACAACCGCCAGGAAGCCTGAAAGGCGGCCTGCGCGTAACCGAACAGGGCGAGATGATCCGCTTTAAATATGGTCTGCCAGAAATCACCGTCAGCAGCCTGTCGCTTTATACCGGGGCGATTCTGGAAGCCAACCTGCTGCCACCGCCGGAGCCGAAAGAGAGCTGGCGTCGCATTATGGATGAACTGTCAGTCATCTCCTGCGATGTCTACCGCGGCTACGTACGTGAAAACAAAGATTTTGTGCCTTACTTCCGCTCCGCTACGCCGGAACAAGAACTGGGCAAACTGCCGTTGGGTTCACGTCCGGCGAAACGTCGCCCAACCGGCGGCGTCGAGTCACTACGCGCCATTCCGTGGATCTTCGCCTGGACGCAAAACCGTCTGATGCTCCCCGCCTGGCTGGGTGCAGGTACGGCGCTGCAAAAAGTGGTCGAAGACGGCAAACAGAGCGAGCTGGAGGCTATGTGCCGCGATTGGCCATTCTTCTCGACGCGTCTCGGCATGCTGGAGATGGTCTTCGCCAAAGCAGACCTGTGGCTGGCGGAATACTATGACCAACGCCTGGTAGACAAAGCACTGTGGCCGTTAGGTAAAGAGTTACGCAACCTGCAAGAAGAAGACATCAAAGTGGTGCTGGCGATTGCCAACGATTCCCATCTGATGGCCGATCTGCCGTGGATTGCAGAGTCTATTCAGCTACGGAATATTTACACCGACCCGCTGAACGTATTGCAGGCCGAGTTGCTGCACCGCTCCCGCCAGGCAGAAAAAGAAGGCCAGGAACCGGATCCTCGCGTCGAACAAGCGTTAATGGTCACTATTGCCGGGATTGCGGCAGGTATGCGTAATACCGGCTAATCTTCCTCTTCTGCAAACCCTCGTGCTTTTGCGCGAGGGTTTTCTGAAATACTTCTGTTCTAACACCCTCGTTTTCAATATATTTCTGTCTGCATTTTATTCAAATTCTGAATATACCTTCAGATATCCTTAAGGGAAATCTCAATATAGACATAAAGGAAAATGGCAATAAAAGGTAACCAGCGCAAAGGTTTCTCCTGTAATAGCAGCCGGTTAACCCCGGCTACCTGAATGGGTTGCGAATCGCGTTTAGCTTATATTGTGGTCATTAGCAAAATTTCAAGATGTTTGCGCAACTATTTTTGGTAGTAATCCCAAAGCGGTGATCTATTTCACAAATTAATAATTAAGGGGTAAAAACCGACACTTAAAGTGATCCAGATTACGGTAGAAATCCTCAAGCAGCATATGATCTCGGGTATTCGGTCGATGCAGGGGATAATCGTCGGTCGAAAAACATTCGAAACCACATATATTCTGTGTGTTTAAAGCAAATCATTGGCAGCTTGAAAAAGAAGGTTCACATGTCAAACAACATTCGTATCGAAGAAGATCTGTTGGGTACCAGGGAAGTTCCAGCTGATGCCTACTATGGTGTTCACACTCTGAGAGCGATTGAAAACTTCTATATCAGCAACAACAAAATCAGTGATATTCCTGAATTTGTTCGCGGTATGGTAATGGTTAAAAAAGCCGCAGCTATGGCAAACAAAGAGCTGCAAACCATTCCTAAAAGTGTAGCGAATGCCATCATTGCCGCATGTGATGAAGTCCTGAACAACGGAAAATGCATGGATCAGTTCCCGGTAGACGTCTACCAGGGCGGCGCAGGTACTTCCGTAAACATGAACACCAACGAAGTGCTGGCCAATATCGGTCTGGAACTGATGGGTCACCAAAAAGGTGAATATCAGTACCTGAACCCGAACGACCATGTTAACAAATGTCAGTCCACTAACGACGCCTACCCGACCGGTTTCCGTATCGCAGTTTACTCTTCCCTGATTAAGCTGGTAGATGCGATTAACCAACTGCGTGAAGGCTTTGAACGTAAAGCTGTCGAATTCCAGGACATCCTGAAAATGGGTCGTACCCAGCTGCAGGACGCAGTACCGATGACCCTCGGTCAGGAATTCCGCGCTTTCAGCATCCTGCTGAAAGAAGAAGTGAAAAACATCCAACGTACCGCTGAACTGCTGCTGGAAGTTAACCTTGGTGCAACGGCAATCGGTACTGGTCTGAACACGCCGAAAGAGTACTCTCCGCTGGCAGTGAAAAAACTGGCTGAAGTTACTGGCTTCCCATGCGTACCGGCTGAAGACCTGATCGAAGCGACCTCTGACTGCGGCGCTTATGTTATGGTTCACGGCGCGCTGAAACGCCTGGCTGTGAAGATGTCCAAAATCTGTAACGACCTGCGCTTGCTCTCTTCAGGCCCACGTGCCGGCCTGAACGAGATCAACCTGCCGGAACTGCAGGCGGGCTCTTCCATCATGCCAGCTAAAGTAAACCCGGTTGTTCCGGAAGTGGTTAACCAGGTATGCTTCAAAGTCATCGGTAACGACACCACTGTTACCATGGCAGCAGAAGCAGGTCAGCTGCAGTTGAACGTTATGGAGCCGGTCATTGGCCAGGCCATGTTCGAATCCGTTCACATTCTGACCAACGCTTGCTACAACCTGCTGGAAAAATGCATTAACGGCATCACTGCTAACAAAGAAGTGTGCGAAGGTTACGTTTACAACTCTATCGGTATCGTTACTTACCTGAACCCGTTCATCGGTCACCACAACGGTGACATCGTGGGTAAAATCTGTGCCGAAACCGGTAAGAGTGTACGTGAAGTCGTTCTGGAACGCGGTCTGTTGACTGAAGCGGAACTTGACGATATTTTCTCCGTACAGAATCTGATGCACCCGGCTTACAAAGCAAAACGCTATACTGATGAAAGCGAACAGTAATCGTACAGGGTAGTACAAATAAAAAAGGCACAGATCACAGGCATAATTTTCAGTACGTTATAGGGCGTTTGTTACTAATTTATTTTAACGGAGTAACATTTAGCTCGTACATGAGCAGCTTGTGTGGCTCCTGACACAGGCAAACCATCATCAATAAAACCGATGGAAGGGAATATCATGCGAATTGGCATACCAAGAGAACGGTTAACCAATGAAACCCGTGTTGCAGCAACGCCAAAAACAGTGGAACAGCTGCTGAAACTGGGTTTTACCGTCGCGGTAGAGAGCGGCGCGGGTCAACTGGCAAGTTTTGACGATAAAGCGTTTGTGCAAGCGGGCGCTGAAATTGTAGAAGGGAATAGCGTCTGGCAGTCAGAGATCATTCTGAAGGTCAATGCGCCGTTAGATGATGAAATTGCGTTACTGAATCCTGGGACAACGCTGGTGAGTTTTATCTGGCCTGCGCAGAATCCGGAATTAATGCAAAAACTTGCGGAACGTAACGTGACCGTGATGGCGATGGACTCTGTGCCGCGTATCTCACGCGCACAATCGCTGGACGCACTAAGCTCGATGGCGAACATCGCCGGTTATCGCGCCATTGTTGAAGCGGCACATGAATTTGGGCGCTTCTTTACCGGGCAAATTACTGCGGCCGGGAAAGTGCCACCGGCAAAAGTGATGGTGATTGGTGCGGGTGTTGCAGGTCTGGCCGCCATTGGCGCAGCAAACAGTCTCGGCGCGATTGTGCGTGCATTCGACACCCGCCCGGAAGTGAAAGAACAAGTTCAAAGTATGGGCGCGGAATTCCTCGAGCTGGATTTTAAAGAGGAAGCTGGCAGCGGCGATGGCTATGCCAAAGTGATGTCGGACGCGTTCATCAAAGCGGAAATGGAACTCTTTGCCGCCCAGGCAAAAGAGGTCGATATCATTGTCACCACCGCGCTTATTCCAGGCAAACCAGCGCCGAAGCTAATTACCCGTGAAATGGTTGACTCCATGAAGGCGGGCAGTGTGATTGTCGACCTGGCAGCCCAAAACGGCGGCAACTGTGAATACACCGTGCCGGGTGAAATCTTCACTACGGAAAATGGTGTCAAAGTGATTGGTTATACCGATCTTCCGGGCCGTCTGCCGACGCAATCCTCACAGCTTTACGGCACAAACCTCGTTAATCTGCTGAAACTGTTGTGCAAAGAGAAAGACGGCAATATCACTGTTGATTTTGATGATGTGGTGATTCGCGGCGTGACCGTGATCCGTGCGGGCGAAATTACCTGGCCGGCACCGCCGATTCAGGTATCAGCTCAGCCGCAGGCGGCACAAAAAGCGGCACCGGAAGTGAAAACTGAGGAAAAATGTACCTGCTCACCGTGGCGTAAATACGCGTTGATGGCGCTGGCAATCATTCTTTTTGGCTGGATGGCAAGCGTTGCGCCGAAAGAATTCCTTGGGCACTTCACCGTTTTCGCGCTGGCCTGCGTTGTCGGTTATTACGTGGTGTGGAATGTATCGCACGCGCTGCATACACCGTTGATGTCGGTCACCAACGCGATTTCAGGGATTATTGTTGTCGGAGCACTGTTGCAGATTGGCCAGGGCGGCTGGGTTAGCTTCCTTAGTTTTATCGCGGTGCTTATAGCCAGCATTAATATTTTCGGTGGCTTCACCGTGACTCAGCGCATGCTGAAAATGTTCCGCAAAAATTAAGGGGTAACATATGTCTGGAGGATTAGTTACAGCTGCATACATTGTTGCCGCGATCCTGTTTATCTTCAGTCTGGCCGGTCTTTCGAAACATGAAACGTCTCGCCAGGGTAACAACTTCGGTATCGCCGGGATGGCGATTGCGTTAATCGCAACCATTTTTGGACCGGATACGGGTAATGTTGGCTGGATCTTGCTGGCGATGGTCATTGGTGGGGCAATTGGTATCCGTCTGGCGAAGAAAGTTGAAATGACCGAAATGCCAGAACTGGTGGCGATCCTGCATAGCTTCGTGGGTCTGGCGGCAGTGCTGGTTGGCTTTAACAGCTATCTGCATCATGACGCGGGAATGGCACCGATTCTGGTCAATATTCACCTGACGGAAGTGTTCCTCGGTATCTTCATCGGGGCGGTAACGTTCACGGGTTCGGTGGTGGCGTTCGGCAAACTGTGTGGCAAGATTTCGTCTAAACCATTGATGCTGCCAAACCGTCACAAAATGAACCTGGCGGCTCTGGTCGTTTCCTTCCTGCTGCTGATTGTATTTGTTCGCACGGACAGCGTCGGCCTGCAAGTGCTGGCATTGCTGATAATGACCGCAATTGCGCTGGTATTCGGCTGGCATTTAGTCGCCTCCATCGGTGGTGCAGATATGCCAGTGGTGGTGTCGATGCTGAACTCGTACTCCGGCTGGGCGGCTGCGGCTGCGGGCTTTATGCTCAGCAACGACCTGCTGATTGTGACCGGTGCGCTGGTCGGTTCTTCGGGGGCTATCCTTTCTTACATTATGTGTAAGGCGATGAACCGTTCCTTTATCAGCGTTATTGCGGGTGGTTTCGGCACCGACGGCTCTTCTACTGGCGATGATCAGGAAGTGGGTGAGCACCGCGAAATCACCGCAGAAGAGACAGCGGAACTGCTGAAAAACTCCCATTCAGTGATCATTACTCCGGGGTACGGCATGGCAGTCGCGCAGGCGCAATATCCTGTCGCTGAAATTACTGAGAAATTGCGCGCTCGTGGTATTAATGTGCGTTTCGGTATCCACCCGGTCGCGGGGCGTTTGCCTGGACATATGAACGTATTGCTGGCTGAAGCAAAAGTACCGTATGACATCGTGCTGGAAATGGACGAGATCAATGATGACTTTGCTGATACCGATACCGTACTGGTGATTGGTGCTAACGATACGGTTAACCCGGCGGCGCAGGATGATCCGAAGAGTCCGATTGCTGGTATGCCTGTGCTGGAAGTGTGGAAAGCGCAGAACGTGATTGTCTTTAAACGTTCGATGAACACTGGCTATGCTGGTGTGCAAAACCCGCTGTTCTTCAAGGAAAACACCCACATGCTGTTTGGTGACGCCAAAGCCAGCGTGGATGCAATCCTGAAAGCTCTGTAACCCTGACGGCCTCTGCTGAGGCCGTCACTCTTTATTGAGA-3’;
(3) Screening the temperature-sensitive plasmid obtained in the step (2), transferring the correct plasmid into competent cells of the strain obtained in the example 1, culturing at 30 ℃, placing the strain successfully transferred with the plasmid under an arabinose induction condition for continuous culture, enabling the strain to express Lambda phage recombinase, gRNA and Cas9DNA endonuclease, and screening target mutant bacterial colonies;
(4) Culturing the mutant colonies screened and confirmed in the step (3) at 42 ℃ to eliminate CRISPR/Cas9 plasmids and simultaneously eliminate the resistance of the kanamycin caused by the plasmids, thus obtaining the strain MG1655 (DeltatherB, rhtA23, deltatherL, thrA (G433R), deltatA:: thrA-ppc-aspA-pntAB).
Example 3
Construction of a genetically engineered Strain MG1655 (Deltathr B, rhtA23, deltathr L, thrA (G433R), deltatA:: thrA-ppc-aspA-pntAB, deltatJ:: thrA-ppc-aspA-pntAB) expressing thrA, ppc, aspA, pntA and pntB in two copies on chromosomal DNA.
The L-homoserine producing strain constructed in this example was a genetically engineered strain MG1655 (Deltathr B, rhtA23, deltathr L, thrA (G433R), deltata:: thrA-ppc-aspA) expressing thrA, ppc, aspA, pntA and pntB in two-fold integration on chromosomal DNA
ThrA-ppc-aspA-pntAB), strain construction was achieved using CRISPR/Cas9 gene editing technique, and the fragment of SEQ ID No.15 described in example 2 was inserted downstream of the yidJ gene, with the construction method substantially similar to that of example 2, except that: the product strain of original bacterium example 2 is used as an operation object, and the integration position is downstream of yidJ gene. The method comprises the following steps: the primers used in step (2) described in example 2 were replaced with pSOE-yidJ-H1-f, pSOE-yidJ-H2-r, pyidJ-N20-f, pyidJ-N20-r from the primers pSOE-cadA-H1-f, pSOE-cadA-H1-r, pSOE-cadA-H2-f, pSOE-cadA-H2-r, pcadA-N20-f, pcadA-N20-r;
wherein the primer pSOE-yidJ-H1-f has a sequence shown as SEQ ID No.16, the primer pSOE-yidJ-H1-r has a sequence shown as SEQ ID No.17, the primer pSOE-yidJ-H2-f has a sequence shown as SEQ ID No.18, the primer pSOE-yidJ-H2-r has a sequence shown as SEQ ID No.19, the primer pyidJ-N20-f has a sequence shown as SEQ ID No.20, and the primer pyidJ-N20-r has a sequence shown as SEQ ID No.21, concretely as follows:
SEQ ID No.16:5’-GTGCGAAATTTTCATTGTTGCTCCTTTGC-3’;
SEQ ID No.17:5’-CTTCCAGTGCCAATATGAGCCGGCCTACCGACACAAG-3’;
SEQ ID No.18:5’-GGCCGTCACTCTTTATTGAGAGTGTCATAGTCGCGTACAAC-3’;
SEQ ID No.19:5’-GAGCCGGCGATGTATGACGACATC-3’;
SEQ ID No.20:5’-AGCGGTTGTACGCGACTATGACAC-3’;
SEQ ID No.21:5’-AAACGTGTCATAGTCGCGTACAAC-3’。
example 4
Construction of genetically engineered strains MG1655 (DeltatherB, rhtA23, deltatherL, thrA (G433R), deltatA:: thrA-ppc-aspA-pntAB, deltatJ::: thrA-ppc-aspA-pntAB, deltatpC::: thrA-ppc-aspA-pntAB) expressing thrA, ppc, aspA, pntA and pntB in three copies on chromosomal DNA.
The L-homoserine producing strain constructed in this example was a genetically engineered strain MG1655 (DeltatherB, rhtA23, deltatherL, thrA (G433R) expressing thrA, ppc, aspA, pntA and pntB simultaneously and three times integrated on chromosomal DNA, deltatdA:: thrA-ppc-aspA-pntAB, deltatpC:: thrA-ppc-aspA-pntAB) constructed by using CRISPR/Cas9 gene editing technique, and the construction method was substantially similar to that of example 2 except that the fragment of SEQ ID No.15 described in example 2 was inserted downstream of the atpC gene: the product strain of original bacterium example 3 was used as the subject, and the integration position was downstream of the atpC gene. Specific: the primers used in step (2) described in example 2 were replaced with pSOE-atpC-H1-f, pSOE-atpC-H2-r, patpC-N20-f, patpC-N20-r from the primers pSOE-cadA-H1-f, pSOE-cadA-H1-r, pSOE-cadA-H2-f, pSOE-cadA-N20-f, pcadA-H2-r, pcadA-N20-r;
wherein the primer pSOE-atpC-H1-f has a sequence shown as SEQ ID No.22, the primer pSOE-atpC-H1-r has a sequence shown as SEQ ID No.23, the primer pSOE-atpC-H2-f has a sequence shown as SEQ ID No.24, the primer pSOE-atpC-H2-r has a sequence shown as SEQ ID No.25, the primer patpC-N20-f has a sequence shown as SEQ ID No.26, and the primer patpC-N20-r has a sequence shown as SEQ ID No.27, concretely as follows:
SEQ ID No.22:5’-GTGCGAAATTTTCATTGTTGCTCCTTTGC-3’;
SEQ ID No.23:5’-CTTCCAGTGCCAATATGAGCGAAAGCGCCATTTTCGACC-3’;
SEQ ID No.24:5’-GCCGTCACTCTTTATTGAGAGTCAGCGGGGATAATCCGT-3’;
SEQ ID No.25:5’-GAGCCATAACCGGTCGGATCATCC-3’;
SEQ ID No.26:5’-AGCGGTTGTACGCGACTATGACAC-3’;
SEQ ID No.27:5’-AAACGTGTCATAGTCGCGTACAAC-3’。
example 5
Construction of the genetically engineered strains MG1655 (DeltathrB, rhtA23, deltathL, thrA (G433R), deltataA::: thrA-ppc-aspA-pntAB, deltatiJ::: thrA-ppc-aspA-pntAB, deltatpC::: thrA-ppc-aspA-pntAB, deltatacA::: thrA) were continued to be integrated in chromosomal DNA.
The L-continuous integration thrA constructed in this example was used as the genetic engineering strain MG1655 (DeltatherB, rhtA23, deltatherL, thrA (G433R), deltatadA:: thrA-ppc-aspA-pntAB, deltatdJ:: thrA-ppc-aspA-pntAB, deltatpC:: thrA-ppc-aspA)
pntAB, Δdaca: : thrA) and constructing a strain by using CRISPR/Cas9 gene editing technology, and inserting a thrA expression cassette into the dacA gene, wherein the construction method is basically similar to the method of example 2, and the difference is that: the original strain example 4 was used as an operating object, and the integration position was the reverse insertion into the dacA gene. Specific: the insert was obtained by PCR amplification from the MG1655 genome using the primers pSOE-thrA-f and pSOE-thrA-r, and the primers used in step (2) described in example 2 were replaced with pSOE-cadA-H1-f, pSOE-cadA-H1-r, pSOE-cadA-H2-f, pSOE-cadA-H2-r, pcadA-N20-f, pcadA-N20-r, pSOE-dacA-H1-f, pSOE-dacA-H1-r, pSOE-dacA-H2-f, pSOE-dacA-H2-r, pdac A-N20-f, pdac A-N20-r;
wherein the primer pSOE-thrA-f has a sequence shown as SEQ ID No.1, the primer pSOE-thrA-r has a sequence shown as SEQ ID No.28, the primer pSOE-dacA-H1-f has a sequence shown as SEQ ID No.29, the primer pSOE-dacA-H1-r has a sequence shown as SEQ ID No.30, the primer pSOE-dacA-H2-f has a sequence shown as SEQ ID No.31, the primer pSOE-dacA-H2-r has a sequence shown as SEQ ID No.32, the primer pdac A-N20-f has a sequence shown as SEQ ID No.33, and the primer pdac A-N20-r has a sequence shown as SEQ ID No.34, specifically as follows:
SEQ ID No.28:5’-AAGCTTTACGCGAACGAGC-3’;
SEQ ID No.29:5’-GTGCGAAATTTTCATTGTTGCTCCTTTGC-3’;
SEQ ID No.30:5’-GCTCGTTCGCGTAAAGCTTGTACGTCACGGATCAATGC-3’;
SEQ ID No.31:5’-CTTCCAGTGCCAATATGAGCCGAATGAATACTCGATCTATAAAGAAAAAG-3’;
SEQ ID No.32:5’-GAGCAACCAAACCAGTGATGGAAC-3’;
SEQ ID No.33:5’-AGCGAGTATTCATTCGGTACGTCA-3’;
SEQ ID No.34:5’-AAACTGACGTACCGAATGAATACT-3’。
example 6
Construction of the genetically engineered strains MG1655 (DeltatrB, rhtA23, deltatrL, thrA (G433R), deltatadA::: thrA-ppc-aspA-pntAB, deltatpC:: thrA-ppc-aspA-pntAB, deltatacA::: thrA::: deltatbcsB:::: thrA) were continued to be integrated in chromosomal DNA.
In this embodiment, the CRISPR/Cas9 gene editing technology is adopted to implement the construction of the strain, and the thrA expression cassette is inserted into the bcsB gene, and the construction method is basically similar to that of embodiment 5, and the difference is only that: the product strain of original bacterium example 5 is used as an operation object, and the integration position is reversely inserted into the bcsB gene. Specific: insert same as example 5 and replacing the primers used in step (2) described in example 5 with pSOE-bcsB-H1-f, pSOE-bcsB-H1-r, pSOE-bcsB-H2-f, pSOE-bcsB-H2-r, pbcsB-N20-f, pbcsB-N20-r from the described pSOE-dacA-H1-f, pSOE-dacA-H1-r, pSOE-dacA-H2-f, pSOE-dacA-H2-r, pSOE-dacA-N20-f, pdacsB-N20-r;
wherein the primer pSOE-bcsB-H1-f has a sequence shown as SEQ ID No.35, the primer pSOE-bcsB-H1-r has a sequence shown as SEQ ID No.36, the primer pSOE-bcsB-H2-f has a sequence shown as SEQ ID No.37, the primer pSOE-bcsB-H2-r has a sequence shown as SEQ ID No.38, the primer pbcsB-N20-f has a sequence shown as SEQ ID No.39, and the primer pbcsB-N20-r has a sequence shown as SEQ ID No.40, specifically as follows:
SEQ ID No.35:5’-GTGCTCGTTACTGCCTGTCCAGTC-3’;
SEQ ID No.36:5’-GCTCGTTCGCGTAAAGCTTCAGTTTGACGTAAGGATTCTGC-3’;
SEQ ID No.37:5’-CTTCCAGTGCCAATATGAGCCTGGTGGTGTTTGGTCGTGACG-3’;
SEQ ID No.38:5’-GAGCGCTGGAAGGTAATACAGTTATCCAC-3’;
SEQ ID No.39:5’-AGCGGAATCCTTACGTCAAACTGC-3’;
SEQ ID No.40:5’-AAACGCAGTTTGACGTAAGGATTC-3’;
example 7
Construction of a genetically engineered strain MG1655 (DeltatherB, rhtA23, deltatherL, thrA (G433R), deltatA:: -thrA-ppc-aspA-pntAB, deltatpC:: -thrA-ppc-aspA-pntAB, deltatac::: -thrA-x, deltatbcsB:: -thrA-x, deltomenH::: aspC) integrating aspC in chromosomal DNA.
The present example was constructed on a genetically engineered strain MG1655 (DeltathrB, rhtA23, deltathL, thrA (G433R), deltataA::::: -ppc-aspA-pntAB, deltatpC:::: -thrA-ppc-aspA-pntAB, deltatcA:::: -thrA-ppc-aspA-pntAB, deltatacA::::: -thrA:, deltataH::::: aspC). The insertion of aspC expression cassette inside the menH gene is realized by CRISPR/Cas9 gene editing technology. The construction method was substantially similar to that of example 5, except that: the aspC gene under the natural promoter was inserted into the menH gene in the reverse direction using the strain produced in the original strain example 6 as an operation object. Specific: the insert was obtained by PCR amplification from the MG1655 genome with the primers pSOE-aspC-f and pSOE-aspC-r, and the primers used in example step (2) were replaced with pSOE-menH-H1-f, pSOE-dacA-H1-r, pSOE-dacA-H2-f, pSOE-dacA-H2-r, pdac-N20-f, pdac-N20-r, pSOE-menH-H1-f, pSOE-menH-H1-r, pSOE-menH-H2-f, pSOE-menH-H2-r, pmenH-N20-f;
wherein the primer pSOE-aspC-f has a sequence shown as SEQ ID No.41, the primer pSOE-aspC-r has a sequence shown as SEQ ID No.42, the primer pSOE-menH-H1-f has a sequence shown as SEQ ID No.43, the primer pSOE-menH-H1-r has a sequence shown as SEQ ID No.44, the primer pSOE-menH-H2-f has a sequence shown as SEQ ID No.45, the primer pSOE-menH-H2-r has a sequence shown as SEQ ID No.46, the primer pmenH-N20-f has a sequence shown as SEQ ID No.47, and the primer pmenH-N20-r has a sequence shown as SEQ ID No.48, specifically as follows:
SEQ ID No.41:5’-CTGACCGTACCAACCTGCA-3’;
SEQ ID No.42:5’-CCTGATAAGCGTAGCGCAT-3’;
SEQ ID No.43:5’-GTGCGTTTGCCGACTACTCACG-3’;
SEQ ID No.44:5’-TGCAGGTTGGTACGGTCAGGCGCTAAGGTTAGCACGTAAAT-3’;
SEQ ID No.45:5’-ATGCGCTACGCTTATCAGGCCGCACATTTGCGTTTTATTAT-3’;
SEQ ID No.46:5’-GAGCACATTCAGGTGATGTACGCC-3’;
SEQ ID No.47:5’-AGCGACGCAAATGTGCGGGCGCTA-3’;
SEQ ID No.48:5’-AAACTAGCGCCCGCACATTTGCGT-3’。
example 8
Construction of a genetically engineered strain MG1655 (DeltatherB, rhtA23, deltatherL, thrA (G433R), deltatadA:: -thrA-ppc-aspA-pntAB, deltatpC:: -thrA-ppc-aspA-pntAB, deltatdA:: -thrA-ppc-aspA-pntAB, deltatacA::: -thrA-x, deltatcsB:: -thrA-x, deltathH:::: aspC, deltatdB::: asd) integrating aspC in chromosomal DNA.
The present example constructed a genetically engineered strain MG1655 (Deltathr B, rhtA23, deltathr L, thrA (G433R), deltatA:: thrA-ppc-aspA-
pntAB,ΔyidJ::thrA*-ppc-aspA-pntAB,ΔatpC::thrA*-ppc-aspA
pntAB, ΔdacA:: thrA:, ΔbcsB:: thrA:, Δmen::: aspC, ΔyddB:: asd). The CRISPR/Cas9 gene editing technology is adopted to realize the insertion of an asd expression cassette inside the yddB gene. The construction method was substantially similar to that of example 5, except that: the asd gene under the natural promoter was inserted into the yddB gene using the strain produced in example 7 of the original strain as an object of manipulation. Specific: the insert was obtained by PCR amplification from the MG1655 genome with the primers pSOE-asd-f and pSOE-asd-r, and the primers used in example step (2) were replaced with pSOE-yddB-H1-f, pSOE-yddB-H1-r, pyddB-N20-f, pSOE-menoH 2-r, pmenH-N20-f, pmenH-N20-r by the primers pSOE-menoH-H1-f, pSOE-menoH-H1-r, pSOE-yddB-H2-f, pSOE-yddB-H2-r, pyddB-N20-f, pyddB-N20-r;
wherein the primer pSOE-asd-f has a sequence shown as SEQ ID No.49, the primer pSOE-asd-r has a sequence shown as SEQ ID No.50, the primer pSOE-yddB-H1-f has a sequence shown as SEQ ID No.51, the primer pSOE-yddB-H1-r has a sequence shown as SEQ ID No.52, the primer pSOE-yddB-H2-f has a sequence shown as SEQ ID No.53, the primer pSOE-yddB-H2-r has a sequence shown as SEQ ID No.54, the primer pyddB-N20-f has a sequence shown as SEQ ID No.55, and the primer pyddB-N20-r has a sequence shown as SEQ ID No.56, specifically as follows:
SEQ ID No.49:5’-GGATCCATAATCAGGATCAATAAAACT-3’;
SEQ ID No.50:5’-AGGATCCGCAAAATGGCC-3’;
SEQ ID No.51:5’-GTGCGGCTCTTCAGGAAGTACTTATTAC-3’;
SEQ ID No.52:5’-GTTTTATTGATCCTGATTATGGATCCCAGTCCACGCATCGGAATAG-3’;
SEQ ID No.53:5’-GGCCATTTTGCGGATCCTAACGCCATAACCAGTCTGAAT-3’;
SEQ ID No.54:5’-GAGCCTGAACGAATGCGTTTTGG-3’;
SEQ ID No.55:5’-AGCGATGGCGTTCAGTCCACGCAT-3’;
SEQ ID No.56:5’-AAACATGCGTGGACTGAACGCCAT-3’。
example 9
L-homoserine producing strain for producing L-homoserine by fermentation
The strain prepared in example 1 is adopted in the present example to perform fermentation production of L-homoserine, and the production method can be seen in Chinese patent application CN201710106474.8, and homoserine 5.3g/L is obtained by fermentation.
As an alternative embodiment of this example, the strain finally prepared in example 1 may also be replaced with the strain finally prepared in examples 2 to 8.
EXAMPLE 10 statistics of results of fermentation of L-homoserine producing Strain
The present example preferably uses the strains constructed in examples 1 and 4 and 8 to produce L-homoserine by fermentation, as compared with MG1655 strain. The production process was exactly the same as described in example 10.
The results of the detection and calculation of the L-homoserine production were as follows, according to the experiment No. Hom4 for fermentation using the strain prepared in example 4 and the experiment No. Hom8 for fermentation using the strain prepared in example 8:
bacterial strain L-homoserine production (g/L)
MG1655 0
Hom1 4.8±1.2
Hom4 53.8±5.9
Hom8 88.1±11.4
As shown by the results, the yield of the L-homoserine produced by fermenting the strain of the invention is up to nearly 100g/L, which indicates that the invention has obvious effects on knocking out, weakening, enhancing, over-expressing and mutating genes.
It is apparent that the above examples are given by way of illustration only and are not limiting of the embodiments. Other variations or modifications of the above teachings will be apparent to those of ordinary skill in the art. While still being apparent from variations or modifications that may be made by those skilled in the art are within the scope of the invention.
SEQUENCE LISTING
<110> Sichuan Lier Biotech Co., ltd
<120> an L-homoserine producing strain, its construction method and application
<130> TC5382
<160> 56
<170> PatentIn version 3.5
<210> 1
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 1
gctcatattg gcactggaag 20
<210> 2
<211> 43
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 2
cttatggaaa tgttaaaaaa tcgccaagct ttacgcgaac gag 43
<210> 3
<211> 43
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 3
ctcgttcgcg taaagcttgg cgatttttta acatttccat aag 43
<210> 4
<211> 58
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 4
cattttcctt tatgtctata ttgagatttc ccttaaggat atctgaaggt atattcag 58
<210> 5
<211> 58
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 5
ctgaatatac cttcagatat ccttaaggga aatctcaata tagacataaa ggaaaatg 58
<210> 6
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 6
gtactgaaaa ttatgcctgt gatctgtgcc ttttttattt gtactaccct 50
<210> 7
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 7
agggtagtac aaataaaaaa ggcacagatc acaggcataa ttttcagtac 50
<210> 8
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 8
tctcaataaa gagtgacggc 20
<210> 9
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 9
gtgcagcgcc agagccac 18
<210> 10
<211> 38
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 10
gccgtcactc tttattgaga gctttagtca gcggaggc 38
<210> 11
<211> 44
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 11
cttccagtgc caatatgagc actgtttaaa tatgttcgtg aagg 44
<210> 12
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 12
gagctggatg gatttcacat ccagtg 26
<210> 13
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 13
agcggcctcc gctgactaaa gcat 24
<210> 14
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 14
aaacatgctt tagtcagcgg aggc 24
<210> 15
<211> 10891
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 15
gctcatattg gcactggaag ccggggcata aactttaacc atgtcagact cctaacttcc 60
atgagagggt acgtagcaga tcagcaaaga caccggcagc tgtaacgtca ttgcccgcac 120
catatccgcg cagtaccaac ggcagcggct gataatagtg gctatagaag gccagggcgt 180
tttcgccatt tttcactttg aacagcggat cattaccatc cacttcggca atcttcacgc 240
ggcagacgcc atcttcatca atattgccaa catagcgcaa aacttttcct tcatcacggg 300
ccttcgccac gcgcgcggca aagagatcgt cgagttgtga cagattcgcc ataaaagcgg 360
caacatcacc ctcggcgtta aactctgcgg gcagcacagg ttcaatttca atatccgcca 420
gctccagttc acgtcccgtt tcacgagcga gaatcaatag tttacgcgcc acatccatac 480
cagaaagatc atctcgcggg tccggttcgg tataacccat ttcccgcgcc agcgtggtcg 540
cctcggagaa actcatgcct tcgtctaact tgccgaagat ataagaaagc gaaccagaaa 600
gaatgccgga gaacttcatc aattcatcac ctgcattgag cagattttgc aggttctcaa 660
taaccggtaa tccagcccca acgttggtgt catagaggaa tttacgccgc gatttttccg 720
ccgcataacg caactgatgg tagtaatcca tcgacgaggt gttggccttt ttgttcggcg 780
tgacaacgtg gaaaccttcg cgcaggaagt cggcatattg atccgccact gcctggctgg 840
aagtgcagtc aacaatgacc gggttcagca gatgatattc tttcacgagg cgaattaagc 900
gcccgagatt aaacggctct ttggcttgcg ccagttcttc ctgccagttt tccagattaa 960
ggccatgtac attggtgagc agagccttcg agttggcaac accgcagaca cgtaagtcga 1020
tatgtttatt cttcagccag ctttgctgac gcttcagttg ctccagcagc gcaccgccaa 1080
cgccaccgac gccaatcaca aacacttcga taacctgatc ggtattgaac agcatctgat 1140
gagtaacgcg cacgccagtg gtcgcatcat cgttatttac cacgacagag attgagcgtt 1200
cagaagatct ctgagcaatg gcgacaatgt tgatattggc gcgggccagt gcggcaaaga 1260
atttcgccga gatcccacgc aaggtgcgca taccatcacc taccaccgag ataatggcca 1320
gccgttccgt cactgccagc ggctccagta agccttcttt cagttccagg tagaactctt 1380
cctgcattgc ccgttcagct cgcacacagt cgctttgtgg aacgcagaaa ctgatgctgt 1440
attcggaaga tgattgcgta atcagcacca cggaaatacg ggcgcgtgac atcgctgcaa 1500
agacgcgcgc cgccatgccg accatccctt tcatccccgg accagaaacg ctgaacattg 1560
ccatgttatt cagattggaa atgcccttga ccggtaattc gtcttcatca cggctggcac 1620
caatgagcgt acctggtgct tgaggatttc cggtattttt aatcaggcaa gggatctgga 1680
actgggcgat gggggtaatg gtgcgggggt gaagaacttt agcgccgaag taggaaagct 1740
ccatcgcttc ctggtaggac atcgacttca acaacctcgc atcgggcacc tgacgcgggt 1800
cgcaggtata gaccccgtca acgtccgtcc aaatctcgca acaatcggcg cgtaaacagg 1860
cagccagcac cgcagcagag tagtcggaac cgttgcgtcc aagcaccacc agttcgcctt 1920
tttcattacc ggcggtgaaa cctgccatca gcaccatgtg atcagccgga atgcggcttg 1980
ccgcaatacg gcgggtggac tcagcaatat cgacggtaga ttcgaggtaa tgccccactg 2040
ccagcagttt ttcgaccgga tcgataacag taacgttgtg accgcgcgct tctaatacgc 2100
cggccataat ggcgatcgac attttctcgc cacggcaaat cagcgcagcg ttgatgctat 2160
ccgggcactg ccccaacaaa ctaatgccat gcaggacatg ttttatttgg gcaaattcct 2220
gatcgacgaa agttttcaat tgcgccagcg ggaaccccgg ctgggcggcg gcgagtcccg 2280
tcaaaagttc ggcaaaaata cgttcggcat cgctgatatt gggtaaagca tcctggccgc 2340
taatggtttt ttcaatcatc gccaccaggt ggttggtgat tttggcgggg gcagagagga 2400
cggtggccac ctgcccctgc ctggcattgc tttccagaat atcggcaaca cgcagaaaac 2460
gttctgcatt tgccactgat gtaccgccga acttcaacac tcgcatggtt gttacctcgt 2520
tacctttggt cggactctag agtctttatc tgtctgtgcg ctatgcctat attggttaaa 2580
gtatttagtg acctaagtca ataaaatttt aatttactca cggcaggtaa ccagttcaga 2640
agctgctatc agacactctt tttttaatcc acacagagac atattgcccg ttgcagtcag 2700
aatgaaaagc tgaaaaatac ttactaaggc gttttttatt tggtgatatt tttttcaata 2760
tcatgcagca aacggtgcaa cattgccgtg tctcgttgct ctaaaagccc caggcgttgt 2820
tgtaaccagt cgaccagttt tatgtcatct gccactgcca gagtcgtcag caatgtcatg 2880
gctcgttcgc gtaaagcttg gcgatttttt aacatttcca taagttacgc ttatttaaag 2940
cgtcgtgaat ttaatgacgt aaattcctgc tatttattcg tttgctgaag cgatttcgca 3000
gcatttgacg tcaccgcttt tacgtggctt tataaaagac gacgaaaagc aaagcccgag 3060
catattcgcg ccaatgcgac gtgaaggata cagggctatc aaacgataag atggggtgtc 3120
tggggtaata tgaacgaaca atattccgca ttgcgtagta atgtcagtat gctcggcaaa 3180
gtgctgggag aaaccatcaa ggatgcgttg ggagaacaca ttcttgaacg cgtagaaact 3240
atccgtaagt tgtcgaaatc ttcacgcgct ggcaatgatg ctaaccgcca ggagttgctc 3300
accaccttac aaaatttgtc gaacgacgag ctgctgcccg ttgcgcgtgc gtttagtcag 3360
ttcctgaacc tggccaacac cgccgagcaa taccacagca tttcgccgaa aggcgaagct 3420
gccagcaacc cggaagtgat cgcccgcacc ctgcgtaaac tgaaaaacca gccggaactg 3480
agcgaagaca ccatcaaaaa agcagtggaa tcgctgtcgc tggaactggt cctcacggct 3540
cacccaaccg aaattacccg tcgtacactg atccacaaaa tggtggaagt gaacgcctgt 3600
ttaaaacagc tcgataacaa agatatcgct gactacgaac acaaccagct gatgcgtcgc 3660
ctgcgccagt tgatcgccca gtcatggcat accgatgaaa tccgtaagct gcgtccaagc 3720
ccggtagatg aagccaaatg gggctttgcc gtagtggaaa acagcctgtg gcaaggcgta 3780
ccaaattacc tgcgcgaact gaacgaacaa ctggaagaga acctcggcta caaactgccc 3840
gtcgaatttg ttccggtccg ttttacttcg tggatgggcg gcgaccgcga cggcaacccg 3900
aacgtcactg ccgatatcac ccgccacgtc ctgctactca gccgctggaa agccaccgat 3960
ttgttcctga aagatattca ggtgctggtt tctgaactgt cgatggttga agcgacccct 4020
gaactgctgg cgctggttgg cgaagaaggt gccgcagaac cgtatcgcta tctgatgaaa 4080
aacctgcgtt ctcgcctgat ggcgacacag gcatggctgg aagcgcgcct gaaaggcgaa 4140
gaactgccaa aaccagaagg cctgctgaca caaaacgaag aactgtggga accgctctac 4200
gcttgctacc agtcacttca ggcgtgtggc atgggtatta tcgccaacgg cgatctgctc 4260
gacaccctgc gccgcgtgaa atgtttcggc gtaccgctgg tccgtattga tatccgtcag 4320
gagagcacgc gtcataccga agcgctgggc gagctgaccc gctacctcgg tatcggcgac 4380
tacgaaagct ggtcagaggc cgacaaacag gcgttcctga tccgcgaact gaactccaaa 4440
cgtccgcttc tgccgcgcaa ctggcaacca agcgccgaaa cgcgcgaagt gctcgatacc 4500
tgccaggtga ttgccgaagc accgcaaggc tccattgccg cctacgtgat ctcgatggcg 4560
aaaacgccgt ccgacgtact ggctgtccac ctgctgctga aagaagcggg tatcgggttt 4620
gcgatgccgg ttgctccgct gtttgaaacc ctcgatgatc tgaacaacgc caacgatgtc 4680
atgacccagc tgctcaatat tgactggtat cgtggcctga ttcagggcaa acagatggtg 4740
atgattggct attccgactc agcaaaagat gcgggagtga tggcagcttc ctgggcgcaa 4800
tatcaggcac aggatgcatt aatcaaaacc tgcgaaaaag cgggtattga gctgacgttg 4860
ttccacggtc gcggcggttc cattggtcgc ggcggcgcac ctgctcatgc ggcgctgctg 4920
tcacaaccgc caggaagcct gaaaggcggc ctgcgcgtaa ccgaacaggg cgagatgatc 4980
cgctttaaat atggtctgcc agaaatcacc gtcagcagcc tgtcgcttta taccggggcg 5040
attctggaag ccaacctgct gccaccgccg gagccgaaag agagctggcg tcgcattatg 5100
gatgaactgt cagtcatctc ctgcgatgtc taccgcggct acgtacgtga aaacaaagat 5160
tttgtgcctt acttccgctc cgctacgccg gaacaagaac tgggcaaact gccgttgggt 5220
tcacgtccgg cgaaacgtcg cccaaccggc ggcgtcgagt cactacgcgc cattccgtgg 5280
atcttcgcct ggacgcaaaa ccgtctgatg ctccccgcct ggctgggtgc aggtacggcg 5340
ctgcaaaaag tggtcgaaga cggcaaacag agcgagctgg aggctatgtg ccgcgattgg 5400
ccattcttct cgacgcgtct cggcatgctg gagatggtct tcgccaaagc agacctgtgg 5460
ctggcggaat actatgacca acgcctggta gacaaagcac tgtggccgtt aggtaaagag 5520
ttacgcaacc tgcaagaaga agacatcaaa gtggtgctgg cgattgccaa cgattcccat 5580
ctgatggccg atctgccgtg gattgcagag tctattcagc tacggaatat ttacaccgac 5640
ccgctgaacg tattgcaggc cgagttgctg caccgctccc gccaggcaga aaaagaaggc 5700
caggaaccgg atcctcgcgt cgaacaagcg ttaatggtca ctattgccgg gattgcggca 5760
ggtatgcgta ataccggcta atcttcctct tctgcaaacc ctcgtgcttt tgcgcgaggg 5820
ttttctgaaa tacttctgtt ctaacaccct cgttttcaat atatttctgt ctgcatttta 5880
ttcaaattct gaatatacct tcagatatcc ttaagggaaa tctcaatata gacataaagg 5940
aaaatggcaa taaaaggtaa ccagcgcaaa ggtttctcct gtaatagcag ccggttaacc 6000
ccggctacct gaatgggttg cgaatcgcgt ttagcttata ttgtggtcat tagcaaaatt 6060
tcaagatgtt tgcgcaacta tttttggtag taatcccaaa gcggtgatct atttcacaaa 6120
ttaataatta aggggtaaaa accgacactt aaagtgatcc agattacggt agaaatcctc 6180
aagcagcata tgatctcggg tattcggtcg atgcagggga taatcgtcgg tcgaaaaaca 6240
ttcgaaacca catatattct gtgtgtttaa agcaaatcat tggcagcttg aaaaagaagg 6300
ttcacatgtc aaacaacatt cgtatcgaag aagatctgtt gggtaccagg gaagttccag 6360
ctgatgccta ctatggtgtt cacactctga gagcgattga aaacttctat atcagcaaca 6420
acaaaatcag tgatattcct gaatttgttc gcggtatggt aatggttaaa aaagccgcag 6480
ctatggcaaa caaagagctg caaaccattc ctaaaagtgt agcgaatgcc atcattgccg 6540
catgtgatga agtcctgaac aacggaaaat gcatggatca gttcccggta gacgtctacc 6600
agggcggcgc aggtacttcc gtaaacatga acaccaacga agtgctggcc aatatcggtc 6660
tggaactgat gggtcaccaa aaaggtgaat atcagtacct gaacccgaac gaccatgtta 6720
acaaatgtca gtccactaac gacgcctacc cgaccggttt ccgtatcgca gtttactctt 6780
ccctgattaa gctggtagat gcgattaacc aactgcgtga aggctttgaa cgtaaagctg 6840
tcgaattcca ggacatcctg aaaatgggtc gtacccagct gcaggacgca gtaccgatga 6900
ccctcggtca ggaattccgc gctttcagca tcctgctgaa agaagaagtg aaaaacatcc 6960
aacgtaccgc tgaactgctg ctggaagtta accttggtgc aacggcaatc ggtactggtc 7020
tgaacacgcc gaaagagtac tctccgctgg cagtgaaaaa actggctgaa gttactggct 7080
tcccatgcgt accggctgaa gacctgatcg aagcgacctc tgactgcggc gcttatgtta 7140
tggttcacgg cgcgctgaaa cgcctggctg tgaagatgtc caaaatctgt aacgacctgc 7200
gcttgctctc ttcaggccca cgtgccggcc tgaacgagat caacctgccg gaactgcagg 7260
cgggctcttc catcatgcca gctaaagtaa acccggttgt tccggaagtg gttaaccagg 7320
tatgcttcaa agtcatcggt aacgacacca ctgttaccat ggcagcagaa gcaggtcagc 7380
tgcagttgaa cgttatggag ccggtcattg gccaggccat gttcgaatcc gttcacattc 7440
tgaccaacgc ttgctacaac ctgctggaaa aatgcattaa cggcatcact gctaacaaag 7500
aagtgtgcga aggttacgtt tacaactcta tcggtatcgt tacttacctg aacccgttca 7560
tcggtcacca caacggtgac atcgtgggta aaatctgtgc cgaaaccggt aagagtgtac 7620
gtgaagtcgt tctggaacgc ggtctgttga ctgaagcgga acttgacgat attttctccg 7680
tacagaatct gatgcacccg gcttacaaag caaaacgcta tactgatgaa agcgaacagt 7740
aatcgtacag ggtagtacaa ataaaaaagg cacagatcac aggcataatt ttcagtacgt 7800
tatagggcgt ttgttactaa tttattttaa cggagtaaca tttagctcgt acatgagcag 7860
cttgtgtggc tcctgacaca ggcaaaccat catcaataaa accgatggaa gggaatatca 7920
tgcgaattgg cataccaaga gaacggttaa ccaatgaaac ccgtgttgca gcaacgccaa 7980
aaacagtgga acagctgctg aaactgggtt ttaccgtcgc ggtagagagc ggcgcgggtc 8040
aactggcaag ttttgacgat aaagcgtttg tgcaagcggg cgctgaaatt gtagaaggga 8100
atagcgtctg gcagtcagag atcattctga aggtcaatgc gccgttagat gatgaaattg 8160
cgttactgaa tcctgggaca acgctggtga gttttatctg gcctgcgcag aatccggaat 8220
taatgcaaaa acttgcggaa cgtaacgtga ccgtgatggc gatggactct gtgccgcgta 8280
tctcacgcgc acaatcgctg gacgcactaa gctcgatggc gaacatcgcc ggttatcgcg 8340
ccattgttga agcggcacat gaatttgggc gcttctttac cgggcaaatt actgcggccg 8400
ggaaagtgcc accggcaaaa gtgatggtga ttggtgcggg tgttgcaggt ctggccgcca 8460
ttggcgcagc aaacagtctc ggcgcgattg tgcgtgcatt cgacacccgc ccggaagtga 8520
aagaacaagt tcaaagtatg ggcgcggaat tcctcgagct ggattttaaa gaggaagctg 8580
gcagcggcga tggctatgcc aaagtgatgt cggacgcgtt catcaaagcg gaaatggaac 8640
tctttgccgc ccaggcaaaa gaggtcgata tcattgtcac caccgcgctt attccaggca 8700
aaccagcgcc gaagctaatt acccgtgaaa tggttgactc catgaaggcg ggcagtgtga 8760
ttgtcgacct ggcagcccaa aacggcggca actgtgaata caccgtgccg ggtgaaatct 8820
tcactacgga aaatggtgtc aaagtgattg gttataccga tcttccgggc cgtctgccga 8880
cgcaatcctc acagctttac ggcacaaacc tcgttaatct gctgaaactg ttgtgcaaag 8940
agaaagacgg caatatcact gttgattttg atgatgtggt gattcgcggc gtgaccgtga 9000
tccgtgcggg cgaaattacc tggccggcac cgccgattca ggtatcagct cagccgcagg 9060
cggcacaaaa agcggcaccg gaagtgaaaa ctgaggaaaa atgtacctgc tcaccgtggc 9120
gtaaatacgc gttgatggcg ctggcaatca ttctttttgg ctggatggca agcgttgcgc 9180
cgaaagaatt ccttgggcac ttcaccgttt tcgcgctggc ctgcgttgtc ggttattacg 9240
tggtgtggaa tgtatcgcac gcgctgcata caccgttgat gtcggtcacc aacgcgattt 9300
cagggattat tgttgtcgga gcactgttgc agattggcca gggcggctgg gttagcttcc 9360
ttagttttat cgcggtgctt atagccagca ttaatatttt cggtggcttc accgtgactc 9420
agcgcatgct gaaaatgttc cgcaaaaatt aaggggtaac atatgtctgg aggattagtt 9480
acagctgcat acattgttgc cgcgatcctg tttatcttca gtctggccgg tctttcgaaa 9540
catgaaacgt ctcgccaggg taacaacttc ggtatcgccg ggatggcgat tgcgttaatc 9600
gcaaccattt ttggaccgga tacgggtaat gttggctgga tcttgctggc gatggtcatt 9660
ggtggggcaa ttggtatccg tctggcgaag aaagttgaaa tgaccgaaat gccagaactg 9720
gtggcgatcc tgcatagctt cgtgggtctg gcggcagtgc tggttggctt taacagctat 9780
ctgcatcatg acgcgggaat ggcaccgatt ctggtcaata ttcacctgac ggaagtgttc 9840
ctcggtatct tcatcggggc ggtaacgttc acgggttcgg tggtggcgtt cggcaaactg 9900
tgtggcaaga tttcgtctaa accattgatg ctgccaaacc gtcacaaaat gaacctggcg 9960
gctctggtcg tttccttcct gctgctgatt gtatttgttc gcacggacag cgtcggcctg 10020
caagtgctgg cattgctgat aatgaccgca attgcgctgg tattcggctg gcatttagtc 10080
gcctccatcg gtggtgcaga tatgccagtg gtggtgtcga tgctgaactc gtactccggc 10140
tgggcggctg cggctgcggg ctttatgctc agcaacgacc tgctgattgt gaccggtgcg 10200
ctggtcggtt cttcgggggc tatcctttct tacattatgt gtaaggcgat gaaccgttcc 10260
tttatcagcg ttattgcggg tggtttcggc accgacggct cttctactgg cgatgatcag 10320
gaagtgggtg agcaccgcga aatcaccgca gaagagacag cggaactgct gaaaaactcc 10380
cattcagtga tcattactcc ggggtacggc atggcagtcg cgcaggcgca atatcctgtc 10440
gctgaaatta ctgagaaatt gcgcgctcgt ggtattaatg tgcgtttcgg tatccacccg 10500
gtcgcggggc gtttgcctgg acatatgaac gtattgctgg ctgaagcaaa agtaccgtat 10560
gacatcgtgc tggaaatgga cgagatcaat gatgactttg ctgataccga taccgtactg 10620
gtgattggtg ctaacgatac ggttaacccg gcggcgcagg atgatccgaa gagtccgatt 10680
gctggtatgc ctgtgctgga agtgtggaaa gcgcagaacg tgattgtctt taaacgttcg 10740
atgaacactg gctatgctgg tgtgcaaaac ccgctgttct tcaaggaaaa cacccacatg 10800
ctgtttggtg acgccaaagc cagcgtggat gcaatcctga aagctctgta accctgacgg 10860
cctctgctga ggccgtcact ctttattgag a 10891
<210> 16
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 16
gtgcgaaatt ttcattgttg ctcctttgc 29
<210> 17
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 17
cttccagtgc caatatgagc cggcctaccg acacaag 37
<210> 18
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 18
ggccgtcact ctttattgag agtgtcatag tcgcgtacaa c 41
<210> 19
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 19
gagccggcga tgtatgacga catc 24
<210> 20
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 20
agcggttgta cgcgactatg acac 24
<210> 21
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 21
aaacgtgtca tagtcgcgta caac 24
<210> 22
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 22
gtgcgaaatt ttcattgttg ctcctttgc 29
<210> 23
<211> 39
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 23
cttccagtgc caatatgagc gaaagcgcca ttttcgacc 39
<210> 24
<211> 39
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 24
gccgtcactc tttattgaga gtcagcgggg ataatccgt 39
<210> 25
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 25
gagccataac cggtcggatc atcc 24
<210> 26
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 26
agcggttgta cgcgactatg acac 24
<210> 27
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 27
aaacgtgtca tagtcgcgta caac 24
<210> 28
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 28
aagctttacg cgaacgagc 19
<210> 29
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 29
gtgcgaaatt ttcattgttg ctcctttgc 29
<210> 30
<211> 38
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 30
gctcgttcgc gtaaagcttg tacgtcacgg atcaatgc 38
<210> 31
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 31
cttccagtgc caatatgagc cgaatgaata ctcgatctat aaagaaaaag 50
<210> 32
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 32
gagcaaccaa accagtgatg gaac 24
<210> 33
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 33
agcgagtatt cattcggtac gtca 24
<210> 34
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 34
aaactgacgt accgaatgaa tact 24
<210> 35
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 35
gtgctcgtta ctgcctgtcc agtc 24
<210> 36
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 36
gctcgttcgc gtaaagcttc agtttgacgt aaggattctg c 41
<210> 37
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 37
cttccagtgc caatatgagc ctggtggtgt ttggtcgtga cg 42
<210> 38
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 38
gagcgctgga aggtaataca gttatccac 29
<210> 39
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 39
agcggaatcc ttacgtcaaa ctgc 24
<210> 40
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 40
aaacgcagtt tgacgtaagg attc 24
<210> 41
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 41
ctgaccgtac caacctgca 19
<210> 42
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 42
cctgataagc gtagcgcat 19
<210> 43
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 43
gtgcgtttgc cgactactca cg 22
<210> 44
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 44
tgcaggttgg tacggtcagg cgctaaggtt agcacgtaaa t 41
<210> 45
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 45
atgcgctacg cttatcaggc cgcacatttg cgttttatta t 41
<210> 46
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 46
gagcacattc aggtgatgta cgcc 24
<210> 47
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 47
agcgacgcaa atgtgcgggc gcta 24
<210> 48
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 48
aaactagcgc ccgcacattt gcgt 24
<210> 49
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 49
ggatccataa tcaggatcaa taaaact 27
<210> 50
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 50
aggatccgca aaatggcc 18
<210> 51
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 51
gtgcggctct tcaggaagta cttattac 28
<210> 52
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 52
gttttattga tcctgattat ggatcccagt ccacgcatcg gaatag 46
<210> 53
<211> 39
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 53
ggccattttg cggatcctaa cgccataacc agtctgaat 39
<210> 54
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 54
gagcctgaac gaatgcgttt tgg 23
<210> 55
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 55
agcgatggcg ttcagtccac gcat 24
<210> 56
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthesis by hand
<400> 56
aaacatgcgt ggactgaacg ccat 24

Claims (6)

1. An L-homoserine producing strain, characterized in that it has a single stable chromosome, does not contain plasmid forms or other episomal DNA vectors, and has thrB gene knocked out on its chromosomal DNA; thrL gene is knocked out; the thrA gene is mutated to thrA, and the thrA has the property of inhibiting feedback inhibition of the product; and the rhtA, thrA, ppc, pntAB and aspA genes are over-expressed or enhanced, wherein the over-expression or enhancement of rhtA is achieved by rhtA23, the L-homoserine producing strain is E.coli K-12 strain, and the thrA is the thrA gene mutated from G to R at position 433.
2. An L-homoserine producing strain, characterized in that it has a single stable chromosome, does not contain plasmid forms or other episomal DNA vectors, and has thrB gene knocked out on its chromosomal DNA; thrL gene is knocked out; the thrA gene is mutated to thrA, and the thrA has the property of inhibiting feedback inhibition of the product; and the rhtA, thrA, ppc, pntAB, aspA, aspC and asd genes are over-expressed or enhanced, wherein the over-expression or enhancement of rhtA is achieved by rhtA23, the L-homoserine producing strain is escherichia coli K-12 strain, and the thrA is the thrA gene mutated from G to R at position 433.
3. The L-homoserine producing strain according to claim 1 or 2, wherein the strain is escherichia coli K-12 wild-type MG1655.
4. A method of constructing an L-homoserine producing strain according to any one of claims 1 to 3, comprising the following steps in any order:
A. knocking out thrB gene in the strain;
B. overexpressing the rhtA gene in the strain;
C. knocking out thrL gene in the strain;
D. thrA gene in the mutant strain is thrA, which has the property of inhibiting feedback inhibition of the product;
E. integrating thrA, ppc, pntAB and aspA genes or thrA, ppc, pntAB, aspA, aspC and asd genes in multiple copies into chromosomal DNA in the strain for overexpression;
the L-homoserine producing strain is an escherichia coli K-12 strain, and thrA is a thrA gene mutated from G to R at 433 th position.
5. The method according to claim 4, wherein the strain is Escherichia coli K-12 wild-type MG1655.
6. Use of the L-homoserine producer strain according to any one of claims 1 to 3 for producing L-homoserine.
CN202110031779.3A 2017-10-13 2017-10-13 L-homoserine production strain and construction method and application thereof Active CN112725254B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110031779.3A CN112725254B (en) 2017-10-13 2017-10-13 L-homoserine production strain and construction method and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110031779.3A CN112725254B (en) 2017-10-13 2017-10-13 L-homoserine production strain and construction method and application thereof
CN201710953111.8A CN109666617B (en) 2017-10-13 2017-10-13 L-homoserine production strain and construction method and application thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201710953111.8A Division CN109666617B (en) 2017-10-13 2017-10-13 L-homoserine production strain and construction method and application thereof

Publications (2)

Publication Number Publication Date
CN112725254A CN112725254A (en) 2021-04-30
CN112725254B true CN112725254B (en) 2023-07-11

Family

ID=66101276

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201710953111.8A Active CN109666617B (en) 2017-10-13 2017-10-13 L-homoserine production strain and construction method and application thereof
CN202110031779.3A Active CN112725254B (en) 2017-10-13 2017-10-13 L-homoserine production strain and construction method and application thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201710953111.8A Active CN109666617B (en) 2017-10-13 2017-10-13 L-homoserine production strain and construction method and application thereof

Country Status (2)

Country Link
CN (2) CN109666617B (en)
WO (1) WO2019071668A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113122487B (en) * 2020-01-10 2022-05-24 中国科学院微生物研究所 Recombinant bacterium for high yield of L-homoserine, and preparation method and application thereof
CN112779204B (en) * 2021-01-26 2022-08-09 天津科技大学 Genetically engineered bacterium for producing L-homoserine and application thereof
CN115109738B (en) * 2022-06-15 2024-03-08 江南大学 Recombinant escherichia coli for producing L-homoserine and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031564A1 (en) * 2007-09-04 2009-03-12 Ajinomoto Co., Inc. L-amino acid-producing bacterium and method of producing l-amino acid
CN103215319A (en) * 2006-07-19 2013-07-24 味之素株式会社 Method for producing an L-amino acid using a bacterium of the enterobacteriaceae family
CN104862329A (en) * 2015-04-23 2015-08-26 上海工业生物技术研发中心 L-threonine genetic engineering production bacteria

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2144564C1 (en) * 1998-10-13 2000-01-20 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" Dna fragment rhtb encoding synthesis of protein rhtb that determines resistance of bacterium escherichia coli to l-homoserine and method of l-amino acid producing
EP1407035B1 (en) * 2001-07-18 2006-04-12 Degussa AG Process for the preparation of l-amino acids using strains of the enterobacteriaceae family which contain an attenuated aspa gene
DE10314618A1 (en) * 2003-04-01 2004-10-14 Degussa Ag Process for the preparation of L-amino acids using strains of the family Enterobacteriaceae
US7723097B2 (en) * 2005-03-11 2010-05-25 Archer-Daniels-Midland Company Escherichia coli strains that over-produce L-threonine and processes for their production
JP2012029565A (en) * 2008-11-27 2012-02-16 Ajinomoto Co Inc Method for producing l-amino acid
WO2013134625A1 (en) * 2012-03-08 2013-09-12 Novus International Inc. Recombinant bacterium for l-homoserine production
CN105543156A (en) * 2016-03-02 2016-05-04 廊坊梅花生物技术开发有限公司 Recombinant strain and preparation method and application thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103215319A (en) * 2006-07-19 2013-07-24 味之素株式会社 Method for producing an L-amino acid using a bacterium of the enterobacteriaceae family
WO2009031564A1 (en) * 2007-09-04 2009-03-12 Ajinomoto Co., Inc. L-amino acid-producing bacterium and method of producing l-amino acid
CN104862329A (en) * 2015-04-23 2015-08-26 上海工业生物技术研发中心 L-threonine genetic engineering production bacteria

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Metabolic engineering of Escherichia coli W3110 for L-homoserine production;Hua Li等;《Process Biochemistry》;20161231;第51卷(第12期);第3页图1,第4页右栏第1段,第8页左栏第1段和第2段,第9页表4 *
Wolf.Dieter Fessner等.现代生物催化 高立体选择及环境友好的反应.《现代生物催化 高立体选择及环境友好的反应》.中国轻工业出版社,2016,第198页. *

Also Published As

Publication number Publication date
WO2019071668A1 (en) 2019-04-18
CN112725254A (en) 2021-04-30
CN109666617A (en) 2019-04-23
CN109666617B (en) 2021-02-02

Similar Documents

Publication Publication Date Title
AU2017351657B2 (en) Improved process for the production of fucosylated oligosaccharides
JP6789436B2 (en) ATP phosphoribosyltransferase variant and method for producing L-histidine using it
CN113322218B (en) Recombinant corynebacterium glutamicum and method for producing L-threonine
US11512333B2 (en) Method for producing tetrahydropyrimidine by fermenting recombinant Corynebacterium glutamicum
CN108504613B (en) L-homoserine production strain and construction method and application thereof
CN110831959B (en) Novel polypeptide and method for producing IMP using the same
CN110551670B (en) Genetically engineered bacterium for producing L-leucine and application thereof
CN112725254B (en) L-homoserine production strain and construction method and application thereof
CN111019878B (en) Recombinant escherichia coli with improved L-threonine yield as well as construction method and application thereof
KR20220139351A (en) Modified Microorganisms and Methods for Improved Production of Ectoins
KR20150115009A (en) L-lysine generation method by fermenting bacteria having modified aconitase gene and/or regulatory element
CA2920814A1 (en) Modified microorganism for improved production of alanine
WO2018077159A1 (en) Method for modifying amino acid attenuator and use of same in production
CN112877269B (en) Microorganism producing lysine and method for producing lysine
CN110592084B (en) Recombinant strain transformed by rhtA gene promoter, construction method and application thereof
CN114540399A (en) Method for preparing L-valine and gene mutant and biological material used by same
JP5963260B2 (en) New thermophilic acetic acid producing bacteria
WO2023071580A1 (en) Recombinant microorganism constructed based on lysine efflux protein and method for producing lysine
WO2023142872A1 (en) Modified microorganism of corynebacterium genus producing threonine, method for constructing same, and use thereof
WO2023151421A1 (en) Modified corynebacterium microorganism, and use thereof and construction method therefor
WO2023142853A1 (en) Method for constructing genetically engineered bacterium for highly producing threonine
WO2023142861A1 (en) Method for constructing threonine-producing engineered bacterium
WO2023151406A1 (en) Method for constructing threonine-producing strain
WO2023142848A1 (en) Promoter, threonine-producing recombinant microorganism and use thereof
WO2023151408A1 (en) Construction method for strain with high-yield production of threonine

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 415400 No. 10, Shanyan Road, Jiashan street, Jinshi City, Changde City, Hunan Province

Applicant after: Hunan lier Biotechnology Co.,Ltd.

Address before: 621000 No. 327, south section of mianzhou Avenue, economic development zone, Mianyang City, Sichuan Province

Applicant before: SICHUAN LIER BIOTECHNOLOGY Co.,Ltd.

GR01 Patent grant
GR01 Patent grant