CN112713590B - 计及idr的冷热电联供微网与主动配电网联合优化调度方法 - Google Patents

计及idr的冷热电联供微网与主动配电网联合优化调度方法 Download PDF

Info

Publication number
CN112713590B
CN112713590B CN202011534542.9A CN202011534542A CN112713590B CN 112713590 B CN112713590 B CN 112713590B CN 202011534542 A CN202011534542 A CN 202011534542A CN 112713590 B CN112713590 B CN 112713590B
Authority
CN
China
Prior art keywords
power
grid
distribution network
heating
microgrid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011534542.9A
Other languages
English (en)
Other versions
CN112713590A (zh
Inventor
张柳芳
杨晓辉
吴龙杰
冷正旸
刘康
徐正宏
杨爽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN202011534542.9A priority Critical patent/CN112713590B/zh
Publication of CN112713590A publication Critical patent/CN112713590A/zh
Application granted granted Critical
Publication of CN112713590B publication Critical patent/CN112713590B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • H02J3/144Demand-response operation of the power transmission or distribution network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/30The power source being a fuel cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/40Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation wherein a plurality of decentralised, dispersed or local energy generation technologies are operated simultaneously
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/16Energy services, e.g. dispersed generation or demand or load or energy savings aggregation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种计及IDR(Integrated Demand Respond,综合需求响应)的冷热电联供微网与主动配电网联合优化调度方法。首先对冷热电联供微网设备建模;然后分别建立主动配电网优化调度模型和计及IDR的冷热电联供微网调度模型;运用机会约束规划处理冷热电联供型微网中新能源及冷热电负荷的随机性;最后,运用一种IATC(Improved Analytical Target Cascading,改进目标级联法)求解计及IDR的冷热电联供微网与主动配电网联合优化调度模型。本发明提出的方法能有效提升能源利用率,降低系统运行成本,能在保护各自区域隐私的基础上,求取主动配电网和冷热电联供型微网各自最优的经济调度结果。

Description

计及IDR的冷热电联供微网与主动配电网联合优化调度方法
技术领域
本发明属于电力系统技术领域,具体涉及一种计及IDR的冷热电联供微网与主动配电网联合优化调度方法。
背景技术
冷热电联供型微网不仅可以实现能量的梯级利用,还能提升能源的利用率,引起了国内外广泛的关注。传统配电网由于存在能耗高、自动化水平低等问题,难以适应越来越多的分布式电源接入后管理的新需求。主动配电网凭借其具有灵活的网络拓扑结构的优势,能主动地控制和管理局部的分布式电源。冷热电联供型微网微网的用户侧冷、热、电等负荷均可作为柔性负荷参与其运行调度,且三种负荷同时参与调度的灵活性相比于电力需求响应会更高。若在用户侧引入IDR(综合需求响应Integrated Demand Response)有利于提升能源利用率,降低供用能成本。多个冷热电联供型微网接入主动配电网后,系统经济调度更具复杂性,微网和配网作为不同利益主体,传统集中式调度存在各自区域隐私泄露风险。因此,需要一种新的优化调度方法来解决这个问题。
发明内容
针对上述问题,本发明提出了一种计及IDR的冷热电联供微网与主动配电网联合优化调度方法,能够有效提升能源利用率,降低系统的运行成本,实现在保护各自区域隐私的基础下,求取主动配电网和冷热电联供型微网各自最优的经济调度结果。
本发明提出了一种计及IDR的冷热电联供微网与主动配电网联合优化调度方法,具体设计方案如下:
(1)对冷热电联供微网设备建模
(2)建立主动配电网优化调度模型;
(3)建立计及IDR的冷热电联供微网调度模型;
(4)运用机会约束规划处理冷热电联供型微网中新能源及冷热电负荷的随机性;
(5)运用IATC(Improved Analytical Target Cascading,改进目标级联法)求解计及IDR的冷热电联供微网与主动配电网联合优化调度模型。
进一步的,所述步骤(1)中中冷热电联供微网设备包括风光发电机组、燃气轮机、燃料电池、燃气锅炉、余热锅炉、吸收式制冷机、电制冷机、热交换器、蓄热槽、电动汽车。
进一步的,所述步骤(2)中建立主动配电网优化调度模型。所述主动配电网优化调度模型的目标函数是总运行成本最小:
min Cdn=Cdg+Cgrid-Csell
Figure BDA0002852756540000021
Figure BDA0002852756540000022
Figure BDA0002852756540000023
式中:Cdn为配网总运行成本,Cdg为配网发电机组的发电成本, Cgrid为配网从大电网的购电成本,Csell为配网向各个微网传送功率的收益;T为调度周期;Pdg,m(t)为第m台发电机组在时段t的出力;adg、 bdg、cdg分别为各机组对应的成本系数;Ndg表示配网机组的数量;Pgrid(t) 为t时段配网向大电网购电的功率,λgrid(t)为配网向大电网购电的实时电价;Pi pcc(t)为t时段由配网向微网i传送的功率,其值为正时表示配网向微网售电,其值为负时表示配网向微网购电;λe,i(t)为配网与微网i间日前市场交易电价;Nmg为微网数量。
在步骤(2)中所述主动配电网层的约束条件包括功率平衡约束、发电机组出力上下限约束、机组爬坡约束、与大电网交互功率约束、联络线功率约束,具体如下:
Figure BDA0002852756540000024
Figure BDA0002852756540000025
Figure BDA0002852756540000026
Figure BDA0002852756540000027
Figure BDA0002852756540000028
式中:
Figure BDA0002852756540000029
为配网在时段t的负荷预测值;
Figure BDA00028527565400000210
Figure BDA00028527565400000211
为第m台发电机组的有功出力上下限;
Figure BDA0002852756540000031
分别为第m台发电机组的向下和向上爬坡率;
Figure BDA0002852756540000032
为配网与大电网交互功率的上下限;
Figure BDA0002852756540000033
Figure BDA0002852756540000034
为配网向微网传输功率的上下限。
进一步的,所述步骤(3)中建立计及IDR的冷热电联供微网调度模型,所述冷热电联供微网优化调度模型的目标函数是总运行成本最小:
min Cmg,i=Cfuel,i+CUD,i+Com,i+Cbuy,i+CIDR,i
式中:Cmg,i、Cfuel,i、CUD,i、Com,i、CIDR,i分别为第i个冷热电联供微网总运行成本、可控机组的燃料费用、可控机组的启动和关停费用之和、设备的总维护费用、综合需求响应的成本。
步骤(3)中所述冷热电联供微网层的约束条件包括功率平衡约束和IDR运行约束;具体如下:
(1)功率平衡约束
Figure BDA0002852756540000035
Figure BDA0002852756540000036
Figure BDA0002852756540000037
式中:Pmt,n(t)、Pfc,n(t)分别为冷热电联供微网i内第n台燃气轮机、燃料电池电功率;Pwind(t)、Ppv(t)分别表示时段t的风光出力,Tex,out(t)、 Tgb(t)分别表示热交换器和燃气锅炉在时段t的输出功率;Pac,out(t)、 Pec,out(t)分别表示吸收式制冷机和电制冷机在时段t的输出功率;
Figure BDA0002852756540000038
Figure BDA0002852756540000039
分别表示电动汽车在时段t充电功率、放电功率;
Figure BDA00028527565400000310
Figure BDA00028527565400000311
分别表示微网i内在时段t在价格型需求响应引导后的电、热、冷负荷;
Figure BDA00028527565400000312
表示x类负荷参与激励型需求响应的实际削减负荷,其中x={e,t,c},依次指电、热、冷负荷;Nmt、Nfc、Nev分别指燃气轮机、燃料电池、电动汽车的数量。
(2)IDR运行约束
(a)价格型需求响应
Figure BDA00028527565400000313
0≤DRe,up(t)≤Pe,d(t)αup
0≤DRe,down(t)≤Pe,d(t)αdown
式中:Pe,d(t)表示在时段t用户电负荷,DRe,up(t)、DRe,down(t)分别表示价格型需求响应引导下t时刻增加的负荷量,减少的负荷量;αup、αdown表示最大可转移负荷的比例。
(b)激励型需求响应
Figure BDA0002852756540000041
Figure BDA0002852756540000042
式中:
Figure BDA0002852756540000043
表示第n个电激励型需求响应占总负荷的比例。
进一步的,所述步骤(4)中运用机会约束规划处理冷热电联供型微网中新能源及冷热电负荷的随机性,该步骤中风光及冷、热、电负荷在预测过程中的不确定性使得模型求解十分困难,可以将其转换成如下等价确定形式:
Figure BDA0002852756540000044
Figure BDA0002852756540000045
Figure BDA0002852756540000046
式中:F-11)、F-12)、F-13)分别表示风光出力及电负荷、热负荷、冷负荷随机分布函数的反函数;
Figure BDA0002852756540000047
分别表示微网i内在t时刻电、热、冷的备用负荷;置信水平α1、α2、α3分别表示该备用约束条件下成立所满足的概率值。
进一步的,所述步骤(5)中运用IATC求解计及IDR的冷热电联供微网与主动配电网联合优化调度模型;通过目标级联法进行求解配网和微网的双层模型时,调度结果会受到配网虚拟负荷值初值选取的影响,为进一步得到最优调度结果,提出了IATC,将目标级联法迭代嵌入粒子群算法PSO(Particle Swarm Optimization)中,搜寻最优初值,从而得到最优调度结果;具体步骤如下:
(5-1)设置粒子群种群数量、最大迭代次数、学习因子c1、c2、惯性权重w,初始化粒子的位置(配网的虚拟负荷值)和速度;
(5-2)迭代数据初始化,设置拉格朗日罚函数乘子初始值,令迭代次数k=1;
(5-3)各冷热电联供微网根据约束条件进行自身优化调度问题求解,将计算出的虚拟电源值传递至主动配电网;
(5-4)主动配电网接收到微网传递数据后,根据约束条件进行自身优化问题求解,将计算出的虚拟负荷值传递至冷热电联供微网;
(5-5)判断是否满足收敛准则,若满足则计算粒子适应度(配网和各冷热电联供微网总运行成本),根据适应度值更新粒子局部最优和全局最优值;若不满足则更新罚函数乘子,返回步骤(5-3);
(5-6)判断是否达到PSO最大迭代次数,若已达到,则输出最优调度结果,否则更新粒子的速度和位置,并返回步骤(5-2);
与现有技术相比,本发明的优点和积极效果在于:
(1)本发明在冷热电联供微网用户侧引入综合需求响应,考虑冷热电负荷和电动汽车作为柔性负荷参与需求响应,可有效降低系统的运行成本。
(2)本发明通过IATC求解模型时,在同一精度下,能有效降低系统的运行成本,实现在保护各自区域隐私的基础下,求取主动配电网和冷热电联供型微网各自最优的经济调度结果。
附图说明
图1为本发明冷热电联供微网与主动配电网结构图。
图2为本发明实例中改进的IEEE33节点结构图。
图3为本发明实例中冷热电联供微网结构图。
图4为本发明实例中基于IATC的优化调度模型算法流程图。
图5为本发明实例中运用IATC分布式算法求解模型时的聚合特性图。
具体实施方式
下面结合具体实施例和附图,进一步阐明本发明,本发明提出了一种计及IDR的冷热电联供微网与主动配电网联合优化调度方法,冷热电联供微网与主动配电网结构图如图1所示,为进一步验证提出方法的有效性,在改进的IEEE33节点系统进行仿真分析,改进的IEEE33节点结构图如图2所示,具体实施步骤如下:
(1)对冷热电联供微网设备建模
冷热电联供微网结构图如图3所示,冷热电联供微网设备包括风光发电机组、燃气轮机、燃料电池、燃气锅炉、余热锅炉、吸收式制冷机、电制冷机、热交换器、蓄热槽、电动汽车。
(2)建立主动配电网优化调度模型
所述主动配电网优化调度模型的目标函数是总运行成本最小:
min Cdn=Cdg+Cgrid-Csell
Figure BDA0002852756540000061
Figure BDA0002852756540000062
Figure BDA0002852756540000063
式中:Cdn为配网总运行成本,Cdg为配网发电机组的发电成本, Cgrid为配网从大电网的购电成本,Csell为配网向各个微网传送功率的收益;T为调度周期;Pdg,m(t)为第m台发电机组在时段t的出力;adg、 bdg、cdg分别为各机组对应的成本系数;Ndg表示配网机组的数量;Pgrid(t) 为t时段配网向大电网购电的功率,λgrid(t)为配网向大电网购电的实时电价;Pi pcc(t)为t时段由配网向微网i传送的功率,其值为正时表示配网向微网售电,其值为负时表示配网向微网购电;λe,i(t)为配网与微网i间日前市场交易电价;Nmg为微网数量;
所述主动配电网层约束条件包括功率平衡约束、发电机组出力上下限约束、机组爬坡约束、与大电网交互功率约束、联络线功率约束如下:
Figure BDA0002852756540000064
Figure BDA0002852756540000065
Figure BDA0002852756540000066
Figure BDA0002852756540000067
Figure BDA0002852756540000068
式中:
Figure BDA0002852756540000069
为配网在时段t的负荷预测值;
Figure BDA00028527565400000610
Figure BDA00028527565400000611
为第m台发电机组的有功出力上下限;
Figure BDA00028527565400000612
分别为第m台发电机组的向下和向上爬坡率;
Figure BDA00028527565400000613
为配网与大电网交互功率的上下限;
Figure BDA00028527565400000614
Figure BDA00028527565400000615
为配网向微网传输功率的上下限。
(3)建立计及IDR的冷热电联供微网调度模型
所述冷热电联供微网优化调度模型的目标函数是总运行成本最小:
min Cmg,i=Cfuel,i+CUD,i+Com,i+Cbuy,i+CIDR,i
式中:Cmg,i、Cfuel,i、CUD,i、Com,i、CIDR,i分别为第i个冷热电联供微网总运行成本、可控机组的燃料费用、可控机组的启动和关停费用之和、设备的总维护费用、综合需求响应的成本。
本步骤(3)中所述冷热电联供微网层的约束条件,包括功率平衡约束和IDR运行约束,IDR运行约束包括价格型需求响应和激励型需求响应。其中,
功率平衡约束:
Figure BDA0002852756540000071
Figure BDA0002852756540000072
Figure BDA0002852756540000073
式中:Pmt,n(t)、Pfc,n(t)分别为冷热电联供微网i内第n台燃气轮机、燃料电池电功率;Pwind(t)、Ppv(t)分别表示时段t的风光出力,Tex,out(t)、 Tgb(t)分别表示热交换器和燃气锅炉在时段t的输出功率;Pac,out(t)、 Pec,out(t)分别表示吸收式制冷机和电制冷机在时段t的输出功率;
Figure BDA0002852756540000074
Figure BDA0002852756540000075
分别表示电动汽车在时段t充电功率、放电功率;
Figure BDA0002852756540000076
Figure BDA0002852756540000077
分别表示微网i内在时段t在价格型需求响应引导后的电、热、冷负荷;
Figure BDA0002852756540000078
表示x类负荷参与激励型需求响应的实际削减负荷,其中x={e,t,c},依次指电、热、冷负荷;Nmt、Nfc、Nev分别指燃气轮机、燃料电池、电动汽车的数量。
IDR运行约束:
a.价格型需求响应
Figure BDA0002852756540000079
0≤DRe,up(t)≤Pe,d(t)αup
0≤DRe,down(t)≤Pe,d(t)αdown
式中:Pe,d(t)表示在时段t用户电负荷,DRe,up(t)、DRe,down(t)分别表示价格型需求响应引导下t时刻增加的负荷量,减少的负荷量;αup、αdown表示最大可转移负荷的比例。
b.激励型需求响应
Figure BDA0002852756540000081
Figure BDA0002852756540000082
式中:
Figure BDA0002852756540000083
表示第n个电激励型需求响应占总负荷的比例。
(4)运用机会约束规划处理冷热电联供型微网中新能源及冷热电负荷的随机性,本步骤(4)中风光及冷、热、电负荷在预测过程中的不确定性使得模型求解十分困难,可以采用机会约束规划将其转换成如下等价确定形式:
Figure BDA0002852756540000084
Figure BDA0002852756540000085
Figure BDA0002852756540000086
式中:F-11)、F-12)、F-13)分别表示风光出力及电负荷、热负荷、冷负荷随机分布函数的反函数;
Figure BDA0002852756540000087
分别表示微网i内在t时刻电、热、冷的备用负荷;置信水平α1、α2、α3分别表示该备用约束条件下成立所满足的概率值。
(5)运用IATC求解计及IDR的冷热电联供微网与主动配电网联合优化调度模型,基于IATC的优化调度模型算法流程图如图4 所示,具体包括以下步骤:
(5-1)设置粒子群种群数量、最大迭代次数、学习因子c1、c2、惯性权重w,初始化粒子的位置(配网的虚拟负荷值)和速度;
(5-2)迭代数据初始化,设置拉格朗日罚函数乘子初始值,令迭代次数k=1;
(5-3)各冷热电联供微网根据约束条件进行自身优化调度问题求解,将计算出的虚拟电源值传递至主动配电网;
(5-4)主动配电网接收到微网传递数据后,根据约束条件进行自身优化问题求解,将计算出的虚拟负荷值传递至冷热电联供微网;
(5-5)判断是否满足收敛准则,若满足则计算粒子适应度(配网和各冷热电联供微网总运行成本),根据适应度值更新粒子局部最优和全局最优值;若不满足则更新罚函数乘子,返回步骤(5-3);
(5-6)判断是否达到PSO最大迭代次数,若已达到,则输出最优调度结果,否则更新粒子的速度和位置,并返回步骤(5-2);
为验证冷热电联供微网侧引入IDR策略的有效性,对比分析以下三种模式下系统的运行成本。
a.模式1:用户侧不参与需求响应。
b.模式2:用户侧仅电负荷参与需求响应。
c.模式3:用户侧冷、热、电负荷和电动汽车均参与需求响应。
表1为三种模式下系统的运行成本。由表1可知,当仅有电负荷参与需求响应时,系统总成本由74014.07元下降至72124.67元,当冷、热负荷与电动汽车也参与需求响应后,系统运行成本进一步降低至71439.62元。因此,在CCHP微网的用户侧引入综合需求响应能有效降低系统运行成本。
表1 三种模式下的运行成本
Figure BDA0002852756540000091
运用IATC分布式算法求解模型时的聚合特性如图5所示,由图可知,在运用IATC时,通过PSO搜寻最优初值,经过120次迭代后,系统运行成本已收敛且非常接近于集中式计算结果。同时,所提出的方法所需的交互信息少,能在保护各自区域隐私的基础上,使主动配电网和冷热电联供微网群实现各自区域的运行成本最少。
上述实施例用来解释本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明做出的任何修改和改变,都落入本发明的保护范围。

Claims (6)

1.计及IDR的冷热电联供微网与主动配电网联合优化调度方法,其特征在于,包括如下步骤:
(1)对冷热电联供微网设备建模;
(2)建立主动配电网优化调度模型;
(3)建立计及综合需求响应IDR的冷热电联供微网调度模型;
(4)运用机会约束规划处理冷热电联供型微网中新能源及冷热电负荷的随机性;
(5)运用改进目标级联法IATC求解计及综合需求响应IDR的冷热电联供微网与主动配电网联合优化调度模型;
所述步骤(3)中建立计及IDR的所述冷热电联供微网调度模型的目标函数是总运行成本最小,具体为:
min Cmg,i=Cfuel,i+CUD,i+Com,i+Cbuy,i+CIDR,i
式中:Cmg,i、Cfuel,i、CUD,i、Com,i、CIDR,i分别为第i个冷热电联供微网总运行成本、可控机组的燃料费用、可控机组的启动和关停费用之和、设备的总维护费用、综合需求响应的成本;
所述步骤(3)中所述冷热电联供微网层的约束条件包括功率平衡约束和综合需求响应运行约束;
(1)功率平衡约束:
Figure FDA0003797958050000011
Figure FDA0003797958050000012
Figure FDA0003797958050000013
式中:Pmt,n(t)、Pfc,n(t)分别为冷热电联供微网i内第n台燃气轮机、燃料电池电功率,Pwind(t)、Ppv(t)分别表示时段t的风光出力,Tex,out(t)、Tgb(t)分别表示热交换器和燃气锅炉在时段t的输出功率,Pac,out(t)、Pec,out(t)分别表示吸收式制冷机和电制冷机在时段t的输出功率,
Figure FDA0003797958050000014
Figure FDA0003797958050000015
分别表示电动汽车在时段t充电功率、放电功率;
Figure FDA0003797958050000016
Figure FDA0003797958050000017
分别表示微网i内在时段t在价格型需求响应引导后的电、热、冷负荷,
Figure FDA0003797958050000018
表示x类负荷参与激励型需求响应的实际削减负荷,其中x={e,t,c},依次指电、热、冷负荷;Nmt、Nfc、Nev分别指燃气轮机、燃料电池、电动汽车的数量;
(2)综合需求响应运行约束,其包括价格型需求响应和激励型需求响应,
(a)价格型需求响应:
Figure FDA0003797958050000021
0≤DRe,up(t)≤Pe,d(t)αup
0≤DRe,down(t)≤Pe,d(t)αdown
式中:Pe,d(t)表示在时段t用户电负荷,DRe,up(t)、DRe,down(t)分别表示价格型需求响应引导下t时刻增加的负荷量,减少的负荷量,αup、αdown表示最大可转移负荷的比例;
(b)激励型需求响应:
Figure FDA0003797958050000022
Figure FDA0003797958050000023
式中:
Figure FDA0003797958050000024
表示第n个电激励型需求响应占总负荷的比例。
2.根据权利要求1所述的计及IDR的冷热电联供微网与主动配电网联合优化调度方法,其特征在于:所述步骤(1)中冷热电联供微网设备包括风光发电机组、燃气轮机、燃料电池、燃气锅炉、余热锅炉、吸收式制冷机、电制冷机、热交换器、蓄热槽、电动汽车。
3.根据权利要求1所述的计及IDR的冷热电联供微网与主动配电网联合优化调度方法,其特征在于:所述步骤(2)中建立的所述主动配电网优化调度模型中的目标函数是总运行成本最小,具体为:
min Cdn=Cdg+Cgrid-Csell
Figure FDA0003797958050000025
Figure FDA0003797958050000026
Figure FDA0003797958050000027
式中:Cdn为配网总运行成本,Cdg为配网发电机组的发电成本,Cgrid为配网从大电网的购电成本,Csell为配网向各个微网传送功率的收益;T为调度周期;Pdg,m(t)为第m台发电机组在时段t的出力;adg、bdg、cdg分别为各机组对应的成本系数;Ndg表示配网机组的数量;Pgrid(t)为t时段配网向大电网购电的功率,λgrid(t)为配网向大电网购电的实时电价;Pi pcc(t)为t时段由配网向微网i传送的功率,其值为正时表示配网向微网售电,其值为负时表示配网向微网购电;λe,i(t)为配网与微网i间日前市场交易电价;Nmg为微网数量。
4.根据权利要求3所述的计及IDR的冷热电联供微网与主动配电网联合优化调度方法,其特征在于:所述步骤(2)中所述主动配电网层的约束条件包括功率平衡约束、发电机组出力上下限约束、机组爬坡约束、与大电网交互功率约束、联络线功率约束;具体如下:
Figure FDA0003797958050000031
Figure FDA0003797958050000032
Figure FDA0003797958050000033
Figure FDA0003797958050000034
Figure FDA0003797958050000035
式中:
Figure FDA0003797958050000036
为配网在时段t的负荷预测值;
Figure FDA0003797958050000037
Figure FDA0003797958050000038
为第m台发电机组的有功出力上下限;
Figure FDA0003797958050000039
分别为第m台发电机组的向下和向上爬坡率;
Figure FDA00037979580500000310
为配网与大电网交互功率的上下限;
Figure FDA00037979580500000311
Figure FDA00037979580500000312
为配网向微网传输功率的上下限。
5.根据权利要求1所述的计及IDR的冷热电联供微网与主动配电网联合优化调度方法,其特征在于:所述步骤(4)中风光及冷、热、电负荷在预测过程中的模型求解转换成如下等价确定形式:
Figure FDA00037979580500000313
Figure FDA00037979580500000314
Figure FDA00037979580500000315
式中:F-11)、F-12)、F-13)分别表示风光出力及电负荷、热负荷、冷负荷随机分布函数的反函数;
Figure FDA00037979580500000316
分别表示微网i内在t时刻电、热、冷的备用负荷;置信水平α1、α2、α3分别表示该约束条件下成立所满足的概率值。
6.根据权利要求1所述的计及IDR的冷热电联供微网与主动配电网联合优化调度方法,其特征在于:所述步骤(5)通过将目标级联法迭代嵌入粒子群算法PSO中,搜寻最优初值,从而得到最优调度结果,具体步骤如下:
(5-1)设置粒子群种群数量、最大迭代次数、学习因子c1、c2、惯性权重w,初始化粒子的位置即配网的虚拟负荷值,和速度;
(5-2)迭代数据初始化,设置拉格朗日罚函数乘子初始值,令迭代次数k=1;
(5-3)各冷热电联供微网根据约束条件进行自身优化调度问题求解,将计算出的虚拟电源值传递至主动配电网;
(5-4)主动配电网接收到微网传递数据后,根据约束条件进行自身优化问题求解,将计算出的虚拟负荷值传递至冷热电联供微网;
(5-5)判断是否满足收敛准则,若满足则计算粒子适应度即配网和各冷热电联供微网总运行成本,根据适应度值更新粒子局部最优和全局最优值;若不满足则更新罚函数乘子,返回步骤(5-3);
(5-6)判断是否达到PSO最大迭代次数,若已达到,则输出最优调度结果,否则更新粒子的速度和位置,并返回步骤(5-2)。
CN202011534542.9A 2020-12-22 2020-12-22 计及idr的冷热电联供微网与主动配电网联合优化调度方法 Active CN112713590B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011534542.9A CN112713590B (zh) 2020-12-22 2020-12-22 计及idr的冷热电联供微网与主动配电网联合优化调度方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011534542.9A CN112713590B (zh) 2020-12-22 2020-12-22 计及idr的冷热电联供微网与主动配电网联合优化调度方法

Publications (2)

Publication Number Publication Date
CN112713590A CN112713590A (zh) 2021-04-27
CN112713590B true CN112713590B (zh) 2022-11-08

Family

ID=75545269

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011534542.9A Active CN112713590B (zh) 2020-12-22 2020-12-22 计及idr的冷热电联供微网与主动配电网联合优化调度方法

Country Status (1)

Country Link
CN (1) CN112713590B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113595133B (zh) * 2021-07-07 2023-08-25 华中科技大学 基于能源路由器的配电网-多微网系统及其调度方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104392286A (zh) * 2014-12-02 2015-03-04 山东大学 考虑冷热电联供和储能运行策略的微电网运行优化方法
EP2955372A2 (en) * 2014-06-11 2015-12-16 Kevin Lee Friesth Quintuple-effect generation multi-cycle hybrid renewable energy system with integrated energy provisioning, storage facilities and amalgamated control system
CN106372742A (zh) * 2016-08-19 2017-02-01 天津大学 考虑电转气多源储能型微网日前最优经济调度方法
CN108009693A (zh) * 2018-01-03 2018-05-08 上海电力学院 基于两级需求响应的并网微电网双层优化方法
CN108154309A (zh) * 2017-12-30 2018-06-12 国网天津市电力公司电力科学研究院 计及冷热电多负荷动态响应的能源互联网经济调度方法
CN108229025A (zh) * 2018-01-04 2018-06-29 东南大学 一种冷热电联供型多微网主动配电系统经济优化调度方法
CN108429288A (zh) * 2018-04-12 2018-08-21 荆州市荆力工程设计咨询有限责任公司 一种考虑需求响应的离网型微电网储能优化配置方法
CN109241655A (zh) * 2018-09-27 2019-01-18 河海大学 一种电-热互联综合能源系统机会约束协调优化方法
CN110489915A (zh) * 2019-08-27 2019-11-22 南方电网科学研究院有限责任公司 计及综合需求响应的电热联合调度方法及系统
CN110782363A (zh) * 2019-08-15 2020-02-11 东南大学 一种计及风电不确定性的交直流配电网调度方法
CN111222694A (zh) * 2019-12-31 2020-06-02 新奥数能科技有限公司 考虑负荷预测不确定性的综合能源系统优化方法和装置
CN111552181A (zh) * 2020-05-06 2020-08-18 国网江苏省电力有限公司无锡供电分公司 一种综合能源服务模式下的园区级需求响应资源配置方法
CN111950807A (zh) * 2020-08-26 2020-11-17 华北电力大学(保定) 计及不确定性与需求响应的综合能源系统优化运行方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110378729B (zh) * 2019-07-11 2022-03-11 中国科学院电工研究所 一种基于动态能源价格策略的综合需求响应方法
CN111445107B (zh) * 2020-03-02 2023-06-13 山东大学 冷热电联供型微电网多目标优化配置方法
CN112018822B (zh) * 2020-04-02 2022-11-22 沈阳工业大学 一种需求侧综合柔性负荷调控优化方法及系统
CN111969592A (zh) * 2020-07-24 2020-11-20 南昌大学 基于用户满意度和需求响应的综合能源系统双层规划方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2955372A2 (en) * 2014-06-11 2015-12-16 Kevin Lee Friesth Quintuple-effect generation multi-cycle hybrid renewable energy system with integrated energy provisioning, storage facilities and amalgamated control system
CN104392286A (zh) * 2014-12-02 2015-03-04 山东大学 考虑冷热电联供和储能运行策略的微电网运行优化方法
CN106372742A (zh) * 2016-08-19 2017-02-01 天津大学 考虑电转气多源储能型微网日前最优经济调度方法
CN108154309A (zh) * 2017-12-30 2018-06-12 国网天津市电力公司电力科学研究院 计及冷热电多负荷动态响应的能源互联网经济调度方法
CN108009693A (zh) * 2018-01-03 2018-05-08 上海电力学院 基于两级需求响应的并网微电网双层优化方法
CN108229025A (zh) * 2018-01-04 2018-06-29 东南大学 一种冷热电联供型多微网主动配电系统经济优化调度方法
CN108429288A (zh) * 2018-04-12 2018-08-21 荆州市荆力工程设计咨询有限责任公司 一种考虑需求响应的离网型微电网储能优化配置方法
CN109241655A (zh) * 2018-09-27 2019-01-18 河海大学 一种电-热互联综合能源系统机会约束协调优化方法
CN110782363A (zh) * 2019-08-15 2020-02-11 东南大学 一种计及风电不确定性的交直流配电网调度方法
CN110489915A (zh) * 2019-08-27 2019-11-22 南方电网科学研究院有限责任公司 计及综合需求响应的电热联合调度方法及系统
CN111222694A (zh) * 2019-12-31 2020-06-02 新奥数能科技有限公司 考虑负荷预测不确定性的综合能源系统优化方法和装置
CN111552181A (zh) * 2020-05-06 2020-08-18 国网江苏省电力有限公司无锡供电分公司 一种综合能源服务模式下的园区级需求响应资源配置方法
CN111950807A (zh) * 2020-08-26 2020-11-17 华北电力大学(保定) 计及不确定性与需求响应的综合能源系统优化运行方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Integrated Demand Response Mechanism for Industrial Energy System Based on Multi-Energy Interaction;ZIQING JIANG,等;《IEEE Access》;20190520;第66336-66346页 *
基于需求响应和多能互补的冷热电联产微网优化调度;袁桂丽 等;《电力建设》;20190930;第40卷(第9期);第64-72页 *
多虚拟电厂接入的主动配电系统;邵倩文 等;《电力大数据》;20200130;第23卷(第4期);第62-70页 *

Also Published As

Publication number Publication date
CN112713590A (zh) 2021-04-27

Similar Documents

Publication Publication Date Title
Zhu et al. Optimal scheduling method for a regional integrated energy system considering joint virtual energy storage
CN108229025B (zh) 一种冷热电联供型多微网主动配电系统经济优化调度方法
Li et al. A microgrids energy management model based on multi-agent system using adaptive weight and chaotic search particle swarm optimization considering demand response
CN104734168B (zh) 一种基于电热联合调度的微电网运行优化系统及方法
CN111881616A (zh) 一种基于多主体博弈的综合能源系统的运行优化方法
CN103151797A (zh) 基于多目标调度模型的并网运行方式下微网能量控制方法
CN112598224A (zh) 一种园区综合能源系统群与电网的互动博弈调度方法
Ju et al. A Tri-dimensional Equilibrium-based stochastic optimal dispatching model for a novel virtual power plant incorporating carbon Capture, Power-to-Gas and electric vehicle aggregator
CN109636056A (zh) 一种基于多智能体技术的多能源微网去中心化优化调度方法
CN113393126A (zh) 高耗能园区与电网交替并行协同优化调度方法
Sanaye et al. A novel energy management method based on Deep Q Network algorithm for low operating cost of an integrated hybrid system
CN112053024A (zh) 一种基于城镇能源互联网双层协同架构的优化调度方法
CN115759610A (zh) 一种电力系统源网荷储协同的多目标规划方法及其应用
CN115241923A (zh) 一种基于蛇优化算法的微电网多目标优化配置方法
Yang et al. Coordination and optimization of CCHP microgrid group game based on the interaction of electric and thermal energy considering conditional value at risk
An et al. Real-time optimal operation control of micro energy grid coupling with electricity-thermal-gas considering prosumer characteristics
CN112713590B (zh) 计及idr的冷热电联供微网与主动配电网联合优化调度方法
CN112883630A (zh) 用于风电消纳的多微网系统日前优化经济调度方法
Gao et al. Multi-energy sharing optimization for a building cluster towards net-zero energy system
CN112182915A (zh) 一种协同促进风电消纳的优化调度方法及系统
CN109376406B (zh) 供能系统超结构模型、建模方法、计算机设备和存储介质
Liu et al. Two-stage scheduling strategy for integrated energy systems considering renewable energy consumption
CN116502921A (zh) 一种园区综合能源系统优化管理系统及其协调调度方法
CN115693779A (zh) 一种多虚拟电厂与配网协同优化调度方法及设备
Li et al. Integrated energy system for low-carbon economic operation optimization: Pareto compromise programming and master-slave game

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant