CN112711833B - 一种针对非连续森林可燃物载量的计算方法 - Google Patents

一种针对非连续森林可燃物载量的计算方法 Download PDF

Info

Publication number
CN112711833B
CN112711833B CN202011443280.5A CN202011443280A CN112711833B CN 112711833 B CN112711833 B CN 112711833B CN 202011443280 A CN202011443280 A CN 202011443280A CN 112711833 B CN112711833 B CN 112711833B
Authority
CN
China
Prior art keywords
forest
combustible load
combustible
semi
representing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011443280.5A
Other languages
English (en)
Other versions
CN112711833A (zh
Inventor
何彬彬
李彦樨
全兴文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202011443280.5A priority Critical patent/CN112711833B/zh
Publication of CN112711833A publication Critical patent/CN112711833A/zh
Application granted granted Critical
Publication of CN112711833B publication Critical patent/CN112711833B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/90Lidar systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4802Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1793Remote sensing

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Analytical Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Image Processing (AREA)

Abstract

本发明公开了一种针对非连续森林可燃物载量的计算方法,涉及遥感反演技术领域。针对现有基于经验方法估算森林可燃物载量缺乏植被辐射传输机制、对数据依赖性强、普适性差等问题,以及现有基于半经验模型估算地上生物量在非连续森林覆盖区域未充分考虑植被覆盖度而导致的严重高值低估等问题;本发明采用建立好的半经验模型,将光学数据引入到半经验模型中,并应用至森林可燃物载量的估算,充分表征非连续森林覆盖区域的植被覆盖度信息,提高模型对于地表后向散射信号的模拟能力,借此缓解高值低估的问题,提高基于半经验模型的森林可燃物载量估算精度和普适性,为大范围森林可燃物载量空间分布估算提供新方法。

Description

一种针对非连续森林可燃物载量的计算方法
技术领域
本发明涉及遥感反演技术领域,具体涉及一种针对非连续森林可燃物载量的计算方法。
背景技术
野火是广泛存在于各种生态系统中的一种扰动,对生态系统的形成和演替有着重要的影响。它可以丰富植被的垂直结构和生物多样性,促进养分循环,增强植被对病虫害的抵抗力。但是,一旦野火失控,会造成土壤退化,破坏植被的水土保持功能,释放大量温室气体,甚至威胁到人类生命财产安全。
森林可燃物载量,包括树叶可燃物载量、树枝可燃物载量和树干可燃物载量,即单位面积内树叶、树枝和树干的干物质重量,是引起森林火灾的关键因素,因为蕴含了可供森林火灾燃烧的主要能量来源。此外,森林可燃物载量的大小及空间分布情况决定了火灾的燃烧强度及火势蔓延趋势。目前对于森林可燃物载量的估算大多基于经验统计的方法,该方法虽然简单易操作,但缺乏植被辐射传输机制,对数据的依赖较强。此外,对森林地上生物量估算的经典半经验方法中,水云模型(Water Cloud Model,WCM)应用较广泛,但该模型仅使用了单一的微波数据,由于微波数据对植被覆盖度的表征能力较弱,导致此模型在进行目标参数反演时存在严重的高值低估现象。
发明内容
针对现有基于经验方法估算森林可燃物载量缺乏植被辐射传输机制、对数据依赖性强、普适性差等问题,以及现有基于半经验模型(WCM)估算地上生物量在非连续森林覆盖区域未充分考虑植被覆盖度而导致的严重高值低估等问题,提供了针对非连续森林可以更加精确计算出森林中可燃物载量的方法。
本发明提供的技术方案为:一种针对非连续森林可燃物载量的计算方法,该方法包括:
步骤1:获取用以估算森林可燃物载量的遥感数据;包括光学反射率数据:绿波段(Green)、近红外波段(NIR)和短波红外波段(SWIR2);微波后向散射系数数据:茂密森林覆盖区域像元的后向散射系数、纯土壤像元的后向散射系数;
步骤2:建立充分考虑植被覆盖度的半经验模型;
步骤2.1:基于步骤1得到的数据,构建估算树叶可燃物载量的半经验模型:
Figure GDA0003714414490000011
其中:
Figure GDA0003714414490000012
代表总后向散射系数,Green代表绿光波段反射率,
Figure GDA0003714414490000013
代表纯土壤像元的后向散射系数,δ代表森林冠层对微波数据的衰减系数,LFL代表树叶可燃物载量,
Figure GDA0003714414490000021
代表茂密森林覆盖区域像元的后向散射系数,LFLdf代表茂密森林覆盖区域像元的树叶可燃物载量,a1代表纯土壤像元的绿光波段反射率,b1代表茂密森林覆盖区域像元的绿光波段反射率,τ代表森林冠层对光学数据的衰减系数;
步骤2.2:基于步骤1得到的数据,构建估算树枝可燃物载量的半经验模型:
Figure GDA0003714414490000022
其中:BFL代表树枝可燃物载量,BFLdf代表茂密森林覆盖区域像元的树枝可燃物载量,a2代表纯土壤像元的归一化红外指数,b2代表茂密森林覆盖区域像元的归一化红外指数;
步骤2.3:基于步骤1得到的数据,构建估算树干可燃物载量的半经验模型:
Figure GDA0003714414490000023
Figure GDA0003714414490000024
其中:NDII代表归一化红外指数,SFL代表树干可燃物载量,SFLdf代表茂密森林覆盖区域像元的树干可燃物载量,NIR代表近红外波段反射率,SWIR2代表短波红外波段反射率;
步骤3:采用步骤1得到的数据对步骤2建立的半经验模型中的a1,b1,a2,b2,τ,δ进行拟合,得到完整的计算模型;
步骤4:对采集到的新数据,根据步骤3得到的完整的计算模型,分别计算出树叶可燃物载量LFL,树枝可燃物载量BFL,树干可燃物载量SFL,从而得到总的可燃物载量;
进一步的,所述茂密森林覆盖区域像元的后向散射系数和纯土壤像元的后向散射系数采用如下极化方式HH、HV、VH、VV中的任意一种。
进一步的,所述步骤2中纯土壤像元的后向散射系数为目标地块内所有土壤覆盖类型或植被覆盖类型为森林且植被覆盖度低于20%像元后向散射系数值的中值;茂密森林覆盖区域像元的后向散射系数为目标地块内所有植被覆盖类型为森林且植被覆盖度高于70%像元后向散射系数值的中值。
本发明采用建立好的半经验模型,将光学数据引入到半经验模型(WCM)中,并应用至森林可燃物载量的估算,充分表征非连续森林覆盖区域的植被覆盖度信息,提高模型对于地表后向散射信号的模拟能力,借此缓解高值低估的问题,提高基于半经验模型的森林可燃物载量估算精度和普适性,为大范围森林可燃物载量空间分布估算提供新方法。
附图说明
图1为本发明的整体方法流程示意图。
图2为本发明具体实施方案中的研究地块地理位置示意图。
图3为本发明提供半经验模型反演森林可燃物载量的结果。
具体实施方式
下面结合具体实施例和说明书附图对本发明提供的针对非连续森林可燃物载量反演的半经验模型作进一步说明:
一种针对非连续森林可燃物载量反演的半经验模型,如图1所示,包括以下步骤:
(1)数据准备
实测森林可燃物载量数据集为BioSAR 2008数据,由欧洲航天局提供。该数据涉及瑞典东部31个林分地块的树叶可燃物载量、树枝可燃物载量和树干可燃物载量,有效空间分辨率为2.4-26.3公顷不等,其地面调查时间为2008年10月中旬。如图2所示,其空间覆盖19.702-19.874E,64.209-64.276N,空间参考WGS84。光学遥感数据为Landsat ETM+,通过Google Earth Engine平台获取地表反射率二级产品,包括绿波段(Green)、近红外波段(NIR)和短波红外波段(SWIR2)。微波遥感数据为ALOS PALSAR的HV极化通道后向散射系数,通过Google Earth Engine平台获取2008年对应的年产品数据。植被覆盖度数据为LandsatVegetation Continuous Fields(VCF)product,通过Google Earth Engine平台获取2010年度目标地块对应的产品。植被覆盖类型数据为GlobeLand30,在其官网(http://www.globallandcover.com/)上获取2010年度目标地块对应的产品。对于每个实测可燃物载量的林分地块,分别将上述遥感数据在地块内的像元值进行平均,作为每个林分地块对应的遥感实测数据。
(2)建立模型
通过将光学数据引入原始水云模型中,充分补充原始模型中植被覆盖度的信息,分别建立用于反演树叶可燃物载量(如公式(5))、树枝可燃物载量(如公式(6))和树干可燃物载量(如公式(7))的半经验模型。
Figure GDA0003714414490000031
Figure GDA0003714414490000032
Figure GDA0003714414490000033
式中,
Figure GDA0003714414490000041
代表总后向散射系数,Green代表绿光波段反射率,NDII代表归一化红外指数,
Figure GDA0003714414490000042
代表纯土壤像元的后向散射系数,LFL代表树叶可燃物载量,BFL代表树枝可燃物载量,SFL代表树干可燃物载量,
Figure GDA0003714414490000043
代表茂密森林覆盖区域像元的后向散射系数,LFLdf代表茂密森林覆盖区域像元的树叶可燃物载量,BFLdf代表茂密森林覆盖区域像元的树枝可燃物载量,SFLdf代表茂密森林覆盖区域像元的树干可燃物载量,a1,b1,a2,b2,τ,δ均为模型的经验拟合系数。
(3)标定模型
模型的标定采用全样本标定的方式,即每次采用30个实测数据对模型进行标定,采用最小二乘回归确定模型的经验系数,采用决定系数R2来评价模型的标定精度,R2计算表达式如下式(8)所示:
Figure GDA0003714414490000044
式中,Pi和Oi分别代表模拟的和实测的遥感数据,
Figure GDA0003714414490000045
Figure GDA0003714414490000046
分别代表模拟的和实测的遥感数据均值。
(4)森林可燃物载量反演
将剩下的1个林分数据作为验证样本数据,用于对森林可燃物载量的反演和验证;基于上述标定后的半经验模型,输入根据30个林分样本数据确定的可燃物载量变化范围(LFL:1-14Tons/ha,0.01步长;BFL:1-30Tons/ha,0.04步长;SFL:16-140Tons/ha,0.1步长),模拟对应的模型输出。
采用实测遥感数据与模拟遥感数据之间差的绝对值作为代价函数D查询反演结果,如图3所示即为本发明提供的半经验模型对森林可燃物载量的反演结果。

Claims (3)

1.一种针对非连续森林可燃物载量的计算方法,该方法包括:
步骤1:获取用以估算森林可燃物载量的遥感数据;包括光学反射率数据:绿波段、近红外波段和短波红外波段;微波后向散射系数数据:茂密森林覆盖区域像元的后向散射系数、纯土壤像元的后向散射系数;
步骤2:建立充分考虑植被覆盖度的半经验模型;
步骤2.1:基于步骤1得到的数据,构建估算树叶可燃物载量的半经验模型:
Figure FDA0003714414480000011
其中:
Figure FDA0003714414480000012
代表总后向散射系数,Green代表绿光波段反射率,
Figure FDA0003714414480000013
代表纯土壤像元的后向散射系数,δ代表森林冠层对微波数据的衰减系数,LFL代表树叶可燃物载量,
Figure FDA0003714414480000014
代表茂密森林覆盖区域像元的后向散射系数,LFLdf代表茂密森林覆盖区域像元的树叶可燃物载量,a1代表纯土壤像元的绿光波段反射率,b1代表茂密森林覆盖区域像元的绿光波段反射率,τ代表森林冠层对光学数据的衰减系数;
步骤2.2:基于步骤1得到的数据,构建估算树枝可燃物载量的半经验模型:
Figure FDA0003714414480000015
其中:BFL代表树枝可燃物载量,BFLdf代表茂密森林覆盖区域像元的树枝可燃物载量,a2代表纯土壤像元的归一化红外指数,b2代表茂密森林覆盖区域像元的归一化红外指数;
步骤2.3:基于步骤1得到的数据,构建估算树干可燃物载量的半经验模型:
Figure FDA0003714414480000016
Figure FDA0003714414480000017
其中:NDII代表归一化红外指数,SFL代表树干可燃物载量,SFLdf代表茂密森林覆盖区域像元的树干可燃物载量,NIR代表近红外波段反射率,SWIR2代表短波红外波段反射率;
步骤3:采用步骤1得到的数据对步骤2建立的半经验模型中的a1,b1,a2,b2,τ,δ进行拟合,得到完整的计算模型;
步骤4:对采集到的新数据,根据步骤3得到的完整的计算模型,分别计算出树叶可燃物载量LFL,树枝可燃物载量BFL,树干可燃物载量SFL,从而得到总的可燃物载量。
2.如权利要求1所述的一种针对非连续森林可燃物载量的计算方法,其特征在于,所述茂密森林覆盖区域像元的后向散射系数和纯土壤像元的后向散射系数采用如下极化方式HH、HV、VH、VV中的任意一种。
3.如权利要求1所述的一种针对非连续森林可燃物载量的计算方法,其特征在于,所述步骤2中纯土壤像元的后向散射系数为目标地块内所有土壤覆盖类型或植被覆盖类型为森林且植被覆盖度低于20%像元后向散射系数值的中值;茂密森林覆盖区域像元的后向散射系数为目标地块内所有植被覆盖类型为森林且植被覆盖度高于70%像元后向散射系数值的中值。
CN202011443280.5A 2020-12-08 2020-12-08 一种针对非连续森林可燃物载量的计算方法 Active CN112711833B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011443280.5A CN112711833B (zh) 2020-12-08 2020-12-08 一种针对非连续森林可燃物载量的计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011443280.5A CN112711833B (zh) 2020-12-08 2020-12-08 一种针对非连续森林可燃物载量的计算方法

Publications (2)

Publication Number Publication Date
CN112711833A CN112711833A (zh) 2021-04-27
CN112711833B true CN112711833B (zh) 2022-10-11

Family

ID=75542985

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011443280.5A Active CN112711833B (zh) 2020-12-08 2020-12-08 一种针对非连续森林可燃物载量的计算方法

Country Status (1)

Country Link
CN (1) CN112711833B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113495252B (zh) * 2021-06-22 2023-04-21 电子科技大学 一种基于极化分解的森林冠层活跃可燃物载量估算方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107123153A (zh) * 2017-03-30 2017-09-01 福州大学 一种大范围森林地表火实时可视化方法
CN110057997A (zh) * 2019-05-06 2019-07-26 电子科技大学 一种基于双极化sar数据的森林可燃物含水率时间序列反演方法
CN110058262A (zh) * 2019-05-22 2019-07-26 电子科技大学 一种植被辐射传输模型反演森林火灾燃烧烈度的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107123153A (zh) * 2017-03-30 2017-09-01 福州大学 一种大范围森林地表火实时可视化方法
CN110057997A (zh) * 2019-05-06 2019-07-26 电子科技大学 一种基于双极化sar数据的森林可燃物含水率时间序列反演方法
CN110058262A (zh) * 2019-05-22 2019-07-26 电子科技大学 一种植被辐射传输模型反演森林火灾燃烧烈度的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Strata-based forest fuel classification for wild fire hazard assessment using terrestrial LiDAR;Yang Chen 等;《Journal of Applied Remote Sensing》;20161231;第10卷(第4期);第046025页 *
多模型耦合下的植被冠层可燃物含水率遥感反演;全兴文 等;《遥感学报》;20190125;第23卷(第1期);第62-77页 *
天山中部天山云杉林地表可燃物载量及其影响因素;梁瀛 等;《林业科学》;20171215;第53卷(第12期);第153-160页 *

Also Published As

Publication number Publication date
CN112711833A (zh) 2021-04-27

Similar Documents

Publication Publication Date Title
Dawson et al. Forest ecosystem chlorophyll content: implications for remotely sensed estimates of net primary productivity
Bindlish et al. Parameterization of vegetation backscatter in radar-based, soil moisture estimation
Mu et al. MODIS global terrestrial evapotranspiration (ET) product (NASA MOD16A2/A3)
Mu et al. Evaluating water stress controls on primary production in biogeochemical and remote sensing based models
Betbeder et al. Assimilation of LAI and dry biomass data from optical and SAR images into an agro-meteorological model to estimate soybean yield
Yebra et al. Estimation of live fuel moisture content from MODIS images for fire risk assessment
Le Maire et al. Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass
Viña et al. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops
Jurdao et al. Regional estimation of woodland moisture content by inverting Radiative Transfer Models
Ferrazzoli et al. Simulating L-band emission of forests in view of future satellite applications
Guerschman et al. Land use impacts on the normalized difference vegetation index in temperate Argentina
Pan et al. Modeling winter wheat leaf area index and canopy water content with three different approaches using Sentinel-2 multispectral instrument data
Disney et al. 3D radiative transfer modelling of fire impacts on a two-layer savanna system
Behera et al. Above-ground biomass and carbon estimates of Shorea robusta and Tectona grandis forests using QuadPOL ALOS PALSAR data
Kim et al. Monitoring canopy growth and grain yield of paddy rice in South Korea by using the GRAMI model and high spatial resolution imagery
McMorrow Linear regression modelling for the estimation of oil palm age from Landsat TM
He et al. Effects of fine-scale soil moisture and canopy heterogeneity on energy and water fluxes in a northern temperate mixed forest
Lee et al. A combined passive/active microwave remote sensing approach for surface variable retrieval using Tropical Rainfall Measuring Mission observations
Hoffmann et al. Estimation of leaf area index of Beta vulgaris L. based on optical remote sensing data
Xu et al. BP neural networks and random forest models to detect damage by Dendrolimus punctatus Walker
CN112711833B (zh) 一种针对非连续森林可燃物载量的计算方法
Nilson et al. Forest reflectance modeling: theoretical aspects and applications
Li et al. Vegetation clumping modulates global photosynthesis through adjusting canopy light environment
Wohlfahrt et al. A multi-component, multi-species model of vegetation–atmosphere CO2 and energy exchange for mountain grasslands
Gupta et al. Estimation of crop variables using bistatic scatterometer data and artificial neural network trained by empirical models

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant