CN112701689B - Wide-area resonance evaluation and early warning method based on limited distribution points - Google Patents

Wide-area resonance evaluation and early warning method based on limited distribution points Download PDF

Info

Publication number
CN112701689B
CN112701689B CN202011486255.5A CN202011486255A CN112701689B CN 112701689 B CN112701689 B CN 112701689B CN 202011486255 A CN202011486255 A CN 202011486255A CN 112701689 B CN112701689 B CN 112701689B
Authority
CN
China
Prior art keywords
resonance
transformer substation
harmonic
early warning
probability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011486255.5A
Other languages
Chinese (zh)
Other versions
CN112701689A (en
Inventor
史帅彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Power Supply Bureau Co Ltd
Original Assignee
Shenzhen Power Supply Bureau Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Power Supply Bureau Co Ltd filed Critical Shenzhen Power Supply Bureau Co Ltd
Priority to CN202011486255.5A priority Critical patent/CN112701689B/en
Publication of CN112701689A publication Critical patent/CN112701689A/en
Application granted granted Critical
Publication of CN112701689B publication Critical patent/CN112701689B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/08Probabilistic or stochastic CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/04Power grid distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Abstract

The invention discloses a wide-area resonance evaluation and early warning method based on limited stationing, which comprises the steps of positioning a resonance source by adopting a modal analysis method, constructing a simulation model, calculating harmonic resonance probabilities in different operation modes by adopting an N-1 method in the simulation model, and setting each abnormal operation working condition to obtain a bus harmonic voltage waveform, thereby comprehensively obtaining a resonance risk coefficient of a transformer substation; the resonance evaluation and early warning can be accurately carried out at low cost according to the monitoring data of the power grid nodes.

Description

Wide-area resonance evaluation and early warning method based on limited distribution points
Technical Field
The invention relates to the technical field of resonance evaluation in a power supply network, in particular to a wide-area resonance evaluation and early warning method based on limited distribution points.
Background
The resonance that exists in the power supply network is a very destructive power quality fault that can cause power supply interruptions, equipment damage, and significant economic and social losses.
Early-stage resonance evaluation is mainly performed based on a static mode of modeling simulation, and along with the fact that a power grid is more and more complex and the load change is more and more rapid, the practicability of a modeling simulation analysis result is lower and lower, and the method gradually evolves to a resonance evaluation method based on online monitoring. However, the power grid is large in scale, and if the online monitoring is carried out in a full-coverage mode, the cost is too high.
Disclosure of Invention
Aiming at the defects in the prior art, the invention provides a wide-area resonance evaluation and early warning method based on limited distribution points, which can accurately realize resonance evaluation and early warning on the basis of controllable cost.
In order to solve the above technical problem, an aspect of the present invention provides a method for wide-area resonance assessment and early warning based on limited stationing, which includes the following steps:
step S10, collecting monitoring data in a power grid node, positioning a resonance source based on the limited power grid node monitoring data, analyzing whether a concerned transformer substation is a resonance point or not, and performing harmonic suppression processing on the resonance point;
step S11, carrying out modeling processing on the transformer substation according to the network frame parameters and the equipment parameters in the transformer substation, and building a simulation model, wherein the simulation model at least comprises a main transformer, a voltage transformer and a capacitor;
s12, disconnecting any outgoing line and incoming line of a transformer substation in the power grid model, calculating harmonic resonance probability in different operation modes based on an N-1 method, obtaining a power grid harmonic impedance value through frequency scanning, calculating a harmonic amplification coefficient, comparing the harmonic amplification coefficient with a preset harmonic amplification coefficient limit value, and performing resonance early warning when the harmonic amplification coefficient exceeds the preset harmonic amplification coefficient limit value;
s13, setting each abnormal operation condition in the transformer substation on the simulation model, obtaining the harmonic voltage waveform of the transformer substation bus under each condition, judging whether resonance occurs, and performing resonance early warning if the resonance occurs in the actual operation process;
s14, according to the historical operation mode and the equipment operation information of the transformer substation, counting the probability of each N-1 condition and the probability of abnormal operation conditions, and calculating the resonance risk coefficient of the transformer substation;
and S15, determining the probability of resonance of the transformer substation according to the resonance risk coefficient of the transformer substation, and performing early warning processing.
Preferably, the step S10 further includes:
positioning a resonance source by adopting a modal analysis method based on limited power grid node monitoring data;
and if the analysis result shows that the concerned transformer substation is the main resonance source, adopting harmonic suppression measures, and changing the mode of the transformer substation equipment by changing the parameters of the transformer substation equipment to reduce the possibility of harmonic resonance.
Preferably, the step S12 further includes:
calculating the harmonic amplification factor under each operation mode through the following formula, and judging whether the harmonic amplification factor is less than or equal to a preset harmonic amplification factor limit value:
Figure BDA0002839434010000021
in the formula, HAR limit Is the maximum magnification factor allowed by the user.
And if the judgment result is not satisfied, judging that harmonic resonance can occur in the operation mode, and in the actual operation process, giving a resonance early warning if the operation mode is satisfied.
Preferably, in the step S13, the abnormal operation condition includes: the low-voltage side capacitor is switched on and re-ignited in a nonsynchronous period in the switching process, and single-phase faults occur and are eliminated.
Preferably, the step S14 further includes:
according to the historical operation mode and the equipment operation information of the transformer substation, the probability of each N-1 condition and the probability of abnormal operation condition is counted and recorded as P i And calculating the resonance risk coefficient Q of the transformer substation:
Figure BDA0002839434010000031
wherein i =1,2, \8230, N and N are total operating conditions, and S i The resonance possibility of the substation under the ith working condition is that the resonance cannot occur and is marked as 0, otherwise, the resonance is 1.
Preferably, the step S15 further includes:
and comparing the resonance risk coefficient Q with a preset threshold, and if the comparison result is that the resonance risk coefficient Q exceeds the preset threshold, optimizing equipment parameters of the transformer substation or adding a resonance elimination device to avoid adverse effects brought by harmonic resonance.
The implementation of the invention has the following beneficial effects:
the invention provides a wide area resonance evaluation and early warning method based on limited stationing, which comprises the steps of positioning a resonance source by adopting a modal analysis method, constructing a simulation model, calculating harmonic resonance probabilities in different operation modes by adopting an N-1 method in the simulation model, and setting each abnormal operation working condition to obtain a bus harmonic voltage waveform, thereby comprehensively obtaining a resonance risk coefficient of a transformer substation; the resonance evaluation and early warning can be accurately carried out at low cost according to the monitoring data of the power grid nodes.
Drawings
In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings used in the description of the embodiments or the prior art will be briefly introduced below, and it is obvious that the drawings in the following description are only some embodiments of the present invention, and it is within the scope of the present invention for those skilled in the art to obtain other drawings based on the drawings without inventive exercise.
Fig. 1 is a main flow diagram of an embodiment of a finite point distribution-based wide-area resonance evaluation and early warning method according to the present invention.
Detailed Description
The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments.
For those skilled in the art to more clearly understand the objects, technical solutions and advantages of the present invention, the following description will be further provided in conjunction with the accompanying drawings and examples.
In the embodiment of the invention, analysis is carried out by combining various resonance causes, the influence of the operation mode and the equipment operation of the transformer substation on the resonance probability of the transformer substation equipment is considered, the resonance occurrence probability under different working conditions is simulated on the built simulation model, the harmonic amplification coefficient index and the resonance probability are integrated, and the wide-area resonance evaluation and early warning method based on the limited distribution point is provided.
Fig. 1 shows a main flow diagram of an embodiment of a finite point distribution-based wide-area resonance evaluation and early warning method provided by the present invention. In this embodiment, the method specifically includes the following steps:
and S10, collecting monitoring data in the power grid nodes, positioning the resonance source based on the limited power grid node monitoring data, and analyzing whether the concerned transformer substation is a resonance point.
In a specific example, the step S10 further includes:
positioning a resonance source by adopting a modal analysis method based on limited power grid node monitoring data;
and if the analysis result shows that the concerned transformer substation is the main resonance source, adopting harmonic suppression measures, and changing the mode of the transformer substation equipment by changing the parameters of the transformer substation equipment to reduce the possibility of harmonic resonance.
More specifically, it can be understood that the modal analysis method is one of the main methods for locating the resonance source, and the basic idea is that, for a multi-node network system, the harmonic resonance of the system is often related to the occurrence of the minimum value of the network node admittance matrix Y. In extreme cases, the Y matrix approaches singularity, Y -1 The maximum value of (a) occurs, and the corresponding node of the system will generate a very high overvoltage, which is the most severe form of parallel resonance. And Y shows that a certain characteristic value tends to 0.
If it is known from the spectral analysis that the system is experiencing parallel resonance at a frequency f, some elements of the voltage vector calculated according to the following formula have a large value corresponding to the frequency f.
Figure BDA0002839434010000041
In the formula, Y f Is the network admittance matrix at frequency f; v f 、I f Node voltage and node injection current matrixes are respectively.
Harmonic resonance generally occurs when the matrix Y approaches singularity, so how the matrix Y approaches singularity becomes a viable solution to the problem. The matrix Y can be decomposed into the following form
Y=LΛT (2)
In the formula, Λ is a diagonal eigenvalue matrix; l and T are respectively a left eigenvector matrix and a right eigenvector matrix, and L = T -1
Thereby having
V=LΛ -1 TI (3)
U = TV is defined as the "modal voltage vector", and J = TI is defined as the "modal current vector". The above formula can be written as
U=Λ -1 J (4)
Namely that
Figure BDA0002839434010000051
It is understood that the unit of the reciprocal of the characteristic value is the impedance, referred to as the "modal impedance". If the value is 0 or very small, i.e. very small, the mode 1 injection current J 1 Will result in a large modal 1 voltage U 1 . On the other hand, other modal voltages will not be affected because there is no "coupling" between them and the modal 1 current. This means that the resonance actually occurs for a certain mode, independent of and not caused by the injection of a certain bus. If the concerned transformer substation is a main resonance source, harmonic suppression measures should be taken, and the mode of the transformer substation equipment is changed by changing the parameters of the transformer substation equipment, so that the harmonic resonance possibility is reduced.
S11, modeling the transformer substation according to the network frame parameters and the equipment parameters in the transformer substation, and constructing a simulation model, wherein the simulation model at least comprises a main transformer, a voltage transformer, a capacitor and the like;
s12, disconnecting any outgoing line and incoming line of a transformer substation in the power grid model, obtaining a power grid harmonic impedance value through frequency scanning, calculating harmonic resonance probabilities in different operation modes based on an N-1 method, calculating a harmonic amplification coefficient, comparing the harmonic amplification coefficient with a preset harmonic amplification coefficient limit value, and performing resonance early warning when the harmonic amplification coefficient exceeds the preset harmonic amplification coefficient limit value;
specifically, the harmonic amplification factor in each operation mode is calculated by the following formula (6), and whether it is less than or equal to a predetermined harmonic amplification factor limit value is judged:
Figure BDA0002839434010000052
in the formula, HAR limit Is the maximum magnification factor allowed by the user.
And if the judgment result is not satisfied, judging that harmonic resonance can occur in the operation mode, and in the actual operation process, giving a resonance early warning if the operation mode is satisfied.
And S13, setting each abnormal operation working condition in the transformer substation on the built simulation model, obtaining the harmonic voltage waveform of the bus of the transformer substation under each working condition, and judging whether resonance occurs. In the actual operation process, if the working condition occurs, a resonance early warning is given. Wherein the abnormal operation condition comprises: the low-voltage side capacitor is subjected to asynchronous switching-on and breaker reignition in the switching process, and single-phase faults are generated and eliminated.
S14, according to the historical operation mode of the transformer substation and the equipment operation information, counting the probability of each N-1 condition and the probability of abnormal operation condition, and recording as P i (i =1,2, \ 8230;, N, N being the total number of operating conditions), the resonance risk factor Q of the substation can be expressed as
Figure BDA0002839434010000061
In the formula, S i The resonance possibility of the substation under the ith working condition is that the resonance cannot occur and is marked as 0, otherwise, the resonance is 1.
Step S15, determining the probability of resonance of the transformer substation according to the size of the resonance risk coefficient Q of the transformer substation, and performing early warning processing;
the larger the resonance risk coefficient Q is, the larger the probability that the substation resonates is, that is, the larger the resonance risk is. And comparing the resonance risk coefficient Q with a preset threshold, and if the comparison result is that the resonance risk coefficient Q exceeds the preset threshold, optimizing equipment parameters of the transformer substation or adding a resonance elimination device to avoid adverse effects brought by harmonic resonance.
The implementation of the invention has the following beneficial effects:
the invention provides a wide area resonance evaluation and early warning method based on limited stationing, which comprises the steps of positioning a resonance source by adopting a modal analysis method, constructing a simulation model, calculating harmonic resonance probabilities in different operation modes by adopting an N-1 method in the simulation model, and setting each abnormal operation working condition to obtain a bus harmonic voltage waveform, thereby comprehensively obtaining a resonance risk coefficient of a transformer substation; the resonance evaluation and early warning can be accurately carried out at low cost according to the monitoring data of the power grid nodes.

Claims (4)

1. A wide-area resonance evaluation and early warning method based on limited stationing is characterized by comprising the following steps:
step S10, collecting monitoring data in a power grid node, positioning a resonance source based on the limited power grid node monitoring data, analyzing whether a concerned transformer substation is a resonance point or not, and performing harmonic suppression processing on the resonance point;
s11, modeling a transformer substation according to the network frame parameters and the equipment parameters in the transformer substation, and building a simulation model, wherein the simulation model at least comprises a main transformer, a voltage transformer and a capacitor;
s12, randomly disconnecting an outgoing line and an incoming line of a transformer substation in the simulation model, obtaining a harmonic impedance value of a power grid through frequency scanning, calculating harmonic resonance probabilities in different operation modes based on an N-1 method, calculating a harmonic amplification coefficient, comparing the harmonic amplification coefficient with a preset harmonic amplification coefficient limit value, and performing resonance early warning when the harmonic amplification coefficient exceeds the preset harmonic amplification coefficient limit value;
s13, setting each abnormal operation working condition in the transformer substation on the simulation model, obtaining the harmonic voltage waveform of the transformer substation bus under each working condition, judging whether resonance occurs, and performing resonance early warning if the resonance-occurring working condition occurs in the actual operation process;
s14, according to the historical operation mode and the equipment operation information of the transformer substation, counting the probability of each N-1 condition and the probability of abnormal operation conditions, and calculating the resonance risk coefficient of the transformer substation;
step S15, determining the probability of resonance of the transformer substation according to the resonance risk coefficient of the transformer substation, and performing early warning processing;
wherein the step S12 further includes:
calculating the harmonic amplification factor under each operation mode through the following formula, and judging whether the harmonic amplification factor is less than or equal to a preset harmonic amplification factor limit value:
Figure FDA0003764913850000011
in the formula, HAR limit Is the maximum magnification factor allowed by the user; if the judgment result is not satisfied, judging that harmonic resonance can occur in the operation mode, and in the actual operation process, if the operation mode is satisfied, giving a resonance early warning;
the step S14 further includes:
according to the historical operation mode and the equipment operation information of the transformer substation, the probability of each N-1 condition and the probability of abnormal operation condition is counted and recorded as P i And calculating the resonance risk coefficient Q of the transformer substation:
Figure FDA0003764913850000021
wherein i =1,2, \ 8230, N, N is the total number of operating conditions, S i The resonance possibility of the transformer substation under the ith working condition is that the resonance cannot occur and is recorded as 0, otherwise, the resonance is 1.
2. The method of claim 1, wherein the step S10 further comprises:
positioning a resonance source by adopting a modal analysis method based on limited power grid node monitoring data;
and if the analysis result shows that the concerned transformer substation is a main resonance source, taking harmonic suppression measures, and changing the mode of the transformer substation equipment by changing the parameters of the transformer substation equipment to reduce the possibility of harmonic resonance.
3. The method as set forth in claim 2, wherein the abnormal operation condition includes, in the step S13: the low-voltage side capacitor is switched on and re-ignited in a nonsynchronous period in the switching process, and single-phase faults occur and are eliminated.
4. The method of claim 3, wherein the step S15 further comprises:
and comparing the resonance risk coefficient Q with a preset threshold, and if the comparison result is that the resonance risk coefficient Q exceeds the preset threshold, optimizing equipment parameters of the transformer substation or adding a resonance elimination device to avoid adverse effects brought by harmonic resonance.
CN202011486255.5A 2020-12-16 2020-12-16 Wide-area resonance evaluation and early warning method based on limited distribution points Active CN112701689B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011486255.5A CN112701689B (en) 2020-12-16 2020-12-16 Wide-area resonance evaluation and early warning method based on limited distribution points

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011486255.5A CN112701689B (en) 2020-12-16 2020-12-16 Wide-area resonance evaluation and early warning method based on limited distribution points

Publications (2)

Publication Number Publication Date
CN112701689A CN112701689A (en) 2021-04-23
CN112701689B true CN112701689B (en) 2023-01-20

Family

ID=75508461

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011486255.5A Active CN112701689B (en) 2020-12-16 2020-12-16 Wide-area resonance evaluation and early warning method based on limited distribution points

Country Status (1)

Country Link
CN (1) CN112701689B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105529727A (en) * 2016-02-22 2016-04-27 哈尔滨工业大学 Node admittance matrix eigenvalue analysis method applied to grid-connected-inverter-included parallel resonance situation
CN106295231A (en) * 2016-08-31 2017-01-04 上海交通大学 A kind of marine wind electric field resonance suppressing method based on modal calculation
CN108268999A (en) * 2017-12-12 2018-07-10 国网河南省电力公司电力科学研究院 For more pivot modal analysis methods of electric power networks node Harmonic characteristic analysis
CN109214678A (en) * 2018-08-30 2019-01-15 中国南方电网有限责任公司 Flexible direct current converter station harmonic resonance methods of risk assessment, device and storage medium
CN111541263A (en) * 2020-06-10 2020-08-14 南方电网科学研究院有限责任公司 Harmonic control strategy evaluation method, system and equipment for flexible direct current transmission system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1734879A (en) * 2005-07-18 2006-02-15 西安交通大学 Electrical energy mass compositive controller for power system transformer substation
CN206020549U (en) * 2016-08-17 2017-03-15 云南电网有限责任公司电力科学研究院 The resonance early warning system of capacitor switching
CN106896267B (en) * 2017-02-07 2019-05-10 中国石油化工股份有限公司 A kind of Distribution Network Harmonics resonance improvement modal analysis method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105529727A (en) * 2016-02-22 2016-04-27 哈尔滨工业大学 Node admittance matrix eigenvalue analysis method applied to grid-connected-inverter-included parallel resonance situation
CN106295231A (en) * 2016-08-31 2017-01-04 上海交通大学 A kind of marine wind electric field resonance suppressing method based on modal calculation
CN108268999A (en) * 2017-12-12 2018-07-10 国网河南省电力公司电力科学研究院 For more pivot modal analysis methods of electric power networks node Harmonic characteristic analysis
CN109214678A (en) * 2018-08-30 2019-01-15 中国南方电网有限责任公司 Flexible direct current converter station harmonic resonance methods of risk assessment, device and storage medium
CN111541263A (en) * 2020-06-10 2020-08-14 南方电网科学研究院有限责任公司 Harmonic control strategy evaluation method, system and equipment for flexible direct current transmission system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
不同负荷模型下高速铁路牵引供电系统谐波谐振敏感度分析;张民等;《电力系统保护与控制》;20151016;第43卷(第20期);第21页-第28页 *
基于模态分析的牵引供电系统谐波谐振过电压研究;王硕禾等;《铁道学院》;20130731;第35卷(第7期);第32页-第41页 *

Also Published As

Publication number Publication date
CN112701689A (en) 2021-04-23

Similar Documents

Publication Publication Date Title
Poudel et al. Electrical distance approach for searching vulnerable branches during contingencies
Mendis et al. Harmonic and transient overvoltage analyses in arc furnace power systems
CN104951990A (en) Data processing method and equipment for power grid
CN108988330B (en) Power system simulation method considering electric arc of isolating switch fracture
CN109613324A (en) A kind of detection method and device of Harmonics amplification
CN109587145B (en) False data intrusion detection method, device and equipment in power network
CN112701689B (en) Wide-area resonance evaluation and early warning method based on limited distribution points
CN115600879A (en) Circuit breaker abnormity early warning method, system and related device
CN113805050A (en) Phase selection closing angle monitoring method and device, computer equipment and storage medium
CN112748318A (en) Series fault arc detection method based on improved PSO-BP neural network
Rice et al. The measurement outage table and state estimation
CN109742845B (en) Rapid switching-on method of power supply rapid switching-off device based on optimal phase
De Oliveira-De Jesus et al. Methodology to assess performance indexes for sensitivity, selectivity, and speed of coordination of directional overcurrent protections
Wang et al. Load Loss Rate Evaluation Method of Sensitive Users Under Voltage Sag Based on Monitoring Data
Musirin et al. Simulation technique for voltage collapse prediction and contingency ranking in power system
CN116545115B (en) Low-voltage power distribution cabinet fault monitoring system and method thereof
CN117349710B (en) Method for predicting breaking capacity of vacuum arc-extinguishing chamber, electronic equipment and medium
CN110244198A (en) Resistive load serial arc detection method and application based on compound criterion
CN114076868B (en) Switch defect identification method, device, equipment and readable storage medium
Khurdal et al. POWER SYSTEM DISTURBANCE DETECTION USING FORUTH ORDER MOMENT AND SINGULAR VALUE DECOMPOSITION
CN114487915B (en) Method and system for detecting damper of capacitive voltage transformer
Linli et al. Adaptive tripping for distribution network based on fault indicator recording data
CN112464416B (en) Method and system for generating all-station fixed value of one-key transformer substation
CN110991833B (en) Steady-state power quality rating method
CN111308168B (en) Method, device and equipment for automatically generating line current limiting value

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant