CN112710997B - Radar maneuvering target detection method and system in scanning mode - Google Patents
Radar maneuvering target detection method and system in scanning mode Download PDFInfo
- Publication number
- CN112710997B CN112710997B CN202011442392.9A CN202011442392A CN112710997B CN 112710997 B CN112710997 B CN 112710997B CN 202011442392 A CN202011442392 A CN 202011442392A CN 112710997 B CN112710997 B CN 112710997B
- Authority
- CN
- China
- Prior art keywords
- distance unit
- color
- maneuvering target
- detection
- frft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 184
- 238000002592 echocardiography Methods 0.000 claims abstract description 28
- 238000009825 accumulation Methods 0.000 claims abstract description 14
- 230000001427 coherent effect Effects 0.000 claims abstract description 14
- 230000009466 transformation Effects 0.000 claims description 71
- 239000011159 matrix material Substances 0.000 claims description 22
- 230000009467 reduction Effects 0.000 claims description 19
- 239000003086 colorant Substances 0.000 claims description 12
- 230000001133 acceleration Effects 0.000 claims description 10
- 238000000034 method Methods 0.000 abstract description 15
- 238000006243 chemical reaction Methods 0.000 abstract 1
- 239000013598 vector Substances 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/41—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
技术领域technical field
本发明涉及雷达信号处理领域,特别是涉及一种扫描模式下雷达机动目标检测方法及系统。The invention relates to the field of radar signal processing, in particular to a method and system for detecting a radar maneuvering target in a scanning mode.
背景技术Background technique
雷达作为目标探测的主要手段,在环境监视和预警探测等民用和军事领域发挥着重要的作用。然而受目标复杂运动特性和复杂背景环境的影响,目标回波不同程度地表现出低可观测特性,增加了雷达探测的难度。雷达工作模式大多分为扫描模式和凝视(驻留)观测模式,前者雷达天线以机械扫描或者点扫描的方式在空间中进行搜索,该模式目标驻留脉冲数较少,通常用于警戒或监视雷达;后者波束指向某一特定方向,能够获得长时间的驻留,可利用的脉冲数较多,通常用于对目标的进一步确认以及目标的识别。对于凝视(驻留)观测,尽管特定方向脉冲较多,但由于雷达不扫描,整体数据量较少。因此,如何实现扫描模式下机动目标的有效检测是工程化应用的难题。As the main means of target detection, radar plays an important role in civil and military fields such as environmental monitoring and early warning detection. However, affected by the complex motion characteristics of the target and the complex background environment, the target echo shows low observable characteristics to varying degrees, which increases the difficulty of radar detection. Most of the radar working modes are divided into scanning mode and staring (resident) observation mode. The former radar antenna searches in space by means of mechanical scanning or point scanning. This mode has fewer target resident pulses and is usually used for warning or surveillance Radar; the latter beam points to a specific direction, can obtain a long-term residence, and has a large number of pulses available, and is usually used for further confirmation of the target and identification of the target. For staring (dwell) observations, although there are more pulses in a specific direction, the overall data volume is less because the radar does not scan. Therefore, how to realize the effective detection of maneuvering targets in scanning mode is a difficult problem in engineering applications.
目前,FRFT在凝视观测雷达应用较多,条件较为成熟,但对于扫描模式雷达的应用一直存在难题,主要体现在以下两个方面:一是,算法运算量较大,FRFT为二维参数搜索变换,其变换角对应目标的速度变化(加速度),能够更精确的匹配目标运动特性,但由于需要二维的变换域参数搜索,相比传统MTD的一维多普勒域搜索,增大了工程实现难度和计算量;二是,由于一个变换角仅对应一个数值的加速度,因此在进行某个变换角条件下的一维变换域搜索时,仅匹配了该加速度的目标,使得容易丢失其他机动目标;此外,由于相参积累检测的是径向速度,容易丢失一部分静止(多普勒为零)、慢速运动(多普勒与海杂波相重叠)或切向运动(多普勒为零)目标,从而导致漏检。At present, FRFT is widely used in staring observation radar, and the conditions are relatively mature, but there are always problems in the application of scanning mode radar, which are mainly reflected in the following two aspects: First, the algorithm has a large amount of calculation, and FRFT is a two-dimensional parameter search transformation , the transformation angle corresponds to the velocity change (acceleration) of the target, which can more accurately match the motion characteristics of the target. However, due to the need for two-dimensional transformation domain parameter search, compared with the traditional MTD one-dimensional Doppler domain search, the engineering cost is increased. Difficulty and calculation; second, since one transformation angle only corresponds to one value of acceleration, when performing a one-dimensional transformation domain search under a certain transformation angle condition, only the target of the acceleration is matched, making it easy to lose other maneuvers In addition, since coherent accumulation detects radial velocity, it is easy to miss a part of static (Doppler is zero), slow motion (Doppler overlaps with sea clutter) or tangential motion (Doppler is zero) target, resulting in missed detection.
发明内容Contents of the invention
本发明的目的是提供一种扫描模式下雷达机动目标检测方法及系统,以提高机动目标检测性能。The object of the present invention is to provide a radar maneuvering target detection method and system in scanning mode, so as to improve the maneuvering target detection performance.
为实现上述目的,本发明提供了如下方案:To achieve the above object, the present invention provides the following scheme:
一种扫描模式下雷达机动目标检测方法,包括:A radar maneuvering target detection method in scanning mode, comprising:
获取雷达扫描模式下得到的当前方位的机动目标的距离-方位脉冲二维回波;Obtain the range-azimuth pulse two-dimensional echo of the maneuvering target at the current azimuth obtained in the radar scanning mode;
对当前方位每个距离单元的脉冲回波在FRFT变换参数条件下进行FRFT运算,得到每个距离单元对应的检测统计量;第i个距离单元对应的检测统计量为进行FRFT运算得到的幅值结果,每个距离单元包括多个脉冲回波,且每个距离单元中的脉冲回波数量与FRFT域通道数相同;Perform FRFT operation on the pulse echo of each range unit in the current azimuth under the condition of FRFT transformation parameters to obtain the detection statistic corresponding to each distance unit; the detection statistic corresponding to the i-th distance unit is the amplitude obtained by FRFT operation As a result, each range cell includes multiple pulse echoes, and the number of pulse echoes in each range cell is the same as the number of FRFT domain channels;
根据每个距离单元对应的检测统计量对距离单元中的机动目标进行检测,输出第一颜色组;所述第一颜色组包括每个距离单元对应的颜色;The maneuvering target in the distance unit is detected according to the detection statistic corresponding to each distance unit, and a first color group is output; the first color group includes the color corresponding to each distance unit;
对当前方位每个距离单元的脉冲回波进行非相参积累,得到幅值平均值;Non-coherently accumulate the pulse echoes of each range unit in the current azimuth to obtain the average value of the amplitude;
根据每个距离单元的幅值平均值对距离单元的机动目标进行检测,输出第二颜色组;所述第二颜色组包括每个距离单元对应的颜色;所述第二颜色组中的颜色与所述第一颜色组中的颜色不重叠;According to the amplitude average value of each distance unit, the maneuvering target of the distance unit is detected, and the second color group is output; the second color group includes the color corresponding to each distance unit; the color in the second color group is the same as the colors in the first color set do not overlap;
将所述第一颜色组和所述第二颜色组叠加,得到当前方位机动目标检测结果的颜色显示;superimposing the first color group and the second color group to obtain a color display of the detection result of the maneuvering target at the current orientation;
更新天线的扫描方位,返回“获取雷达扫描模式下得到的当前方位的机动目标的距离-方位脉冲二维回波”步骤,对下一个扫描方位的回波进行检测。Update the scanning azimuth of the antenna, return to the step of "obtaining the range-azimuth pulse two-dimensional echo of the maneuvering target at the current azimuth obtained in the radar scanning mode", and detect the echo of the next scanning azimuth.
可选的,所述获取雷达扫描模式下得到的当前方位的距离-方位脉冲二维回波,之后还包括:Optionally, the acquisition of the range-azimuth pulse two-dimensional echo of the current azimuth obtained in the radar scanning mode further includes:
获取机动目标检测模式;所述机动目标检测模式包括人工检测模式和自动检测模式。A maneuvering target detection mode is obtained; the maneuvering target detection mode includes a manual detection mode and an automatic detection mode.
可选的,在人工检测模式下,所述对当前方位每个距离单元的脉冲回波在FRFT变换参数条件下进行FRFT运算,得到每个距离单元对应的检测统计量,具体包括:Optionally, in the manual detection mode, the pulse echo of each distance unit of the current orientation is subjected to FRFT operation under the condition of FRFT transformation parameters to obtain the detection statistics corresponding to each distance unit, specifically including:
对当前方位的每个距离单元的脉冲回波在当前FRFT变换参数条件下进行FRFT运算,得到每个距离单元对应的检测统计量;每个距离单元对应的检测统计量为1×N的矩阵;N为一个距离单元的脉冲回波数量,也为FRFT域通道数。Perform FRFT operation on the pulse echo of each range unit in the current position under the current FRFT transformation parameter conditions to obtain the detection statistics corresponding to each range unit; the detection statistics corresponding to each range unit is a 1×N matrix; N is the number of pulse echoes in a range unit, and is also the number of channels in the FRFT domain.
可选的,在人工检测模式下,根据每个距离单元对应的检测统计量对距离单元中的机动目标进行检测,输出第一颜色组,具体包括:Optionally, in the manual detection mode, the maneuvering target in the distance unit is detected according to the detection statistic corresponding to each distance unit, and the first color group is output, specifically including:
根据所有距离单元对应的检测统计量,基于二维恒虚警检测方法判断每个距离单元中是否存在机动目标;According to the detection statistics corresponding to all range cells, based on the two-dimensional constant false alarm detection method, it is judged whether there is a maneuvering target in each range cell;
若第k个距离单元中存在机动目标时,在所述第k个距离单元对应位置输出第一颜色;If there is a maneuvering target in the kth distance unit, output the first color at the corresponding position of the kth distance unit;
若第k个距离单元中不存在机动目标时,在所述第k个距离单元对应位置不输出第一颜色;If there is no maneuvering target in the kth distance unit, the first color is not output at the corresponding position of the kth distance unit;
依次得到每个距离单元对应位置输出的颜色结果,得到所述第一颜色组。The color results output by the corresponding positions of each distance unit are sequentially obtained to obtain the first color group.
可选的,在自动检测模式下,所述对当前方位每个距离单元的脉冲回波在FRFT变换参数条件下进行FRFT运算,得到每个距离单元对应的检测统计量,具体包括:Optionally, in the automatic detection mode, the pulse echo of each distance unit of the current orientation is subjected to FRFT operation under the condition of FRFT transformation parameters to obtain the detection statistics corresponding to each distance unit, specifically including:
对当前方位每个距离单元的脉冲回波在多个FRFT变换参数条件下进行FRFT运算,得到每个距离单元对应的检测统计量;每个距离单元对应的检测统计量为Np×N的矩阵;N为一个距离单元一次FRFT运算的脉冲回波数量,Np为FRFT变换参数的个数,不同的FRFT变换参数对应不同的运动状态;所述运动状态包括匀速运动状态、机动运动状态和高机动运动状态。Perform FRFT operation on the pulse echo of each range unit in the current orientation under the condition of multiple FRFT transformation parameters to obtain the detection statistics corresponding to each distance unit; the detection statistics corresponding to each range unit is a matrix of N p ×N ; N is the pulse echo quantity of one FRFT operation of a distance unit, and Np is the number of FRFT transformation parameters, and different FRFT transformation parameters correspond to different motion states; motorized state.
可选的,在自动检测模式下,根据每个距离单元对应的检测统计量对距离单元中的机动目标进行检测,输出第一颜色组,具体包括:Optionally, in the automatic detection mode, the maneuvering target in the distance unit is detected according to the detection statistic corresponding to each distance unit, and the first color group is output, specifically including:
对于第k个距离单元,提取所述第k个距离单元对应的检测统计量矩阵中每一列幅值最大值,得到所述第k个距离单元降维后的检测统计量;所述第k个距离单元降维后的检测统计量为1×N的矩阵,降维后的检测统计量矩阵中第i个元素为降维前检测统计量矩阵中第i列中的幅值最大值;For the kth distance unit, extract the maximum value of each column in the detection statistic matrix corresponding to the kth distance unit, and obtain the detection statistic after the dimensionality reduction of the kth distance unit; the kth The detection statistic after dimensionality reduction in the distance unit is a 1×N matrix, and the i-th element in the detection statistic matrix after dimensionality reduction is the maximum value of the amplitude in the i-th column of the detection statistic matrix before dimensionality reduction;
依次得到每个距离单元降维后的检测统计量;Obtain the detection statistics after dimensionality reduction for each distance unit in turn;
根据所有距离单元降维后的检测统计量,基于二维恒虚警检测方法判断第每个距离单元中是否存在机动目标;According to the detection statistics after dimensionality reduction of all distance units, based on the two-dimensional constant false alarm detection method, it is judged whether there is a maneuvering target in each distance unit;
若第k个距离单元中存在机动目标时,根据机动目标的运动状态,在所述第k个距离单元对应位置输出所述运动状态对应的颜色;不同的运动状态对应的颜色不同;If there is a maneuvering target in the kth distance unit, according to the movement state of the maneuvering target, output the color corresponding to the movement state at the corresponding position of the kth distance unit; the colors corresponding to different movement states are different;
若第k个距离单元中不存在机动目标时,在所述第k个距离单元对应位置不输出颜色;If there is no maneuvering target in the kth distance unit, no color is output at the corresponding position of the kth distance unit;
依次得到每个距离单元对应位置输出的颜色结果,得到所述第一颜色组。The color results output by the corresponding positions of each distance unit are sequentially obtained to obtain the first color group.
可选的,在人工检测模式下,所述将所述第一颜色组和所述第二颜色组叠加,得到机动目标检测结果的颜色显示,之后还包括:Optionally, in the manual detection mode, the superposition of the first color group and the second color group to obtain the color display of the maneuvering target detection result, and then further include:
调整FRFT变换参数,返回“对每个距离单元的脉冲回波在FRFT变换参数条件下进行FRFT运算,得到每个距离单元对应的检测统计量”的步骤,对不同机动性能的目标进行检测;不同的FRFT变换参数对应不同机动性能的目标检测,不同机动性能的目标检测输出的第一颜色组深浅程度不同。Adjust the FRFT transformation parameters and return to the step of "performing FRFT operation on the pulse echo of each range unit under the condition of FRFT transformation parameters to obtain the detection statistics corresponding to each distance unit" to detect targets with different maneuverability; different The FRFT transformation parameters correspond to target detections with different maneuverability, and the first color group of the target detection output with different maneuverability is different in depth.
可选的,所述根据每个距离单元对应的检测统计量对距离单元中的机动目标进行检测,输出第一颜色组,之后还包括:Optionally, said detecting the maneuvering target in the distance unit according to the detection statistic corresponding to each distance unit, outputting the first color group, and then further including:
根据输出的第一颜色组,结合FRFT变换参数和脉冲回波参数,对机动目标的初速度和加速度进行估计。According to the first output color group, the initial velocity and acceleration of the maneuvering target are estimated in combination with FRFT transformation parameters and pulse echo parameters.
可选的,所述根据每个距离单元的幅值平均值对距离单元的机动目标进行检测,输出第二颜色组,具体包括:Optionally, the detection of the maneuvering target of the distance unit according to the average value of the amplitude of each distance unit is performed, and the second color group is output, which specifically includes:
根据所有距离单元的幅值平均值,基于二维恒虚警检测方法判断第每个距离单元中是否存在机动目标;According to the average value of the amplitude of all range cells, based on the two-dimensional constant false alarm detection method, it is judged whether there is a maneuvering target in each range cell;
当第k个距离单元中存在机动目标时,在所述第k个距离单元对应位置输出第二颜色;When there is a maneuvering target in the kth distance unit, output a second color at the position corresponding to the kth distance unit;
当第k个距离单元中不存在机动目标时,在所述第k个距离单元对应位置不输出第二颜色;When there is no maneuvering target in the kth distance unit, the second color is not output at the position corresponding to the kth distance unit;
依次得到所有距离单元对应的第二颜色输出结果,得到第二颜色组。Obtain the second color output results corresponding to all the distance units in sequence to obtain the second color group.
本发明还提供一种扫描模式下雷达机动目标检测系统,包括:The present invention also provides a radar maneuvering target detection system in scanning mode, comprising:
回波获取模块,用于获取雷达扫描模式下得到的当前方位的机动目标的距离-方位脉冲二维回波;The echo acquisition module is used to acquire the range-azimuth pulse two-dimensional echo of the maneuvering target obtained under the radar scanning mode;
FRFT运算模块,用于对当前方位每个距离单元的脉冲回波在FRFT变换参数条件下进行FRFT运算,得到每个距离单元对应的检测统计量;第i个距离单元对应的检测统计量为进行FRFT运算得到的幅值结果,每个距离单元包括多个脉冲回波,且每个距离单元中的脉冲回波数量与FRFT域通道数相同;The FRFT operation module is used to perform FRFT operation on the pulse echo of each range unit in the current orientation under the condition of FRFT transformation parameters to obtain the detection statistics corresponding to each distance unit; the detection statistics corresponding to the i-th distance unit are The amplitude result obtained by FRFT operation, each distance unit includes multiple pulse echoes, and the number of pulse echoes in each distance unit is the same as the number of channels in the FRFT domain;
第一颜色组输出模块,用于根据每个距离单元对应的检测统计量对距离单元中的机动目标进行检测,输出第一颜色组;所述第一颜色组包括每个距离单元对应的颜色;The first color group output module is used to detect the maneuvering target in the distance unit according to the detection statistic corresponding to each distance unit, and output the first color group; the first color group includes the color corresponding to each distance unit;
非相参积累模块,用于对当前方位每个距离单元的脉冲回波进行非相参积累,得到幅值平均值;The non-coherent accumulation module is used to non-coherently accumulate the pulse echoes of each range unit in the current azimuth to obtain the average value of the amplitude;
第二颜色输出模块,用于根据每个距离单元的幅值平均值对距离单元的机动目标进行检测,输出第二颜色组;所述第二颜色组包括每个距离单元对应的颜色;所述第二颜色组中的颜色与所述第一颜色组中的颜色不重叠;The second color output module is used to detect the maneuvering target of the distance unit according to the amplitude average value of each distance unit, and output the second color group; the second color group includes the color corresponding to each distance unit; the the colors in the second color set do not overlap the colors in the first color set;
机动目标检测结果颜色显示模块,用于将所述第一颜色组和所述第二颜色组叠加,得到当前方位机动目标检测结果的颜色显示;The maneuvering target detection result color display module is used to superimpose the first color group and the second color group to obtain the color display of the maneuvering target detection result at the current position;
更新模块,用于更新天线的扫描方位,返回所述回波获取模块,对下一个扫描方位的回波进行检测。The updating module is used to update the scanning azimuth of the antenna, and return to the echo acquisition module to detect the echo of the next scanning azimuth.
根据本发明提供的具体实施例,本发明公开了以下技术效果:According to the specific embodiments provided by the invention, the invention discloses the following technical effects:
本发明利用FRFT能够有效积累机动目标的优势,有效提高了雷达机动目标检测性能;且仅在某一或某几个变换角度进行搜索检测,极大降低了运算量,适合扫描模式短脉冲序列的动目标检测。同时,本发明将FRFT相参积累与传统的脉间非相参积累处理结果融合输出,能够同时检测静止、慢速、切向运动、机动目标,降低了漏检概率。The present invention utilizes the advantage that FRFT can effectively accumulate maneuvering targets, and effectively improves the detection performance of radar maneuvering targets; and only searches and detects at one or several transformation angles, which greatly reduces the amount of computation, and is suitable for scanning mode short pulse sequences moving target detection. At the same time, the present invention fuses and outputs FRFT coherent accumulation and traditional non-coherent interpulse accumulation processing results, which can simultaneously detect static, slow, tangentially moving, and maneuvering targets, reducing the probability of missed detection.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the accompanying drawings required in the embodiments. Obviously, the accompanying drawings in the following description are only some of the present invention. Embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without paying creative labor.
图1为本发明扫描模式下雷达机动目标检测方法的流程示意图;Fig. 1 is a schematic flow chart of the radar maneuvering target detection method in the scanning mode of the present invention;
图2为本发明扫描模式下雷达机动目标检测系统的结构示意图;Fig. 2 is a schematic structural diagram of the radar maneuvering target detection system in the scanning mode of the present invention;
图3为本发明具体实施例1的流程示意图;Fig. 3 is the schematic flow sheet of embodiment 1 of the present invention;
图4为本发明具体实施例2的流程示意图。Fig. 4 is a schematic flow chart of Embodiment 2 of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, the present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments.
图1为本发明扫描模式下雷达机动目标检测方法的流程示意图。如图1所示,本发明扫描模式下雷达机动目标检测方法包括以下步骤:FIG. 1 is a schematic flowchart of a method for detecting a radar maneuvering target in a scanning mode according to the present invention. As shown in Figure 1, the radar maneuvering target detection method under the scanning mode of the present invention comprises the following steps:
步骤100:获取雷达扫描模式下得到的当前方位的机动目标的距离-方位脉冲二维回波。雷达工作在扫描模式,天线每次指向一个方位,然后该方位上的一系列距离单元,得到当前方位的目标检测结果,然后再扫描下一个方位,依次进行。因此,针对当前方位,对距离向的雷达回波数据进行脉冲压缩处理,得到距离脉压后的雷达回波数据sPC(t,tm):Step 100: Obtain the range-azimuth pulse two-dimensional echo of the maneuvering target at the current orientation obtained in the radar scanning mode. The radar works in scanning mode, the antenna points to a direction each time, and then a series of distance units in the direction get the target detection result of the current direction, and then scans the next direction, and proceeds sequentially. Therefore, for the current azimuth, pulse compression processing is performed on the radar echo data in the range direction to obtain the radar echo data s PC (t,t m ) after range pulse compression:
式中,t为脉内快时间,tm为脉间慢时间,Rs(tm)为雷达与目标的视线距离,Ar是回波幅度,2Rs(tm)/c为时间延迟,B为发射信号带宽,c0代表光速,λ为信号波长。假设目标朝向雷达运动,且仅考虑径向速度分量,则目标的距离走动为时间的多项式函数,由于雷达工作在扫描模式,因此,目标波束驻留时间有限,仅采用二次项便可以表示运动目标距离走动。In the formula, t is the fast time in the pulse, t m is the slow time between pulses, R s (t m ) is the line-of-sight distance between the radar and the target, A r is the echo amplitude, 2R s (t m )/c is the time delay , B is the transmitted signal bandwidth, c 0 represents the speed of light, and λ is the signal wavelength. Assuming that the target is moving towards the radar, and only the radial velocity component is considered, the distance of the target is a polynomial function of time. Since the radar works in the scanning mode, the dwell time of the target beam is limited, and only the quadratic term can be used to represent the movement Target distance to walk.
式中,Rs(tm)表示径向距离,r0表示初始距离;v0、as为矢量,分别代表目标初速度和加速度,存储距离-方位脉冲二维数据矩阵SM×N={sPC(i,j)|i=1,2,...,M;j=1,2,...,N},M为距离单元数,N为一个距离单元中脉冲回波的个数。In the formula, R s (t m ) represents the radial distance, r 0 represents the initial distance; v 0 and a s are vectors, representing the initial velocity and acceleration of the target respectively, and storing the distance-azimuth pulse two-dimensional data matrix S M×N = {s PC (i,j)|i=1,2,...,M; j=1,2,...,N}, M is the number of range units, N is the number of pulse echoes in a range unit number.
步骤200:对当前方位每个距离单元的脉冲回波在FRFT变换参数条件下进行FRFT运算,得到每个距离单元对应的检测统计量。本发明包括两种机动目标检测模式,分别为人工检测模式和自动检测模式。在人工检测模式下,对所有距离单元的脉冲回波在一个FRFT变换参数条件下进行FRFT运算,得到每个距离单元对应的检测统计量,每个距离单元对应的检测统计量为1×N的矩阵,所有距离单元的检测统计量为M×N的矩阵,用DM×N表示:Step 200: Perform FRFT operation on the pulse echo of each range unit in the current orientation under the condition of FRFT transformation parameters to obtain the detection statistics corresponding to each range unit. The invention includes two maneuvering target detection modes, which are manual detection mode and automatic detection mode. In the manual detection mode, the FRFT operation is performed on the pulse echoes of all distance units under the condition of one FRFT transformation parameter, and the detection statistics corresponding to each distance unit are obtained, and the detection statistics corresponding to each distance unit are 1×N matrix, the detection statistic of all distance units is a matrix of M×N, represented by D M×N :
DM×N中行表示每个距离单元的检测统计量,列表示不同距离单元的同一个脉冲回波位置的检测量。N为一个距离单元的脉冲回波数量,也是FRFT域通道数;M为距离单元的数量。The rows in D M×N represent the detection statistics of each range unit, and the columns represent the detection values of the same pulse-echo position in different distance units. N is the number of pulse echoes in a range unit, which is also the number of channels in the FRFT domain; M is the number of range units.
在自动检测模式下,对当前方位每个距离单元的脉冲回波在多个FRFT变换参数条件下进行FRFT运算,得到每个距离单元对应的检测统计量。每个距离单元对应的检测统计量为Np×N的矩阵,N为一个距离单元的脉冲回波数量,Np为FRFT变换参数的个数,不同的FRFT变换参数对应不同的运动状态,运动状态包括匀速运动状态、机动运动状态和高机动运动状态。对于第i个距离单元,对应的检测统计量用表示:In the automatic detection mode, FRFT operation is performed on the pulse echo of each distance unit in the current orientation under the condition of multiple FRFT transformation parameters, and the detection statistics corresponding to each distance unit are obtained. The detection statistic corresponding to each range unit is a matrix of N p ×N, N is the number of pulse echoes in a range unit, N p is the number of FRFT transformation parameters, different FRFT transformation parameters correspond to different motion states, motion The states include uniform motion state, motorized motion state and high motor motion state. For the i-th distance unit, the corresponding detection statistic is given by express:
中行表示该距离单元在FRFT变换参数p1下的检测统计量,列表示同一个脉冲回波位置载不同FRFT变换参数下的检测量。 The middle row represents the detection statistics of the distance unit under the FRFT transformation parameter p 1 , and the column represents the detection quantity under different FRFT transformation parameters at the same pulse echo position.
步骤300:根据每个距离单元对应的检测统计量对距离单元中的机动目标进行检测,输出第一颜色组。人工检测模式下,直接根据所有距离单元对应的检测统计量,基于二维恒虚警检测方法判断每个距离单元中是否存在机动目标。若第k个距离单元中存在机动目标时,在所述第k个距离单元对应位置输出第一颜色;若第k个距离单元中不存在机动目标时,在所述第k个距离单元对应位置不输出第一颜色;依次得到每个距离单元对应位置输出的颜色结果,得到所述第一颜色组。其中,二维恒虚警检测方法为现有的成熟技术。Step 300: Detect the maneuvering target in the distance unit according to the detection statistic corresponding to each distance unit, and output the first color group. In the manual detection mode, it is directly based on the detection statistics corresponding to all distance units, and based on the two-dimensional constant false alarm detection method, it is judged whether there is a maneuvering target in each distance unit. If there is a maneuvering target in the kth distance unit, output the first color at the corresponding position of the kth distance unit; if there is no maneuvering target in the kth distance unit, output the first color at the corresponding position of the kth distance unit The first color is not output; the color results output by the corresponding positions of each distance unit are sequentially obtained, and the first color group is obtained. Among them, the two-dimensional constant false alarm detection method is an existing mature technology.
自动检测模式下,首先,需要对每个距离单元的检测统计量进行降维,得到1×N的矩阵。对于第k个距离单元,提取所述第k个距离单元对应的检测统计量矩阵中每一列的幅值最大值,得到所述第k个距离单元降维后的检测统计量:In the automatic detection mode, first, it is necessary to reduce the dimensionality of the detection statistics of each distance unit to obtain a 1×N matrix. For the kth distance unit, extract the detection statistic matrix corresponding to the kth distance unit The maximum value of the amplitude of each column in , to obtain the detection statistic after dimensionality reduction of the kth distance unit:
式中,表示距离rk处的中第j个列向量中幅值最大值对应的变换参数。第k个距离单元降维后的检测统计量为1×N的矩阵,降维后的检测统计量矩阵中第j个元素为降维前检测统计量矩阵中第j列中的幅值最大值。In the formula, represents the distance r k The transformation parameter corresponding to the maximum value in the jth column vector in . The detection statistic after dimensionality reduction of the k-th distance unit is a 1×N matrix, and the jth element in the detection statistic matrix after dimensionality reduction is the maximum value of the amplitude in the jth column of the detection statistic matrix before dimensionality reduction .
依次得到每个距离单元降维后的检测统计量,得到所有距离单元降维后的检测统计量CM×N:The detection statistics after dimension reduction of each distance unit are obtained in turn, and the detection statistics C M×N of all distance units after dimension reduction are obtained:
然后,再根据所有距离单元降维后的检测统计量CM×N,基于二维恒虚警检测方法判断第每个距离单元中是否存在机动目标。若第k个距离单元中存在机动目标时,根据机动目标的运动状态,在所述第k个距离单元对应位置输出所述运动状态对应的颜色,不同的运动状态对应的颜色不同;若第k个距离单元中不存在机动目标时,在所述第k个距离单元对应位置不输出颜色。依次得到每个距离单元对应位置输出的颜色结果,得到所述第一颜色组。Then, according to the dimensionality-reduced detection statistics C M×N of all distance units, it is judged whether there is a maneuvering target in each distance unit based on the two-dimensional constant false alarm detection method. If there is a maneuvering target in the k-th distance unit, according to the motion state of the maneuvering target, output the color corresponding to the motion state at the corresponding position of the k-th distance unit, and the colors corresponding to different motion states are different; if the k-th When there is no maneuvering target in the kth distance unit, no color is output at the position corresponding to the kth distance unit. The color results output by the corresponding positions of each distance unit are sequentially obtained to obtain the first color group.
在输出第一颜色组之后,在人工检测模式和自动检测模式下,都可以根据输出的第一颜色组,结合FRFT变换参数和脉冲回波参数,对机动目标的初速度和加速度进行估计。After the first color group is output, the initial velocity and acceleration of the maneuvering target can be estimated according to the output first color group in both manual detection mode and automatic detection mode, combined with FRFT transformation parameters and pulse echo parameters.
步骤400:对当前方位每个距离单元的脉冲回波进行非相参积累,得到幅值平均值。进行非相参积累时,可以对依次对每个距离单元的脉冲回波进行幅值数值平均,得到幅值平均值,此时的幅值平均值为数值平均值。或者依次对每个距离单元的脉冲回波进行幅值加权平均,得到幅值平均值,此时每个单元对应的幅值平均值为加权平均值。Step 400: Perform non-coherent accumulation on the pulse echoes of each range unit in the current azimuth to obtain the average value of the amplitude. When performing non-coherent accumulation, the pulse echoes of each distance unit can be sequentially averaged to obtain the average value of the amplitude, and the average value of the amplitude at this time is the average value of the value. Alternatively, the amplitude weighted average of the pulse echoes of each distance unit is sequentially obtained to obtain the average value of the amplitude, and at this time, the average value of the corresponding amplitude of each unit is the weighted average value.
步骤500:根据每个距离单元的幅值平均值对距离单元的机动目标进行检测,输出第二颜色组。具体过程如下:Step 500: Detect the maneuvering target in the range unit according to the average value of the amplitude of each range unit, and output the second color group. The specific process is as follows:
判断每个距离单元对应的幅值平均值是否大于第二门限;judging whether the average value of the amplitude corresponding to each distance unit is greater than the second threshold;
当第k个距离单元对应的幅值平均值大于第二门限时,确定所述第k个距离单元中存在机动目标,在所述第k个距离单元对应位置输出第二颜色;When the average amplitude value corresponding to the kth distance unit is greater than the second threshold, it is determined that there is a maneuvering target in the kth distance unit, and a second color is output at the position corresponding to the kth distance unit;
当第k个距离单元对应的幅值平均值不大于第二门限时,确定所述第k个距离单元中不存在机动目标,在所述第k个距离单元对应位置不输出第二颜色;When the average amplitude value corresponding to the kth distance unit is not greater than the second threshold, it is determined that there is no maneuvering target in the kth distance unit, and the second color is not output at the position corresponding to the kth distance unit;
依次得到所有距离单元对应的第二颜色的输出结果,得到第二颜色组。The output results of the second color corresponding to all the distance units are obtained sequentially, and the second color group is obtained.
步骤600:将第一颜色组和第二颜色组叠加,得到当前方位机动目标检测结果的颜色显示。Step 600: Superimpose the first color group and the second color group to obtain the color display of the detection result of the maneuvering target at the current position.
在人工检测模式下,得到当前FRFT变换参数对应的检测结果后,通过调整FRFT变换参数,重新执行步骤200-步骤600,可以进一步得到不同机动性能的目标检测结果,不同机动性能的目标检测输出的第一颜色组深浅程度不同。FRFT变换参数越大,第一颜色组的颜色越深,对应的目标机动性能越强。In the manual detection mode, after obtaining the detection results corresponding to the current FRFT transformation parameters, by adjusting the FRFT transformation parameters and
步骤700:更新天线的扫描方位。返回步骤100,对下一个扫描方位的回波进行检测,直至所有方位扫描完成,得到所有方位的目标检测结果。Step 700: Update the scanning orientation of the antenna. Returning to step 100, the echoes of the next scanning azimuth are detected until all azimuths are scanned, and the target detection results of all azimuths are obtained.
基于上述的方法,本发明还提供一种扫描模式下雷达机动目标检测系统,图2为本发明扫描模式下雷达机动目标检测系统的结构示意图。如图2所示,本发明扫描模式下雷达机动目标检测系统包括:Based on the above method, the present invention also provides a radar maneuvering target detection system in scanning mode. FIG. 2 is a schematic structural diagram of the radar maneuvering target detection system in scanning mode of the present invention. As shown in Figure 2, the radar maneuvering target detection system in the scanning mode of the present invention includes:
回波获取模块201,用于获取雷达扫描模式下得到的当前方位的机动目标的距离-方位脉冲二维回波。The
FRFT运算模块202,用于对当前方位每个距离单元的脉冲回波在FRFT变换参数条件下进行FRFT运算,得到每个距离单元对应的检测统计量;第i个距离单元对应的检测统计量为进行FRFT运算得到的幅值结果,每个距离单元包括多个脉冲回波,且每个距离单元中的脉冲回波数量与FRFT域通道数相同。The
第一颜色组输出模块203,用于根据每个距离单元对应的检测统计量对距离单元中的机动目标进行检测,输出第一颜色组;所述第一颜色组包括每个距离单元对应的颜色。The first color
非相参积累模块204,用于对当前方位每个距离单元的脉冲回波进行非相参积累,得到幅值平均值。The
第二颜色输出模块205,用于根据每个距离单元的幅值平均值对距离单元的机动目标进行检测,输出第二颜色组;所述第二颜色组包括每个距离单元对应的颜色;所述第二颜色组中的颜色与所述第一颜色组中的颜色不重叠。The second
机动目标检测结果颜色显示模块206,用于将所述第一颜色组和所述第二颜色组叠加,得到当前方位机动目标检测结果的颜色显示;The maneuvering target detection result
更新模块207,用于更新天线的扫描方位,返回所述回波获取模块,对下一个扫描方位的回波进行检测。The updating
下面结合具体实施例进一步说明本发明的上述方案。The above solutions of the present invention will be further described below in conjunction with specific examples.
具体实施例1Specific embodiment 1
本实施例中采用的是人工检测模式,图3为本发明具体实施例1的流程示意图。如图3所示,检测过程包括两个支路:In this embodiment, manual detection mode is adopted, and FIG. 3 is a schematic flow chart of Embodiment 1 of the present invention. As shown in Figure 3, the detection process includes two branches:
第一支路为FRFT相参积累支路,设定FRFT变换参数及积累脉冲数,根据待检测目标运动特性,依次对不同距离单元内的脉冲进行特定变换参数条件下的FRFT运算,结果与第一门限进行比较,重复进行直至雷达扫描结束,输出机动目标检测结果。The first branch is the FRFT coherent accumulation branch. The FRFT transformation parameters and the number of accumulated pulses are set. According to the motion characteristics of the target to be detected, the FRFT operation is performed on the pulses in different distance units under the condition of specific transformation parameters. The results are consistent with the first A threshold is compared, repeated until the end of the radar scan, and output the maneuvering target detection result.
对于扫描模式雷达,目标驻留时间较短,某一距离单元的机动目标回波其距离为ri,i=1,2,...,M,采用线性调频信号(LinearFrequency Modulated,LFM)作为近似For scanning mode radars, the dwell time of the target is short, and the echo of the maneuvering target at a certain range cell The distance is r i , i=1,2,...,M, using linear frequency modulated signal (Linear Frequency Modulated, LFM) as an approximation
式中,表示距离为ri处的回波幅度,由距离为ri处的信号初速度产生的初始频率由距离为ri处的信号加速度产生的调频率该回波信号的FRFT表示为In the formula, Indicates the echo amplitude at the distance r i , from the signal initial velocity at the distance r i The initial frequency generated By the signal acceleration at distance r i FM frequency generated The FRFT of the echo signal is expressed as
式中,p为变换参数,p∈(-2,2],Fp为FRFT算子,Tn为相参积累时间,对于扫描雷达,Tn即为一个波束的驻留时间,Kp(tm,u)表示FRFT核函数,where p is the transformation parameter, p∈(-2,2], F p is the FRFT operator, T n is the coherent accumulation time, for scanning radar, T n is the dwell time of a beam, K p ( t m ,u) represents the FRFT kernel function,
式中,Ap为系数,n为整数,是旋转角度;In the formula, A p is a coefficient, n is an integer, is the rotation angle;
对某一距离单元内的N个脉冲回波进行pi条件下的FRFT运算,N代表一个波束范围内方位脉冲总数,其时长不大于Tn,根据待检测目标运动特性,依次对不同距离单元内的脉冲进行特定变换参数pi条件下的FRFT运算,pi根据如下关系给出:Carry out FRFT operation under the condition of p i for N pulse echoes in a certain distance unit, N represents the total number of azimuth pulses within a beam range, and its duration is not greater than T n , according to the motion characteristics of the target to be detected, the different distance units The pulses in are subjected to FRFT operation under the condition of specific transformation parameters p i , p i is given according to the following relationship:
变换参数p与调频率的关系为式中,为量纲归一化后的调频率,fs为采样频率;由于的取值范围为(0,π),因此,p在量纲归一化后的取值范围为(0,2),又由于p的对称性,因此p取值范围为[1,2),则p的数值范围为[1,p1,p2,...,pi,...,2),p的取值越大,对应调频率越高,代表目标机动性越强,人工模式下可以根据需求调节FRFT变换参数的取值;Transformation parameter p and tuning frequency The relationship is In the formula, is the tuning frequency after dimension normalization, fs is the sampling frequency; because The value range of p is (0,π), therefore, the value range of p after dimension normalization is (0,2), and because of the symmetry of p, the value range of p is [1,2) , then the value range of p is [1,p 1 ,p 2 ,..., pi ,...,2), the larger the value of p, the higher the corresponding tuning frequency, which means the stronger the maneuverability of the target. In the manual mode, the value of the FRFT transformation parameters can be adjusted according to the demand;
依次对不同距离单元内的脉冲进行特定变换参数pi条件下的FRFT运算,将其幅值形成检测统计量DM×N:Perform FRFT operation on the pulses in different distance units in turn under the condition of specific transformation parameters p i , and form the detection statistic D M×N with its amplitude:
式中,表示距离ri处(即距离单元ri)回波变换参数pi的FRFT域,将DM×N中每一个元素与门限进行比较,如果幅值低于检测门限,判决为该距离单元没有机动目标,若幅值高于检测门限,则判决为该距离单元存在机动目标。In the formula, Represents the FRFT domain of the echo transformation parameter p i at the distance r i (that is, the distance unit r i ), compares each element in D M×N with the threshold, if the amplitude is lower than the detection threshold, it is judged that the distance unit has no For a maneuvering target, if the amplitude is higher than the detection threshold, it is judged that there is a maneuvering target in this distance unit.
第二支路为非相参积累支路,与第一支路中的积累脉冲数相同,依次对每个距离单元内的脉冲幅值求平均,将幅值平均值与第二门限进行比较,重复进行直至雷达扫描结束,输出目标检测结果,以颜色B显示。The second branch is a non-coherent accumulation branch, which is the same as the number of accumulated pulses in the first branch. The pulse amplitude in each distance unit is averaged in turn, and the average value of the amplitude is compared with the second threshold. Repeat until the end of the radar scan, and output the target detection result, which is displayed in color B.
将第一支路和第二支路的结果叠加显示即为最终的检测结果。The results of the first branch and the second branch are superimposed and displayed to be the final detection result.
人工调节变换参数pi,将不同变换参数条件下的检测结果以颜色A表示,颜色深浅与变换参数大小对应,颜色越深变换参数越大,目标机动性也就越强。最终可以得到不同机动性能下的目标检测结果。Manually adjust the transformation parameters p i , and represent the detection results under different transformation parameters with color A. The color depth corresponds to the transformation parameters. The darker the color, the larger the transformation parameters, and the stronger the mobility of the target. Finally, the target detection results under different maneuverability can be obtained.
最后,可对目标的运动参数进行估计。过检测门限的峰值对应的变换参数和最佳变换域峰值坐标为则目标的初速度估计值和加速度估计值为:Finally, the motion parameters of the target can be estimated. The transformation parameters corresponding to the peak value passing the detection threshold and the peak coordinates of the optimal transformation domain are Then the estimated initial velocity of the target and acceleration estimates for:
具体实施例2Specific embodiment 2
本实施例中采用的是自动检测模式,图4为本发明具体实施例2的流程示意图。如图4所示,在自动检测模式,第一支路为FRFT相参积累支路,设定一定数量的FRFT变换参数,分别对应匀速运动、机动、高机动等运动状态,依次对不同距离单元内的脉冲进行多个变换参数条件下的FRFT运算,结果与门限进行比较,重复进行直至雷达扫描结束,输出机动目标检测结果,并以颜色C\D\E…显示,数量与变换参数个数相同;第二支路与人工检测模式下的第二支路过程相同,以颜色B显示;第一支路和第二支路结果叠加显示。In this embodiment, the automatic detection mode is adopted, and FIG. 4 is a schematic flow chart of Embodiment 2 of the present invention. As shown in Figure 4, in the automatic detection mode, the first branch is the FRFT coherent accumulation branch, and a certain number of FRFT transformation parameters are set to correspond to the motion states of uniform motion, maneuvering, and high maneuvering, respectively. Perform FRFT operation on the pulses in multiple transformation parameters, compare the result with the threshold, repeat until the end of the radar scan, output the maneuvering target detection result, and display it in color C\D\E..., the number and the number of transformation parameters The same; the process of the second branch is the same as that of the second branch in the manual detection mode, and it is displayed in color B; the results of the first branch and the second branch are superimposed and displayed.
本实施例中,FRFT变换参数设定方法为:p1=1,对应匀速运动目标;p2=1+Δp',对应机动目标;p3=1+2Δp',对应高机动目标;pi=1+(i-1)Δp',变换参数pi个数为Np,Np和间隔Δp'根据雷达系统的资源调整,对于扫描雷达,一般不超过5个。In this embodiment, the FRFT transformation parameter setting method is as follows: p 1 =1, corresponding to a uniform moving target; p 2 =1+Δp', corresponding to a maneuvering target; p 3 =1+2Δp', corresponding to a high maneuvering target; p i =1+(i-1)Δp', the number of transformation parameters p i is N p , N p and the interval Δp' are adjusted according to the resources of the radar system, and generally no more than five for scanning radars.
多个变换参数条件下的FRFT运算方法为:首先在每个距离单元进行Np个变换参数条件下的FRFT运算,得到距离ri处的矩阵 The FRFT operation method under the condition of multiple transformation parameters is as follows: firstly, the FRFT operation under the condition of N p transformation parameters is performed in each distance unit, and the matrix at the distance r i is obtained
对每个距离单元的运算结果进行降维,取列向量幅值最大值,得到不同FRFT域通道的最佳变换参数的FRFT幅值Dimensionality reduction is performed on the operation results of each distance unit, and the maximum value of the column vector amplitude is taken to obtain the FRFT amplitude of the best transformation parameters of different FRFT domain channels
式中,表示距离ri处的中第j个列向量幅值最大值对应的变换参数;In the formula, represents the distance r i The transformation parameter corresponding to the maximum value of the jth column vector amplitude in ;
依次对不同距离单元内的脉冲进行多个变换参数条件下的FRFT运算,形成检测统计量CM×N,Carry out FRFT calculations under multiple transformation parameter conditions on the pulses in different distance units in turn to form a detection statistic C M×N ,
将CM×N与门限进行比较,如果幅值低于检测门限,判决为该距离单元没有机动目标,若幅值高于检测门限,则判决为该距离单元存在机动目标;重复进行直至雷达扫描结束,输出机动目标检测结果,并以颜色C\D\E…显示,数量与变换参数个数相同,不同的颜色表示不同的运动状态。Compare C M×N with the threshold, if the amplitude is lower than the detection threshold, it is judged that there is no maneuvering target in this range unit, if the amplitude is higher than the detection threshold, it is judged that there is a maneuvering target in this range unit; repeat until the radar scans End, output the detection result of the maneuvering target, and display it in color C\D\E..., the number is the same as the number of transformation parameters, and different colors represent different motion states.
最后,可对目标的运动参数进行估计。过检测门限的峰值对应的变换参数和最佳变换域峰值坐标为则目标的初速度估计值和加速度估计值为:Finally, the motion parameters of the target can be estimated. The transformation parameters corresponding to the peak value passing the detection threshold and the peak coordinates of the optimal transformation domain are Then the estimated initial velocity of the target and acceleration estimates for:
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。Each embodiment in this specification is described in a progressive manner, each embodiment focuses on the difference from other embodiments, and the same and similar parts of each embodiment can be referred to each other. As for the system disclosed in the embodiment, since it corresponds to the method disclosed in the embodiment, the description is relatively simple, and for the related information, please refer to the description of the method part.
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。In this paper, specific examples have been used to illustrate the principle and implementation of the present invention. The description of the above embodiments is only used to help understand the method of the present invention and its core idea; meanwhile, for those of ordinary skill in the art, according to the present invention Thoughts, there will be changes in specific implementation methods and application ranges. In summary, the contents of this specification should not be construed as limiting the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011442392.9A CN112710997B (en) | 2020-12-08 | 2020-12-08 | Radar maneuvering target detection method and system in scanning mode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011442392.9A CN112710997B (en) | 2020-12-08 | 2020-12-08 | Radar maneuvering target detection method and system in scanning mode |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112710997A CN112710997A (en) | 2021-04-27 |
CN112710997B true CN112710997B (en) | 2022-12-02 |
Family
ID=75543026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011442392.9A Active CN112710997B (en) | 2020-12-08 | 2020-12-08 | Radar maneuvering target detection method and system in scanning mode |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112710997B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102169175A (en) * | 2010-12-08 | 2011-08-31 | 关键 | Method for sea clutter suppression and moving target detection based on FRFT (Fractional Fourier Transform) domain non-coherent accumulation |
CN103176178A (en) * | 2013-02-04 | 2013-06-26 | 中国人民解放军海军航空工程学院 | Radar moving target radon-fractional Fourier transform long-time phase-coherent accumulation detection method |
CN103323829A (en) * | 2013-06-04 | 2013-09-25 | 中国人民解放军海军航空工程学院 | Radar moving target long-time phase-coherent accumulation detecting method based on RFRAF |
CN103344949A (en) * | 2013-06-18 | 2013-10-09 | 中国人民解放军海军航空工程学院 | Radar slightly-moving target detection method based on Radon-linear canonical ambiguity function |
CN104330790A (en) * | 2014-09-27 | 2015-02-04 | 郑敏 | Target trajectory detecting method |
CN109001708A (en) * | 2018-08-05 | 2018-12-14 | 中国人民解放军海军航空大学 | The quick process of refinement method of radar maneuvering target based on classification integration detection |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2237267C2 (en) * | 2001-11-26 | 2004-09-27 | Волков Леонид Викторович | Method for forming images in millimeter and submillimeter waves range (variants) and system for forming images in millimeter and submilimeter waves range |
US8013781B2 (en) * | 2008-09-24 | 2011-09-06 | Lockheed Martin Corporation | Method and apparatus for radar surveillance and detection of sea targets |
CN103197301B (en) * | 2013-03-19 | 2014-11-19 | 中国人民解放军海军航空工程学院 | Radon-linear canonical transformation long-term coherent accumulation detection method for micro-moving targets on sea surface |
RU2611434C1 (en) * | 2016-04-26 | 2017-02-22 | Акционерное общество "Федеральный научно-производственный центр "Нижегородский научно-исследовательский институт радиотехники" | Method of space radar scanning |
CN111812608B (en) * | 2020-06-15 | 2023-06-23 | 西安电子科技大学 | Radar target azimuth angle estimation method based on MTD pulse accumulation and modal decomposition |
-
2020
- 2020-12-08 CN CN202011442392.9A patent/CN112710997B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102169175A (en) * | 2010-12-08 | 2011-08-31 | 关键 | Method for sea clutter suppression and moving target detection based on FRFT (Fractional Fourier Transform) domain non-coherent accumulation |
CN103176178A (en) * | 2013-02-04 | 2013-06-26 | 中国人民解放军海军航空工程学院 | Radar moving target radon-fractional Fourier transform long-time phase-coherent accumulation detection method |
CN103323829A (en) * | 2013-06-04 | 2013-09-25 | 中国人民解放军海军航空工程学院 | Radar moving target long-time phase-coherent accumulation detecting method based on RFRAF |
CN103344949A (en) * | 2013-06-18 | 2013-10-09 | 中国人民解放军海军航空工程学院 | Radar slightly-moving target detection method based on Radon-linear canonical ambiguity function |
CN104330790A (en) * | 2014-09-27 | 2015-02-04 | 郑敏 | Target trajectory detecting method |
CN109001708A (en) * | 2018-08-05 | 2018-12-14 | 中国人民解放军海军航空大学 | The quick process of refinement method of radar maneuvering target based on classification integration detection |
Non-Patent Citations (6)
Title |
---|
《Detection of Nonlinear Frequency Modulated Signal Based on Fractional Fourier Transform》;S.Z. Cai, Q.F. Zhang, X.P. Xu, D.H. Hu and Y.M. Qu;《Advanced Materials Research》;20140731;4042-4045 * |
《Radar Signal Processing for Low-observable Marine Target-Challenges and Solutions》;Xiaolong Chen;Jian Guan;《2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP)》;20191231;1-6 * |
《基于轨道预报的分布式雷达非相参积累方法》;丁敏;《电信技术研究》;20150228(第2期);22-28 * |
《外辐射源雷达高速加速微弱目标检测研究》;杨金禄;《现代雷达》;20110515;35-40 * |
《雷达低可观测目标探测技术》;陈小龙 等;《科技导报》;20170613;第30-38页 * |
海杂波背景下基于FRFT的自适应动目标检测方法;陈小龙等;《信号处理》;20101125(第11期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN112710997A (en) | 2021-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021169085A1 (en) | Method for resolving velocity ambiguity by entropy solution of millimeter-wave mimo traffic radar | |
CN103399310B (en) | Method for detecting radar weak moving target based on PD (Phase Differentiation) RLVD (Radon-Lv Distribution) | |
CN103176178B (en) | Radon-Fractional Fourier Transform Long-term Coherent Accumulation Detection Method for Radar Moving Targets | |
CN104330791B (en) | A kind of correlative accumulation method based on frequency domain shear | |
KR102275960B1 (en) | System and method for searching radar targets based on deep learning | |
US5539408A (en) | Method for the detection, localization and velocity determination of moving targets from raw radar data from a coherent, single- or multi-channel image system carried along in a vehicle | |
CN100365429C (en) | A Synthetic Aperture Radar Imaging Method for Moving Targets | |
CN107121670A (en) | A kind of anti-unmanned plane system of defense based on synthetic aperture radar | |
CN104898119B (en) | A kind of moving target parameter estimation method based on correlation function | |
CN113504522A (en) | Space-time decoupling and super-resolution angle measurement method based on random switching of transmitting antennas | |
AU2020279716B2 (en) | Multi-timescale doppler processing and associated systems and methods | |
Zhang et al. | Detection of sea-surface small targets masked by range sidelobes of large objects | |
Roldan et al. | See further than cfar: a data-driven radar detector trained by lidar | |
Chen et al. | Radar signal processing for low-observable marine target-challenges and solutions | |
CN109581366B (en) | A Discrete Sidelobe Clutter Identification Method Based on Target Steering Vector Mismatch | |
CN1601298A (en) | A Modeled Clutter Doppler Parameter Estimation Method for Airborne Radar | |
CN112710997B (en) | Radar maneuvering target detection method and system in scanning mode | |
Cho et al. | Deep complex-valued network for ego-velocity estimation with millimeter-wave radar | |
Huang et al. | LSS UAV target intelligent detection in urban complex environment | |
He et al. | Long-time integration for drone targets detection based on digital ubiquitous radar | |
He et al. | A Hybrid Integration Method for Low-Observable Micro-UAV Trajectory Tracking by 2D MIMO Radar | |
CN110907930B (en) | Vehicle-mounted radar target detection and estimation method and device based on angle estimation | |
Wang et al. | Marine Target Detection by Exploiting Multi-Circle Features with Convolutional Neural Network | |
Ji et al. | Robust Radar Work Mode Recognition in Non-Ideal Situations with GRU-TCN Model | |
CN113933801B (en) | Low signal-to-noise ratio detection method based on broadband phased array radar difference channel broadband echo |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |