CN112710292B - A Frequency Tunable Micromachined Gyroscope Based on Tunnel Magnetoresistance Detection - Google Patents
A Frequency Tunable Micromachined Gyroscope Based on Tunnel Magnetoresistance Detection Download PDFInfo
- Publication number
- CN112710292B CN112710292B CN202011457459.6A CN202011457459A CN112710292B CN 112710292 B CN112710292 B CN 112710292B CN 202011457459 A CN202011457459 A CN 202011457459A CN 112710292 B CN112710292 B CN 112710292B
- Authority
- CN
- China
- Prior art keywords
- electrode
- detection
- driving
- fixed
- comb teeth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 80
- 239000011521 glass Substances 0.000 claims abstract description 9
- 239000000758 substrate Substances 0.000 claims abstract description 9
- 230000033228 biological regulation Effects 0.000 claims description 9
- 230000005641 tunneling Effects 0.000 claims description 7
- 244000126211 Hericium coralloides Species 0.000 claims description 2
- 238000013461 design Methods 0.000 abstract description 4
- 238000000034 method Methods 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000013016 damping Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/02—Rotary gyroscopes
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Gyroscopes (AREA)
Abstract
本发明属于微机械陀螺技术领域,具体涉及一种基于隧道磁阻检测的频率可调谐微机械陀螺结构,包括玻璃基板、支撑结构、驱动质量块、检测质量块、第一支撑梁、第二支撑梁、驱动导线、驱动反馈导线、第一调节电极、第二调节电极、第三调节电极、第四调节电极、导线圈,所述支撑结构通过阳极键合固定在玻璃基板上,所述第一支撑梁、第二支撑梁均有四个,所述支撑结构通过四个第一支撑梁连接有驱动质量块,所述驱动质量块通过四个第二支撑梁连接有检测质量块,所述驱动质量块的两侧分别设置有驱动导线、驱动反馈导线。本发明微机械陀螺结构设计合理、接口电路简单、检测精度高,可解决角速率信号检测的难题。
The invention belongs to the technical field of micromachined gyroscopes, and in particular relates to a frequency-tunable micromachined gyroscope structure based on tunnel magnetoresistance detection, comprising a glass substrate, a support structure, a driving mass block, a detection mass block, a first support beam, and a second support beam, driving wire, driving feedback wire, first adjusting electrode, second adjusting electrode, third adjusting electrode, fourth adjusting electrode and conducting coil, the support structure is fixed on the glass substrate by anodic bonding, the first adjusting electrode There are four supporting beams and four second supporting beams. The supporting structure is connected with a driving mass block through the four first supporting beams, and the driving mass block is connected with a detection mass block through the four second supporting beams. The two sides of the mass block are respectively provided with driving wires and driving feedback wires. The micromachined gyroscope of the invention has reasonable structure design, simple interface circuit and high detection precision, and can solve the problem of angular rate signal detection.
Description
技术领域technical field
本发明属于微机械陀螺技术领域,具体涉及一种基于隧道磁阻检测的频率可调谐微机械陀螺结构。The invention belongs to the technical field of micro-mechanical gyroscopes, and in particular relates to a frequency-tunable micro-mechanical gyroscope structure based on tunnel magnetoresistance detection.
背景技术Background technique
惯性技术是以完全自主方式工作的,不与外界发生联系,具有自主、实时、不受干扰的优势。陀螺是惯性导航技术的核心器件,在现代航空航天,国防军事等领域发挥着至关重要的作用。Inertial technology works in a completely autonomous manner, without contact with the outside world, and has the advantages of being autonomous, real-time, and free from interference. Gyroscope is the core device of inertial navigation technology and plays a vital role in modern aerospace, national defense and military fields.
微惯性系统的核心是陀螺,MEMS陀螺仪是基于微机电工艺制造的惯性器件,用于测量物体的角速度,具有体积小、可靠性高、成本低、适合大批生产的特点,这就使得MEMS陀螺在微惯性系统中得到广泛使用。The core of the micro-inertial system is the gyroscope. The MEMS gyroscope is an inertial device based on micro-electromechanical technology. It is used to measure the angular velocity of objects. It has the characteristics of small size, high reliability, low cost, and suitable for mass production. It is widely used in micro-inertial systems.
微机械陀螺仪主要利用科里奥利力即旋转物体在有径向运动时所受到的切向力。MEMS陀螺仪在工作时,驱动质量块在驱动力作用下不停的径向来回运动,当有角速度输入时,对应的科里奥利力就不停的在横向来回变化,使检测质量块在横向做微小振荡。MEMS陀螺仪就是通过不同的检测方式来检测这个微小位移,从而解算出所输入的角速度大小。Micromechanical gyroscopes mainly use the Coriolis force, that is, the tangential force that a rotating object receives when it has radial motion. When the MEMS gyroscope is working, the driving mass moves back and forth in the radial direction under the action of the driving force. When there is an angular velocity input, the corresponding Coriolis force keeps changing back and forth in the lateral direction, so that the detection mass moves back and forth in the lateral direction. Do small oscillations horizontally. The MEMS gyroscope detects this small displacement through different detection methods, so as to solve the input angular velocity.
微机械陀螺加工设计过程中,存在加工误差、阻尼影响等因素,造成实际结构测试出的谐振频率与设计仿真存在差异,且驱动与检测谐振频率之间存在频率差。In the process of micromachined gyro processing and design, there are factors such as processing errors and damping effects, which cause differences between the resonant frequency of the actual structure test and the design simulation, and there is a frequency difference between the driving and detection resonant frequencies.
发明内容Contents of the invention
针对上述微机械陀螺加工设计过程中存在加工误差、阻尼影响、驱动与检测谐振频率之间存在频率差的技术问题,本发明提供了一种灵敏度高、成本低、检测精度高的基于隧道磁阻检测的频率可调谐微机械陀螺结构。Aiming at the technical problems of machining error, damping influence, and frequency difference between the drive and detection resonant frequencies in the above-mentioned micro-mechanical gyroscope machining design process, the present invention provides a tunneling magnetoresistance-based gyroscope with high sensitivity, low cost, and high detection accuracy. The detected frequency is tunable to the micromachined gyroscopic structure.
为了解决上述技术问题,本发明采用的技术方案为:In order to solve the problems of the technologies described above, the technical solution adopted in the present invention is:
一种基于隧道磁阻检测的频率可调谐微机械陀螺结构,包括玻璃基板、支撑结构、驱动质量块、检测质量块、第一支撑梁、第二支撑梁、驱动导线、驱动反馈导线、第一调节电极、第二调节电极、第三调节电极、第四调节电极、导线圈,所述支撑结构通过阳极键合固定在玻璃基板上,所述第一支撑梁、第二支撑梁均有四个,所述支撑结构通过四个第一支撑梁连接有驱动质量块,所述驱动质量块通过四个第二支撑梁连接有检测质量块,所述驱动质量块的两侧分别设置有驱动导线、驱动反馈导线,所述驱动质量块分别连接有第一调节电极、第二调节电极、第三调节电极、第四调节电极,所述检测质量块上设置有导线圈。A frequency-tunable micromechanical gyro structure based on tunnel magnetoresistance detection, including a glass substrate, a support structure, a driving mass, a detection mass, a first support beam, a second support beam, a drive wire, a drive feedback wire, a first Adjusting electrodes, second adjusting electrodes, third adjusting electrodes, fourth adjusting electrodes, and conductor coils, the supporting structure is fixed on the glass substrate by anodic bonding, and the first supporting beam and the second supporting beam have four , the supporting structure is connected to a drive mass through four first support beams, the drive mass is connected to a detection mass through four second support beams, and drive wires, Driving feedback wires, the driving mass block is respectively connected with the first adjustment electrode, the second adjustment electrode, the third adjustment electrode, and the fourth adjustment electrode, and the detection mass block is provided with a conductive coil.
还包括第一驱动电极、第二驱动电极、第一驱动反馈电极、第二驱动反馈电极、第一检测电极、第二检测电极、第三检测电极、第四检测电极,所述第一驱动电极、第二驱动电极、第一驱动反馈电极、第二驱动反馈电极、第一检测电极、第二检测电极、第三检测电极、第四检测电极均设置在支撑结构表面边缘位置。It also includes a first drive electrode, a second drive electrode, a first drive feedback electrode, a second drive feedback electrode, a first detection electrode, a second detection electrode, a third detection electrode, and a fourth detection electrode. The first drive electrode , the second drive electrode, the first drive feedback electrode, the second drive feedback electrode, the first detection electrode, the second detection electrode, the third detection electrode, and the fourth detection electrode are all arranged at the edge of the support structure surface.
所述驱动导线的两端分别连接有第一驱动电极、第二驱动电极,所述驱动反馈导线的两端分别连接有第一驱动反馈电极、第二驱动反馈电极,所述检测质量块上的导线圈分别连接有第一检测电极、第二检测电极、第三检测电极、第四检测电极。The two ends of the driving wire are respectively connected with the first driving electrode and the second driving electrode, and the two ends of the driving feedback wire are respectively connected with the first driving feedback electrode and the second driving feedback electrode. The conductive coils are respectively connected with the first detection electrode, the second detection electrode, the third detection electrode and the fourth detection electrode.
所述第一调节电极包括第一固定电极、第一移动电极,所述第二调节电极包括第二固定电极、第二移动电极,所述第三调节电极包括第三固定电极、第三移动电极,所述第四调节电极包括第四固定电极、第四移动电极,所述第一固定电极、第二固定电极、第三固定电极、第四固定电极均固定连接在支撑结构上,所述第一移动电极、第二移动电极、第三移动电极、第四移动电极均固定连接在驱动质量块上。The first adjusting electrode includes a first fixed electrode and a first moving electrode, the second adjusting electrode includes a second fixed electrode and a second moving electrode, and the third adjusting electrode includes a third fixed electrode and a third moving electrode , the fourth adjusting electrode includes a fourth fixed electrode and a fourth moving electrode, the first fixed electrode, the second fixed electrode, the third fixed electrode, and the fourth fixed electrode are all fixedly connected to the support structure, and the first fixed electrode The first moving electrode, the second moving electrode, the third moving electrode and the fourth moving electrode are all fixedly connected to the driving mass block.
所述第一移动电极、第二移动电极、第三移动电极、第四移动电极均由至少两个长条状梳齿组成,所述第一移动电极的梳齿设置在与第二固定电极对应梳齿的右边,所述第三移动电极的梳齿设置在与第三固定电极对应梳齿的右边,所述第四移动电极的梳齿设置在与第四固定电极对应梳齿的右边。The first mobile electrode, the second mobile electrode, the third mobile electrode, and the fourth mobile electrode are all composed of at least two elongated comb teeth, and the comb teeth of the first mobile electrode are arranged at positions corresponding to the second fixed electrodes. On the right side of the comb teeth, the comb teeth of the third moving electrode are arranged on the right side of the comb teeth corresponding to the third fixed electrode, and the comb teeth of the fourth moving electrode are arranged on the right side of the comb teeth corresponding to the fourth fixed electrode.
所述第一移动电极、第二移动电极、第三移动电极、第四移动电极的梳齿与第一固定电极、第二固定电极、第三固定电极、第四固定电极对应梳齿的距离大于与下一梳齿的间距。The distance between the comb teeth of the first mobile electrode, the second mobile electrode, the third mobile electrode and the fourth mobile electrode and the corresponding comb teeth of the first fixed electrode, the second fixed electrode, the third fixed electrode and the fourth fixed electrode is greater than Distance to the next comb tooth.
所述第一移动电极、第二移动电极采用T型结构。The first moving electrode and the second moving electrode adopt a T-shaped structure.
本发明与现有技术相比,具有的有益效果是:Compared with the prior art, the present invention has the beneficial effects of:
本发明采用在结构上加入梳齿引入静电力调频的方式,解决了工艺加工过程中带来的结构误差以及应用环境等不利因素影响导致驱动与检测谐振频率不匹配的问题,同时结合电磁驱动、磁阻检测方式,解决了现有微机械陀螺对微弱柯氏力难以检测的难题;本发明所设计的频率可调微陀螺装置通过专用的电路系统能实现驱动方向谐振频率的自动调节,通过检测驱动反馈导线产生的感生电动势解算出对应驱动谐振频率,通过改变调节电极上施加的调节电压就可实现驱动与检测两方向的谐振频率匹配。同时采用具有高灵敏特性的隧道磁阻效应进行检测,提高微陀螺检测精度。本发明微机械陀螺结构设计合理、接口电路简单、检测精度高,可解决角速率信号检测的难题。The invention adopts the method of adding comb teeth to the structure to introduce electrostatic force frequency modulation, which solves the problem of mismatching of drive and detection resonant frequency due to structural errors brought about in the process of processing and application environment and other unfavorable factors. At the same time, it combines electromagnetic drive, The magnetic resistance detection method solves the problem that the existing micro-mechanical gyroscope is difficult to detect the weak Coriolis force; the frequency-adjustable micro-gyroscope device designed by the present invention can realize the automatic adjustment of the resonant frequency of the driving direction through a dedicated circuit system. The induced electromotive force generated by driving the feedback wire is solved to calculate the corresponding driving resonance frequency, and the matching of the resonance frequency in the two directions of driving and detection can be realized by changing the regulating voltage applied to the regulating electrode. At the same time, the tunnel magnetoresistance effect with high sensitivity is used for detection, which improves the detection accuracy of the micro gyroscope. The invention has the advantages of reasonable structure design, simple interface circuit and high detection precision, and can solve the difficult problem of angular rate signal detection.
附图说明Description of drawings
图1为本发明的整体结构示意图;Fig. 1 is the overall structure schematic diagram of the present invention;
图2为本发明支撑结构示意图;Fig. 2 is a schematic diagram of the supporting structure of the present invention;
图3为本发明移动电极的结构示意图;Fig. 3 is the structural representation of mobile electrode of the present invention;
图4为本发明固定电极的结构示意图;Fig. 4 is the structural representation of fixed electrode of the present invention;
图5为本发明的简化模型示意图。Fig. 5 is a schematic diagram of a simplified model of the present invention.
其中:1为玻璃基板,2为支撑结构,3为驱动质量块,4为检测质量块,5为第一支撑梁,6为第二支撑梁,7为驱动导线,8为驱动反馈导线,9为第一调节电极,10为第二调节电极,11为第三调节电极,12为第四调节电极,13为导线圈,14为第一驱动电极,15为第二驱动电极,16为第一驱动反馈电极,17为第二驱动反馈电极,18为第一检测电极,19为第二检测电极,20为第三检测电极,21为第四检测电极,9a为第一固定电极,9b为第一移动电极,10a为第二固定电极,10b为第二移动电极,11a为第三固定电极,11b为第三移动电极,12a为第四固定电极,12b为第四移动电极。Among them: 1 is the glass substrate, 2 is the support structure, 3 is the driving mass, 4 is the detection mass, 5 is the first support beam, 6 is the second support beam, 7 is the driving wire, 8 is the driving feedback wire, 9 10 is the second regulating electrode, 11 is the third regulating electrode, 12 is the fourth regulating electrode, 13 is the conducting coil, 14 is the first driving electrode, 15 is the second driving electrode, 16 is the first Driving feedback electrode, 17 is the second driving feedback electrode, 18 is the first detection electrode, 19 is the second detection electrode, 20 is the third detection electrode, 21 is the fourth detection electrode, 9a is the first fixed electrode, 9b is the first detection electrode One moving electrode, 10a is the second fixed electrode, 10b is the second moving electrode, 11a is the third fixed electrode, 11b is the third moving electrode, 12a is the fourth fixed electrode, 12b is the fourth moving electrode.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
在本发明的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的组合或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In the description of the present invention, it should be understood that the orientations or positional relationships indicated by the terms "center", "upper", "lower", "front", "rear", "left", "right" etc. are based on the attached The orientation or positional relationship shown in the figure is only for the convenience of describing the present invention and simplifying the description, and does not indicate or imply that the referred combination or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be interpreted as a reference to this invention. Invention Limitations.
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。In the description of the present invention, it should be noted that unless otherwise specified and limited, the terms "connected" and "connected" should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral Ground connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention in specific situations.
一种基于隧道磁阻检测的频率可调谐微机械陀螺结构,如图1、图2所示,包括玻璃基板1、支撑结构2、驱动质量块3、检测质量块4、第一支撑梁5、第二支撑梁6、驱动导线7、驱动反馈导线8、第一调节电极9、第二调节电极10、第三调节电极11、第四调节电极12、导线圈13,支撑结构2通过阳极键合固定在玻璃基板1上,第一支撑梁5、第二支撑梁6均有四个,支撑结构2通过四个第一支撑梁5连接有驱动质量块3,驱动质量块3通过四个第二支撑梁6连接有检测质量块4,驱动质量块3的两侧分别设置有驱动导线7、驱动反馈导线8,驱动质量块3分别连接有第一调节电极9、第二调节电极10、第三调节电极11、第四调节电极12,检测质量块4上设置有导线圈13。A frequency-tunable micromechanical gyroscope structure based on tunnel magnetoresistance detection, as shown in Figure 1 and Figure 2, includes a
进一步,还包括第一驱动电极14、第二驱动电极15、第一驱动反馈电极16、第二驱动反馈电极17、第一检测电极18、第二检测电极19、第三检测电极20、第四检测电极21,第一驱动电极14、第二驱动电极15、第一驱动反馈电极16、第二驱动反馈电极17、第一检测电极18、第二检测电极19、第三检测电极20、第四检测电极21均设置在支撑结构2表面边缘位置。Further, it also includes the
进一步,驱动导线7的两端分别连接有第一驱动电极14、第二驱动电极15,驱动反馈导线8的两端分别连接有第一驱动反馈电极16、第二驱动反馈电极17,检测质量块4上的导线圈13分别连接有第一检测电极18、第二检测电极19、第三检测电极20、第四检测电极21。Further, the two ends of the
进一步,如图3、图4所示,第一调节电极9包括第一固定电极9a、第一移动电极9b,第二调节电极10包括第二固定电极10a、第二移动电极10b,第三调节电极11包括第三固定电极11a、第三移动电极11b,第四调节电极12包括第四固定电极12a、第四移动电极12b,第一固定电极9a、第二固定电极10a、第三固定电极11a、第四固定电极12a均固定连接在支撑结构2上,第一移动电极9b、第二移动电极10b、第三移动电极11b、第四移动电极12b均固定连接在驱动质量块3上。Further, as shown in Fig. 3 and Fig. 4, the first adjusting electrode 9 includes a first fixed
进一步,第一移动电极9b、第二移动电极10b、第三移动电极11b、第四移动电极12b均由至少两个长条状梳齿组成,第一移动电极9b的梳齿设置在与第二固定电极10a对应梳齿的右边,第三移动电极11b的梳齿设置在与第三固定电极11a对应梳齿的右边,第四移动电极12b的梳齿设置在与第四固定电极12a对应梳齿的右边。Further, the first
进一步,第一移动电极9b、第二移动电极10b、第三移动电极11b、第四移动电极12b的梳齿与第一固定电极9a、第二固定电极10a、第三固定电极11a、第四固定电极12a对应梳齿的距离大于与下一梳齿的间距。Further, the comb teeth of the first moving
进一步,优选的,为保证静电力方向与驱动方向一致同时增加更多梳齿以增加静电力,第一移动电极9b、第二移动电极10b采用T型结构,为保证静电力方向与驱动方向一致同时增加更多梳齿以增加静电力。Further, preferably, in order to ensure that the direction of the electrostatic force is consistent with the driving direction, more comb teeth are added to increase the electrostatic force, the first moving
如图5所示,横坐标为所施加调节电压,纵坐标为谐振频率数值。使用COMSOL建立简化模型,给支撑结构2、第一固定电极9a、第二固定电极10a、第三固定电极11a、第四固定电极12a施加固定约束。第一移动电极9b、第二移动电极10b、第三移动电极11b、第四移动电极12b施加正电势,第一固定电极9a、第二固定电极10a、第三固定电极11a、第四固定电极12a施加零电势,参数化扫描所施加电压,观察所需特征频率的变化。“o”为驱动方向谐振频率数值,“﹡”为检测方向谐振频率数值。当施加调节电压合适时,两频率可实现匹配。As shown in FIG. 5 , the abscissa is the applied regulation voltage, and the ordinate is the resonant frequency value. Use COMSOL to establish a simplified model, and apply fixed constraints to the support structure 2, the first
本发明的工作原理为:本发明的微陀螺装置由电磁驱动,通过在驱动导线10上施加交流驱动电流,在磁铁提供的磁场作用下带动驱动质量块3、检测质量块4产生往复运动,设置在另一侧的驱动反馈导线8做切割磁感线运动产生动生电动势,通过检测此动生电动势来跟踪驱动方向的谐振频率,通过专用电路系统最终将调节信号输出至调节电极,表现为调节电极的电压发生变化,所产生的静电力也发生变化,最终实现驱动方向谐振频率的调节,使其与检测方向谐振频率匹配。The working principle of the present invention is: the micro-gyroscope device of the present invention is driven by electromagnetism, and by applying an AC drive current on the
从理论推导方面理解为加入静电调谐力后运动学方程变为:From the perspective of theoretical derivation, it is understood that after adding the electrostatic tuning force, the kinematic equation becomes:
m是共振质量,c是阻尼系数,k是悬架梁的刚度系数,Fd(t)是驱动力,Fe(t)是静电耦合梳齿产生的静电力。m is the resonant mass, c is the damping coefficient, k is the stiffness coefficient of the suspension beam, F d (t) is the driving force, and F e (t) is the electrostatic force generated by the electrostatic coupling comb.
顶部和底部的静电耦合电容分别为:The top and bottom electrostatic coupling capacitors are:
利用电势能原理和虚位移理论,并将电容公式带入得:Using the principle of electric potential energy and virtual displacement theory, and bringing the capacitance formula into it:
将Fe(t)计算式带入运动学方程中可得固有频率为:Bringing the F e (t) calculation formula into the kinematic equation, the natural frequency can be obtained as:
上述结果可理解为静电调频方法能产生静电刚度,从而影响结构谐振频率。ke即为所产生的静电刚度系数。The above results can be understood as the electrostatic frequency modulation method can generate electrostatic stiffness, thereby affecting the structural resonance frequency. k e is the resulting electrostatic stiffness coefficient.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description of this specification, references to the terms "one embodiment," "some embodiments," "exemplary embodiments," "example," "specific examples," or "some examples" are intended to mean that the implementation A specific feature, structure, material, or characteristic described by an embodiment or example is included in at least one embodiment or example of the present invention. In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
上面仅对本发明的较佳实施例作了详细说明,但是本发明并不限于上述实施例,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化,各种变化均应包含在本发明的保护范围之内。Only the preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to the above-mentioned embodiments. Within the scope of knowledge possessed by those of ordinary skill in the art, various modifications can also be made without departing from the gist of the present invention. Various changes should be included within the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011457459.6A CN112710292B (en) | 2020-12-10 | 2020-12-10 | A Frequency Tunable Micromachined Gyroscope Based on Tunnel Magnetoresistance Detection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011457459.6A CN112710292B (en) | 2020-12-10 | 2020-12-10 | A Frequency Tunable Micromachined Gyroscope Based on Tunnel Magnetoresistance Detection |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112710292A CN112710292A (en) | 2021-04-27 |
CN112710292B true CN112710292B (en) | 2022-11-01 |
Family
ID=75541770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011457459.6A Active CN112710292B (en) | 2020-12-10 | 2020-12-10 | A Frequency Tunable Micromachined Gyroscope Based on Tunnel Magnetoresistance Detection |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112710292B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114879104B (en) * | 2022-05-05 | 2024-11-22 | 中国科学院空天信息创新研究院 | MEMS magnetoresistive sensor based on two-dimensional magnetic flux modulation structure and preparation method thereof |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MY147014A (en) * | 2007-10-31 | 2012-10-15 | Mimos Berhad | Capacitive area-changed mems gyroscope with adjustable resonance frequencies |
CN101509771A (en) * | 2008-02-14 | 2009-08-19 | 中国科学院声学研究所 | Decoupled Micromachined Gyroscopes |
CN107782295A (en) * | 2016-08-26 | 2018-03-09 | 北京自动化控制设备研究所 | A kind of tuning-fork-type microelectromechanicgyroscope gyroscope sensitive structure with frequency modulation function |
CN107356240B (en) * | 2017-07-21 | 2023-04-07 | 安徽芯动联科微系统股份有限公司 | MEMS gyroscope with driving frequency adjusting structure |
CN107449410A (en) * | 2017-08-15 | 2017-12-08 | 中北大学 | Microthrust test device is detected in electromagnetic drive type tunnel magnetoresistive face |
CN110966997A (en) * | 2019-12-13 | 2020-04-07 | 中北大学 | Piezoelectric driving type micro gyroscope device for in-plane detection of tunnel magneto-resistive |
CN110940329A (en) * | 2019-12-16 | 2020-03-31 | 中北大学 | A three-axis micro-gyroscope device based on tunnel magnetoresistance detection |
CN111521842A (en) * | 2020-06-18 | 2020-08-11 | 中北大学 | Z-axis resonant micro-accelerometer with electrostatic stiffness adjustment based on tunnel magnetoresistance detection |
-
2020
- 2020-12-10 CN CN202011457459.6A patent/CN112710292B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN112710292A (en) | 2021-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102980565B (en) | Circular ring fluctuation micromechanical gyroscope and preparation method thereof | |
CN105180914B (en) | A kind of micromechanical gyro of the high q-factor tunnel magneto-resistance effect detected in face | |
CN110940329A (en) | A three-axis micro-gyroscope device based on tunnel magnetoresistance detection | |
CN112113554A (en) | A decoupled micro gyro | |
CN103913159B (en) | A kind of tunnel type MEMS gyroscope | |
CN107449410A (en) | Microthrust test device is detected in electromagnetic drive type tunnel magnetoresistive face | |
CN101261126A (en) | Micro Solid Mode Gyroscope | |
CN112710292B (en) | A Frequency Tunable Micromachined Gyroscope Based on Tunnel Magnetoresistance Detection | |
CN220153593U (en) | A decoupled tuning fork silicon micromachined gyroscope that can achieve interference mode isolation | |
CN110068318A (en) | A kind of tunnel magnetoresistive microthrust test device based on snakelike hot-wire coil | |
CN114623814A (en) | MEMS gyroscope | |
CN101398305B (en) | Piezo-electricity micro-solid mode gyroscope with concentrated mass blocks | |
CN101339025B (en) | All-solid-state dual-axis gyroscope with cuboid piezoelectric vibrator with square surface | |
CN101476888B (en) | Hard Magnetic Suspension Vibrating Micro Gyro | |
CN100392353C (en) | Tuned MEMS Gyroscope | |
CN113804171B (en) | MEMS gyroscope | |
CN101339028B (en) | All solid dual spindle gyroscopes possessing double nested square shape groove structure piezoelectric vibrator | |
CN207395750U (en) | Microthrust test device is detected in electromagnetic drive type tunnel magnetoresistive face | |
CN216898932U (en) | MEMS gyroscope | |
CN102297689B (en) | Electrostatically driven piezoelectric detection closed loop controlled micro-solid modal gyro | |
CN210570714U (en) | Tunnel magnetic resistance micro-gyroscope device based on snake-shaped electrified coil | |
CN205175411U (en) | High Q value tunnel magnetoresistive effect's of detection micromechanical gyroscope in face | |
CN101339027B (en) | All solid dual spindle magnetostriction piezoelectric gyroscope possessing cuboid vibrator | |
CN211904158U (en) | In-plane detection MEMS gyro device based on four-bridge tunnel magnetoresistive element | |
CN101339026B (en) | All-solid-state dual-axis gyroscope with square through-hole piezoelectric vibrator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20221202 Address after: No. 3, Xueyuan Road, Taiyuan, Shanxi 030006 Patentee after: NORTH University OF CHINA Patentee after: Nantong Institute for Advanced Study Address before: 226000 building w-9, Zilang science and Technology City, central innovation District, Nantong City, Jiangsu Province Patentee before: Nantong Institute of intelligent optics, North China University |