CN112698055B - Parameter calibration method of accelerometer on precision centrifuge - Google Patents
Parameter calibration method of accelerometer on precision centrifuge Download PDFInfo
- Publication number
- CN112698055B CN112698055B CN202110313204.0A CN202110313204A CN112698055B CN 112698055 B CN112698055 B CN 112698055B CN 202110313204 A CN202110313204 A CN 202110313204A CN 112698055 B CN112698055 B CN 112698055B
- Authority
- CN
- China
- Prior art keywords
- coordinate system
- accelerometer
- error
- axis
- pose
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 230000001133 acceleration Effects 0.000 claims abstract description 43
- 230000003068 static effect Effects 0.000 claims abstract description 20
- 230000014509 gene expression Effects 0.000 claims abstract description 19
- 238000009434 installation Methods 0.000 claims abstract description 12
- 238000012360 testing method Methods 0.000 claims description 10
- 241001416181 Axis axis Species 0.000 claims description 8
- 239000011159 matrix material Substances 0.000 claims description 8
- 238000006073 displacement reaction Methods 0.000 claims description 7
- 230000009466 transformation Effects 0.000 claims description 4
- 238000006880 cross-coupling reaction Methods 0.000 claims description 3
- 230000035945 sensitivity Effects 0.000 claims description 2
- 239000010453 quartz Substances 0.000 abstract description 30
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 30
- 238000004364 calculation method Methods 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 238000013401 experimental design Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P21/00—Testing or calibrating of apparatus or devices covered by the preceding groups
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
- Centrifugal Separators (AREA)
Abstract
Description
技术领域technical field
本发明涉及离心机标定领域,具体涉及一种加速度计在精密离心机上的参数标定方法。The invention relates to the field of centrifuge calibration, in particular to a parameter calibration method of an accelerometer on a precision centrifuge.
背景技术Background technique
文献“加速度计精密离心机试验的优化设计”分析了加速度计在精密离心机测试时的实际量测噪声特性,在此基础上指出传统的优化设计方法,即饱和D最优试验设计,存在工程适用性问题。然后为了改善饱和D最优试验设计的适用性,并且考虑到试验代价和精度的折中关系,提出了D最优改进试验设计方案。该方案将饱和D最优试验谱点作为基本谱点,在基本谱点之间均匀插入其他谱点来降低输入加速度偏差的影响,并通过加权的方法来分配基本谱点和新增谱点的测度,权值的选取依据实际的噪声特性。虽然文献“加速度计精密离心机试验的优化设计”对石英加速度计在精密离心机上进行了具体的标定试验,但没有考虑离心机误差对误差模型系数标定精度的影响,这可能会引入额外的标定误差,并且文献中所辨识的加速度计的误差模型系数较少。The document "Optimal Design of Accelerometer Precision Centrifuge Test" analyzes the actual measurement noise characteristics of accelerometers during precision centrifuge testing. Applicability issues. Then, in order to improve the applicability of the saturated D-optimal experimental design, and considering the trade-off relationship between the experimental cost and the accuracy, a D-optimal improved experimental design is proposed. In this scheme, the optimal test spectrum point of saturated D is used as the basic spectrum point, and other spectrum points are evenly inserted between the basic spectrum points to reduce the influence of input acceleration deviation, and the basic spectrum point and the new spectrum point are allocated by weighting method. The selection of weights is based on the actual noise characteristics. Although the literature "Optimized Design of Accelerometer Precision Centrifuge Experiment" conducts a specific calibration test of quartz accelerometer on a precision centrifuge, it does not consider the influence of centrifuge error on the calibration accuracy of error model coefficients, which may introduce additional calibration error, and the accelerometers identified in the literature have fewer error model coefficients.
文献“精密离心机误差对石英加速度计误差标定精度分析”分析了离心机各个误差源,用齐次变换法精确地计算了产生的向心加速度,给出了向心加速度、重力加速度和哥氏加速度在加速度计坐标系下的分量,推导了被试加速度计输入加速度的精确表达式。采用了10位置测试方法来辨识误差模型的高阶系数,着重讨论了误差模型系数的计算值与离心机误差之间的关系。但是二次项误差系数和三次项误差系数、未得到辨识,并且需要已知动态和静态误差对辨识结果进行修正和补偿,无法规避离心机的各项误差。The document "Analysis of Precision Centrifuge Error Calibration Accuracy of Quartz Accelerometer Error" analyzes each error source of the centrifuge, uses the homogeneous transformation method to accurately calculate the centripetal acceleration, and gives the centripetal acceleration, gravitational acceleration and Coriolis The component of the acceleration in the accelerometer coordinate system, the exact expression of the input acceleration of the tested accelerometer is derived. The 10-position test method is used to identify the higher-order coefficients of the error model, and the relationship between the calculated values of the error model coefficients and the centrifuge error is emphatically discussed. But the quadratic term error coefficient and cubic error coefficient , It has not been identified, and the identification results need to be corrected and compensated for known dynamic and static errors, and various errors of the centrifuge cannot be avoided.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明提供一种加速度计在精密离心机上的参数标定方法,包括:In view of this, the present invention provides a method for calibrating parameters of an accelerometer on a precision centrifuge, including:
获取精密离心机的各静态误差以及动态误差,并根据精密离心机的结构建立坐标系,以及根据所述各静态误差以及动态误差计算所述坐标系下的位姿误差;Acquiring various static errors and dynamic errors of the precision centrifuge, establishing a coordinate system according to the structure of the precision centrifuge, and calculating the pose errors under the coordinate system according to the various static errors and dynamic errors;
驱动精密离心机的主轴以匀角速率旋转,以产生向心加速度标定加速度计,基于所述坐标系下的位姿误差计算向心加速度、重力加速度和Coriolis加速度的比力分配,以确定加速度计误差模型;The main shaft that drives the precision centrifuge rotates at a constant angular rate to generate centripetal acceleration to calibrate the accelerometer, and the specific force distribution of centripetal acceleration, gravitational acceleration and Coriolis acceleration is calculated based on the pose error in the coordinate system to determine the accelerometer error model;
对加速度计在三种不同安装方式下的六个对称位置的指示输出,利用加减消元的方法标定加速度计误差模型表达式中的高阶项误差系数。For the indication output of the six symmetrical positions of the accelerometer under three different installation methods, the method of adding and subtracting the subtraction element is used to calibrate the error coefficient of the higher-order term in the accelerometer's error model expression.
本发明一种加速度计在精密离心机上的参数标定方法,在分析精密离心机各项动、静态误差源的基础上,给出了离心机输入比力的精确表达式;结合加速度计误差模型,利用加减消元的方法标定加速度计误差模型表达式中的高阶项误差系数,在离心机误差稳定的情况下,监测和补偿动态失准角和动态半径,就可以完全消除离心机的动态误差和静态误差,可有效提高石英加速度计高阶误差模型系数的标定精度。The invention provides a method for calibrating parameters of an accelerometer on a precision centrifuge. On the basis of analyzing various dynamic and static error sources of the precision centrifuge, an accurate expression of the input specific force of the centrifuge is given; combined with the accelerometer error model, The high-order error coefficient in the accelerometer error model expression is calibrated by the method of adding and subtracting elements. When the centrifuge error is stable, the dynamic misalignment angle and dynamic radius of the centrifuge can be completely eliminated by monitoring and compensating for the dynamic misalignment angle and dynamic radius. error and static error, which can effectively improve the calibration accuracy of the high-order error model coefficients of the quartz accelerometer.
附图说明Description of drawings
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。In order to illustrate the technical solutions of the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the embodiments. Obviously, the drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without any creative effort.
图1为本发明精密离心机结构示意图。Fig. 1 is the structure schematic diagram of the precision centrifuge of the present invention.
图2为本发明精密离心机各个坐标系示意图。2 is a schematic diagram of each coordinate system of the precision centrifuge of the present invention.
图3为本发明加速度计3种不同安装方式下的6个对称位置组合。FIG. 3 is a combination of six symmetrical positions under three different installation modes of the accelerometer of the present invention.
具体实施方式Detailed ways
下面结合附图对本发明实施例进行详细描述。The embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合;并且,基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。It should be noted that the following embodiments and features in the embodiments can be combined with each other without conflict; and, based on the embodiments in the present disclosure, those of ordinary skill in the art can obtain the results obtained without creative work. All other embodiments fall within the protection scope of the present disclosure.
需要说明的是,下文描述在所附权利要求书的范围内的实施例的各种方面。应显而易见,本文中所描述的方面可体现于广泛多种形式中,且本文中所描述的任何特定结构及/或功能仅为说明性的。基于本公开,所属领域的技术人员应了解,本文中所描述的一个方面可与任何其它方面独立地实施,且可以各种方式组合这些方面中的两者或两者以上。举例来说,可使用本文中所阐述的任何数目个方面来实施设备及/或实践方法。另外,可使用除了本文中所阐述的方面中的一或多者之外的其它结构及/或功能性实施此设备及/或实践此方法。It is noted that various aspects of embodiments within the scope of the appended claims are described below. It should be apparent that the aspects described herein may be embodied in a wide variety of forms and that any specific structure and/or function described herein is illustrative only. Based on this disclosure, those skilled in the art should appreciate that an aspect described herein may be implemented independently of any other aspects and that two or more of these aspects may be combined in various ways. For example, an apparatus may be implemented and/or a method may be practiced using any number of the aspects set forth herein. Additionally, such an apparatus may be implemented and/or such a method may be practiced using other structure and/or functionality in addition to one or more of the aspects set forth herein.
如图1所示,精密离心机有主轴、水平轴和方位轴3个轴系,3个轴系均有精密位置功能,水平轴轴端安装有360齿多齿分度盘,可以的精度定位到360个位置,主轴轴系与方位轴轴系均有精密角速率功能,当主轴以的匀角速率旋转时,在工作半径处,将产生的向心加速度。As shown in Figure 1, the precision centrifuge has three shaft systems: the main shaft, the horizontal axis and the azimuth axis, and the three shaft systems have the function of precision position. The accuracy of positioning can reach 360 positions, and both the spindle axis and the azimuth axis have the function of precise angular rate. When rotating at a uniform angular rate, the working radius , will produce centripetal acceleration.
离心机的静态误差源主要包括主轴轴线的二维铅垂度误差水平轴轴线与主轴轴线的垂直度相交度水平轴轴线与方位轴轴线的垂直度相交度以及方位轴的初始零位误差安装惯性仪表的工作基面对方位轴轴线的垂直度加速度计安装基面姿态误差偏心误差以及初始对零误差主轴、水平轴和方位轴三个轴的角位置误差分别为等。图1和图2标出了离心机结构简图以及建立的相应坐标系。The static error sources of the centrifuge mainly include the two-dimensional plumb error of the main shaft axis. The perpendicularity of the horizontal axis axis to the main axis axis degree of intersection The perpendicularity of the horizontal axis axis to the azimuth axis axis degree of intersection and the initial zero error of the azimuth axis The perpendicularity of the working base where the inertial instrument is installed to the axis of the azimuth axis Attitude error of accelerometer mounting base Eccentricity error and the initial zero-to-zero error The angular position errors of the main axis, the horizontal axis and the azimuth axis are respectively Wait. Figures 1 and 2 show a schematic diagram of the centrifuge structure and the corresponding coordinate system established.
离心机的动态误差源主要包括主轴径向回转误差轴向窜动及倾角回转误差动态半径误差动态失准角水平轴径向回转误差轴向窜动以及倾角回转误差方位轴径向回转误差轴向窜动倾角回转误差等。The dynamic error source of the centrifuge mainly includes the radial rotation error of the main shaft. Axial play and tilt angle error Dynamic radius error Dynamic misalignment angle Horizontal axis radial rotation error Axial play and the inclination rotation error Azimuth axis radial rotation error Axial play Tilt rotation error Wait.
为了方便研究半径误差的影响,将半径的静态误差与动态误差综合,其中,为静态半径标称值,是由计量部门标定出的已知量,但半径的静态测试误差是未知量,为用双频激光干涉仪监测的离心机在运行状态下的实际工作半径相对于离心机静态半径的变化量,是主轴角速率的函数。In order to facilitate the study of the influence of radius error, the static error and dynamic error of radius are synthesized, in, It is the nominal value of the static radius, which is a known quantity calibrated by the metrology department, but the static test error of the radius is the unknown quantity, is the change of the actual working radius of the centrifuge under the running state monitored by the dual-frequency laser interferometer relative to the static radius of the centrifuge, which is the angular velocity of the main shaft The function.
下面将建立如下坐标系:The following coordinate system will be established:
(1)地理坐标系轴水平指东,轴水平指北,轴指天,构成右手坐标系。(1) Geographical coordinate system The axis points to the east horizontally, The axis points horizontally to the north, The axis points to the sky, forming a right-handed coordinate system.
(2)主轴轴套坐标系主轴轴套坐标系相对于地理坐标系的位姿为(2) Coordinate system of spindle bushing The pose of the spindle sleeve coordinate system relative to the geographic coordinate system is
(3)主轴坐标系主轴坐标系相对于主轴轴套坐标系的位姿为(3) Spindle coordinate system The pose of the spindle coordinate system relative to the spindle sleeve coordinate system is
其中表示主轴旋转的角度。in Indicates the angle of rotation of the main axis.
(4)水平轴轴套坐标系水平轴轴套坐标系相对于主轴坐标系的位姿为(4) Coordinate system of horizontal shaft sleeve The pose of the horizontal axis bushing coordinate system relative to the main axis coordinate system is
(5)水平轴坐标系水平轴坐标系相对于水平轴轴套坐标系的位姿为(5) Horizontal axis coordinate system The pose of the horizontal axis coordinate system relative to the horizontal axis sleeve coordinate system is
其中表示水平轴旋转的角度。in Indicates the angle by which the horizontal axis is rotated.
(6)方位轴轴套坐标系方位轴轴套坐标系相对于水平轴坐标系的位姿为(6) Azimuth shaft sleeve coordinate system The pose of the azimuth axis bushing coordinate system relative to the horizontal axis coordinate system is
(7)方位轴坐标系方位轴坐标系相对于方位轴轴套坐标系的位姿为(7) Azimuth axis coordinate system The pose of the azimuth axis coordinate system relative to the azimuth axis bushing coordinate system is
其中表示方位轴旋转的角度。in Indicates the angle by which the azimuth axis is rotated.
(8)工作基面坐标系工作基面坐标系相对于方位轴坐标系的位姿为(8) Work base coordinate system The pose of the working base coordinate system relative to the azimuth axis coordinate system is
其中为点相对点位移。in for point relative point displacement.
(9)加速度计坐标系加速度计坐标系相对于工作基面坐标系的位姿为(9) Accelerometer coordinate system The pose of the accelerometer coordinate system relative to the working base coordinate system is
其中为点相对点位移。in for point relative point displacement.
以上离心机的各个位姿误差均视为小位移和小角度。加速度计坐标系相对于地理坐标系的位姿为Each of the above centrifuge position and orientation errors are regarded as small displacements and small angles. The pose of the accelerometer coordinate system relative to the geographic coordinate system is
其中表示加速度计坐标系与地理坐标系之间的姿态变换矩阵,为加速度计坐标系与地理坐标系的相对位移矢量。in represents the attitude transformation matrix between the accelerometer coordinate system and the geographic coordinate system, is the relative displacement vector between the accelerometer coordinate system and the geographic coordinate system.
加速度计坐标系相对于主轴坐标系的位姿为The pose of the accelerometer coordinate system relative to the spindle coordinate system is
其中表示加速度计坐标系与主轴坐标系之间的姿态变换矩阵。in Represents the attitude transformation matrix between the accelerometer coordinate system and the spindle coordinate system.
加速度计坐标系原点在主轴坐标系下表示为忽略二阶小量后可得, The origin of the accelerometer coordinate system is expressed in the spindle coordinate system as After ignoring the second-order epsilon, it can be obtained,
和将在后文用来计算加速度计坐标系原点的精确向心加速度。 and It will be used later to calculate the exact centripetal acceleration at the origin of the accelerometer coordinate system.
具体地,本实施例所涉及的一种加速度计在精密离心机上的参数标定方法,石英加速度计输入比力的计算过程为:Specifically, in the method for calibrating parameters of an accelerometer on a precision centrifuge involved in this embodiment, the calculation process of the input specific force of the quartz accelerometer is as follows:
精密离心机当主轴以匀角速率旋转产生的向心加速度标定加速度计时,加速度计的比力输入有3个来源,即向心加速度、重力加速度、Coriolis加速度,可以得出各个加速度来源的比力分配为:When the centripetal acceleration generated by the rotation of the main shaft at a constant angular rate of the precision centrifuge calibrates the accelerometer, the specific force input of the accelerometer has three sources, namely centripetal acceleration, gravitational acceleration, and Coriolis acceleration, and the specific force of each acceleration source can be obtained. Assigned as:
(1)重力加速度产生的比力在被测加速度计三个轴上的分配(1) The distribution of the specific force generated by the acceleration of gravity on the three axes of the measured accelerometer
设重力加速度在被测加速度计输入轴、摆轴和输出轴上的分量分别为 重力加速度产生的比力在地理坐标系下表示为,则在加速度计坐标系下表示为Let the components of gravitational acceleration on the input axis, pendulum axis and output axis of the measured accelerometer be respectively The specific force produced by the acceleration of gravity is expressed in the geographic coordinate system as , then in the accelerometer coordinate system, it is expressed as
(2)向心加速度在被测加速度计三个轴上的分配(2) Distribution of centripetal acceleration on the three axes of the measured accelerometer
根据上面所述,加速度计坐标原点处的向心加速度在主轴坐标系下表示为,它被测加速度计输入轴、摆轴和输出轴上的分量分别为根据式(10)可得:According to the above, the centripetal acceleration at the origin of the accelerometer coordinate is expressed as , the components on the input axis, pendulum axis and output axis of the measured accelerometer are respectively According to formula (10), we can get:
(3)地球自转产生的Coriolis加速度分量(3) Coriolis acceleration component generated by the Earth's rotation
在加速度计原点处由地球自转角速率产生的Coriolis加速度很小,由离心机位姿误差引起的计算误差要小得多,可以忽略不计,因此考虑Coriolis加速度的标称值即可。此时,Coriolis加速度表达式为:The Coriolis acceleration generated by the angular rate of the Earth's rotation at the origin of the accelerometer is very small, and the calculation error caused by the centrifuge pose error is much smaller and can be ignored, so the nominal value of the Coriolis acceleration can be considered. At this point, the Coriolis acceleration expression is:
其中为当地纬度。in is the local latitude.
综上可得加速度计三个轴上的精密比力为In summary, the precise specific force on the three axes of the accelerometer can be obtained as
因为回转误差项对于比力的影响呈正弦、余弦形式的变化,采用整周积分时可以忽略,因含和的整周积分为零,亦可忽略,经计算得Because the influence of the rotation error term on the specific force changes in the form of sine and cosine, it can be ignored when the integral cycle is used. and The integral of the whole week is zero, which can also be ignored. After calculation, we get
计算了加速度计的精确的比力输入,下面将用12位置法标定加速度计,可通过3种安装方式,利用公式(16)计算比力输入,再设计相应的试验方法。The precise specific force input of the accelerometer is calculated. The 12-position method will be used to calibrate the accelerometer. The specific force input can be calculated by formula (16) through three installation methods, and then the corresponding test method is designed.
具体地,本实施例所涉及的一种加速度计在精密离心机上的参数标定方法,石英加速度计高阶误差系数的具体计算过程为:Specifically, in a method for calibrating parameters of an accelerometer on a precision centrifuge involved in this embodiment, the specific calculation process of the high-order error coefficient of a quartz accelerometer is as follows:
石英加速度计误差模型表达式采用如下形式:The quartz accelerometer error model expression takes the following form:
其中,为加速度计输出值,单位:V;in, is the output value of the accelerometer, unit: V;
为加速度计的输出当量,单位:g; is the output equivalent of the accelerometer, unit: g;
为标度因数,单位:V/g; is the scale factor, unit: V/g;
分别为加速度计输入轴,摆轴和输出轴上的加速度分量,单位:g; are the acceleration components on the input shaft, pendulum shaft and output shaft of the accelerometer, unit: g;
为零偏,单位:g; Zero offset, unit: g;
为交叉轴敏感度,单位:rad; is the cross-axis sensitivity, unit: rad;
为二阶非线性系数,单位:; is the second-order nonlinear coefficient, unit: ;
为奇异二次项系数,单位:; is the singular quadratic term coefficient, unit: ;
为三阶非线性系数,单位:; is the third-order nonlinear coefficient, unit: ;
为交叉耦合系数,单位:; is the cross-coupling coefficient, unit: ;
随机误差,单位:g。 Random error, unit: g.
本发明主要针对石英加速度计高阶误差模型系数的测试与标定方法,因此,误差模型系数中的常值项和一次项当作已知量。本发明将采用6个对称位置组合来标定石英加速度计误差模型表达式中的高阶项误差系数。The present invention is mainly aimed at the testing and calibration method of the high-order error model coefficients of the quartz accelerometer. Therefore, the constant value items and the first-order items in the error model coefficients are regarded as known quantities. The present invention will use 6 symmetrical position combinations to calibrate the error coefficient of the higher order term in the error model expression of the quartz accelerometer.
通过图3所示6个对称位置组合来辨识石英加速度计的高阶误差模型系数,其中表示向心加速度矢量。图中所示的各个安装位置所对应的能标定的加速度计误差模型系数如表1所示。The higher-order error model coefficients of the quartz accelerometer are identified by the combination of the six symmetrical positions shown in Figure 3, where represents the centripetal acceleration vector. The accelerometer error model coefficients that can be calibrated corresponding to each installation position shown in the figure are shown in Table 1.
表1对称位置组合与石英加速度计可辨识高阶误差模型系数的关系Table 1 The relationship between the symmetrical position combination and the identifiable higher-order error model coefficients of the quartz accelerometer
图3中总共采用3种安装方式,成对位置1-2,3-4,7-8是第1种安装方式,此时加速度计的输出轴始终与离心机的方位轴轴线一致,离心机的水平轴始终处于位置,方位轴处于如表1所示的6个位置,可获得3对成对位置。5-6,9-10位置为第2种安装方式,此时加速度计的输入轴始终与离心机的方位轴轴线一致,水平轴处于位置,方位轴处于4个位置可获得2对成对位置。11-12位置为第3种安装方式,此时加速度计的摆轴与离心机的方位轴轴线方向相反,水平轴始终处于位置,方位轴处于这2个位置。A total of 3 installation methods are used in Figure 3. The paired positions 1-2, 3-4, and 7-8 are the first installation methods. At this time, the output shaft of the accelerometer is always consistent with the azimuth axis of the centrifuge. The horizontal axis of is always in position, the azimuth axis is in 6 positions as shown in Table 1, and 3 pairs of paired positions can be obtained. Positions 5-6 and 9-10 are the second installation methods. At this time, the input shaft of the accelerometer is always consistent with the azimuth axis of the centrifuge, and the horizontal axis is in the position of the centrifuge. position, the azimuth axis is in 4 positions to obtain 2 paired positions. The 11-12 position is the third installation method. At this time, the pendulum axis of the accelerometer is in the opposite direction to the azimuth axis of the centrifuge, and the horizontal axis is always in position, the azimuth axis is at these 2 locations.
根据式(16),可以得出第1~12安装位置对应的实际加速度计各轴的比力输入,具体计算时,输入轴上的比力精确到一阶小量,摆轴与输出轴上的比力只计算标称值,一阶小量也忽略,因为与这两个轴的输入比力相关的系数也是小量。公式(16)中的是已知量,用于计算加速度计的指示输出取到一阶小量,与其它系数相关的取标称值即可。要标定到加速度计的3阶误差模型系数,至少每个成对位置需要4个比力输入,即要求主轴运行于4个不同角速率,并采集加速度计的输出的整周均值。为方便起见,12位置采用统一的结构矩阵如公式(16)所示,当然也可以增加更多的角速率点进行测试。According to formula (16), the specific force input of each axis of the actual accelerometer corresponding to the 1st to 12th installation positions can be obtained. In the specific calculation, the specific force on the input shaft is accurate to a first-order small amount, and the pendulum shaft and the output shaft are Only the nominal value is calculated for the specific force of , and the first-order small quantities are ignored, because the coefficients related to the input specific forces of these two axes are also small quantities. in formula (16) is a known quantity used to calculate the indicated output of the accelerometer Take the first-order small quantity, which is related to other coefficients Just take the nominal value. To calibrate to the accelerometer's 3rd order error model coefficients, at least 4 specific force inputs are required for each paired position, i.e. the spindle is required to operate at 4 different angular rates , and collect the weekly mean of the output of the accelerometer. For convenience, the 12-position adopts a unified structure matrix as shown in formula (16). Of course, more angular rate points can be added for testing.
位置1上石英加速度计输入轴、摆轴和输出轴的比力分别为:The specific forces of the input shaft, pendulum shaft and output shaft of the quartz accelerometer at
其中均以g为单位,以下表达式相同。in All are in g, and the following expressions are the same.
将式(18)代入到式(16),石英加速度计在位置1的指示输出为:Substituting equation (18) into equation (16), the indicated output of the quartz accelerometer at
位置2上石英加速度计输入轴、摆轴和输出轴的比力分别为:The specific forces of the input shaft, pendulum shaft and output shaft of the quartz accelerometer at position 2 are:
将式(20)代入式(16),石英加速度计在位置2的指示输出为:Substituting equation (20) into equation (16), the indicated output of the quartz accelerometer at position 2 is:
分别将式(19)和式(21)相加和相减得到:Adding and subtracting equations (19) and (21) respectively, we get:
对于式(22)为加速度的常数项,一次项和二次项组成。对于式(23)为常数项、一次项、二次项和三次项组成。综合以上分析,采用主轴4个速率点进行测试,可以辨识。For equation (22), it is the constant term of acceleration, consisting of a first-order term and a quadratic term. For formula (23), it consists of constant term, first-order term, quadratic term and cubic term. Based on the above analysis, the 4 speed points of the spindle are used for testing, which can be identified .
其中“”表示此项理论上为零或者因为是很多位姿误差项的合成,而又没有必要写出。in" "Indicates that this item is theoretically zero or because it is a synthesis of many pose error terms, and there is no need to write it out.
式(24)写成矩阵形式为Equation (24) can be written in matrix form as
根据最小二乘可得:According to least squares, we can get:
在式(24)中,辨识项规避了离心机误差,从而提高了项的标定精度。In equation (24), identify term avoids centrifuge errors , thereby increasing the The calibration accuracy of the item.
根据式(23)可得According to formula (23), we can get
其中in
根据最小二乘可得:According to least squares, we can get:
在观测向量中补偿了动态误差项,和Coriolis加速度项,在误差系数向量中加入了离心机的位姿误差项,自动补偿了静态半径测试误差以及回转误差项等,消除了离心机误差和Coriolis加速度的影响,从而提高了和项的标定精度。in the observation vector compensated for the dynamic error term in , and Coriolis acceleration term, adding the centrifuge's pose error term to the error coefficient vector , which automatically compensates the static radius test error As well as the rotation error term, etc., the influence of centrifuge error and Coriolis acceleration is eliminated, thereby improving the and The calibration accuracy of the item.
位置3和4上石英加速度计输入轴、摆轴和输出轴的比力分别为:The specific forces of the input shaft, pendulum shaft and output shaft of the quartz accelerometer at positions 3 and 4 are:
将式(28)和式(29)分别代入到式(16)中,计算出石英加速度计的指示输出和,并进行加减消元运算,得到以下表达式:Substitute Equation (28) and Equation (29) into Equation (16) respectively to calculate the indication output of the quartz accelerometer and , and perform addition, subtraction, and subtraction operations to obtain the following expression:
根据式(30)可得:According to formula (30), we can get:
其中in
根据式(31)可得:According to formula (31), we can get:
其中in
补偿掉动态失准角所产生的附加加速度后,可以辨识出和项。After compensating for the additional acceleration caused by the dynamic misalignment angle, it can be identified and item.
位置5和6上石英加速度计输入轴、摆轴和输出轴的比力分别为:The specific forces of the input shaft, pendulum shaft and output shaft of the quartz accelerometer at positions 5 and 6 are:
将式(34)和式(35)分别代入到式(16)中,计算出石英加速度计的指示输出和,并进行加减消元运算,得到以下表达式:Substitute Equation (34) and Equation (35) into Equation (16) respectively to calculate the indication output of the quartz accelerometer and , and perform addition, subtraction, and subtraction operations to obtain the following expression:
根据式(36)可得:According to formula (36), we can get:
其中in
根据式(37)可得:According to formula (37), we can get:
其中in
同样补偿掉动态失准角所产生的附加加速度后,可以辨识出和项。Also after compensating for the additional acceleration caused by the dynamic misalignment angle, it can be identified that and item.
位置7和8上石英加速度计输入轴、摆轴和输出轴的比力分别为:The specific forces of the input shaft, pendulum shaft and output shaft of the quartz accelerometer at positions 7 and 8 are:
将式(39)和式(40)分别代入到式(16)中,计算出石英加速度计的指示输出,并进行加减消元运算,得到以下表达式:Substitute Equation (39) and Equation (40) into Equation (16) respectively to calculate the indication output of the quartz accelerometer , and perform addition, subtraction, and subtraction operations to obtain the following expression:
根据式(42)可得:According to formula (42), we can get:
其中in
精确辨识出系数后,再减去以前辨识的,可以辨识误差模型系数。accurately identified After the coefficient, subtract the previously identified , can be identified Error model coefficients.
根据式(43)可得:According to formula (43), we can get:
其中in
位置9和10上石英加速度计输入轴、摆轴和输出轴的比力分别为:The specific forces of the input, pendulum, and output shafts of the quartz accelerometer at positions 9 and 10 are:
将式(45)和式(46)分别代入到式(16)中,计算出石英加速度计的指示输出,并进行加减消元运算,得到以下表达式:Substitute Equation (45) and Equation (46) into Equation (16) respectively to calculate the indication output of the quartz accelerometer , and perform addition, subtraction, and subtraction operations to obtain the following expression:
根据式(48)可得:According to formula (48), we can get:
其中in
补偿动态失准角的影响之后,辨识后,再减去即可得。After compensating for the effect of dynamic misalignment angle, identify , then subtract available .
根据式(49)可得:According to formula (49), we can get:
其中in
位置11和12上石英加速度计输入轴、摆轴和输出轴的比力分别为:The specific forces of the input shaft, pendulum shaft and output shaft of the quartz accelerometer at positions 11 and 12 are:
将式(51)和式(52)分别代入到式(16)中,计算出石英加速度计的指示输出和,并进行加减消元运算,得到以下表达式:Substitute Equation (51) and Equation (52) into Equation (16) respectively to calculate the indication output of the quartz accelerometer and , and perform addition, subtraction, and subtraction operations to obtain the following expression:
根据式(54)可得:According to formula (54), we can get:
其中in
辨识出后,再减去辨识出的即可得到项。identify After that, subtract the identified can get item.
根据式(55)可得:According to formula (55), we can get:
其中in
综合前面推出的公式,可得石英加速度计高阶误差项的标定结果如下:Combining the formulas introduced above, the calibration results of the high-order error term of the quartz accelerometer can be obtained as follows:
可归纳出石英加速度计高阶误差模型系数的表达式为The expression of the high-order error model coefficients of the quartz accelerometer can be summarized as
如图2所示,本实施例所涉及的一种加速度计在精密离心机上的参数标定方法,令,可得误差模型系数项的表达式为:As shown in FIG. 2, a method for calibrating parameters of an accelerometer on a precision centrifuge involved in this embodiment is as follows: , the error model coefficients can be obtained The expression for the term is:
其中表示矩阵第行,第列的元素。假设石英加速度计的指示输出独立且精度相等,其不确定度为,那么项的不确定度为in representation matrix the first OK, No. element of the column. Assuming that the indicated outputs of the quartz accelerometer are independent and of equal accuracy, the uncertainty is ,So The uncertainty of the term is
假设离心机提供5g,10g,15g和20g的向心加速度,石英加速度计的输出的不确定度为,动态失准角不确定度,动态半径误差的不确定度。经计算可得,石英加速度计的二次项和交叉二次项的不确定度分别为 Assuming centripetal accelerations of 5g, 10g, 15g and 20g are provided by the centrifuge, the uncertainty of the output of the quartz accelerometer is , the dynamic misalignment angle uncertainty , the uncertainty of the dynamic radius error . After calculation, the uncertainty of the quadratic term and the cross quadratic term of the quartz accelerometer are respectively
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。The above are only specific embodiments of the present invention, but the protection scope of the present invention is not limited thereto. Any person skilled in the art who is familiar with the technical scope disclosed by the present invention can easily think of changes or substitutions. All should be included within the protection scope of the present invention. Therefore, the protection scope of the present invention should be subject to the protection scope of the claims.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110313204.0A CN112698055B (en) | 2021-03-24 | 2021-03-24 | Parameter calibration method of accelerometer on precision centrifuge |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110313204.0A CN112698055B (en) | 2021-03-24 | 2021-03-24 | Parameter calibration method of accelerometer on precision centrifuge |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112698055A CN112698055A (en) | 2021-04-23 |
CN112698055B true CN112698055B (en) | 2021-06-25 |
Family
ID=75515561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110313204.0A Active CN112698055B (en) | 2021-03-24 | 2021-03-24 | Parameter calibration method of accelerometer on precision centrifuge |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112698055B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113865583B (en) * | 2021-07-20 | 2024-02-09 | 北京航天控制仪器研究所 | Accelerometer combination dynamic installation deviation matrix determining and compensating method |
CN113865585B (en) * | 2021-09-07 | 2023-08-29 | 北京航天控制仪器研究所 | Method and system for separating and compensating combined high-order error coefficient of gyroscope |
CN113804221B (en) * | 2021-10-14 | 2023-10-03 | 天津科技大学 | A combined calibration method of centrifuge accelerometer based on modular observation method |
CN114034885B (en) * | 2021-11-11 | 2024-04-26 | 哈尔滨工业大学 | A testing method of gyro accelerometer on a dual-axis centrifuge based on full error analysis |
CN114018292B (en) * | 2021-11-11 | 2024-08-06 | 中国航空工业集团公司北京长城计量测试技术研究所 | Double-shaft centrifugal machine control method, device, computer equipment and storage medium |
CN118032013B (en) * | 2024-04-11 | 2024-06-18 | 伸瑞科技(北京)有限公司 | Method and system for verifying calibration accuracy of orthogonal dual accelerometers on dividing heads |
CN119354238A (en) * | 2024-12-23 | 2025-01-24 | 伸瑞科技(北京)有限公司 | A method, system and medium for calibrating jerk error term coefficient of PIGA |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102221372B (en) * | 2011-03-25 | 2012-10-10 | 北京航空航天大学 | Method for calibrating error of inertia measurement unit by using centrifugal machine and turntable |
US9207256B2 (en) * | 2012-02-14 | 2015-12-08 | Infineon Technologies Ag | Auto-calibration of acceleration sensors |
CN102841218A (en) * | 2012-08-21 | 2012-12-26 | 哈尔滨工业大学 | Double-shaft centrifuge based gyro accelerometer testing method |
CN108917787B (en) * | 2018-04-20 | 2021-04-13 | 北京航天控制仪器研究所 | Acceleration sensitivity compensation method for MEMS gyroscope scale factor |
CN109813343B (en) * | 2019-03-21 | 2021-06-08 | 哈尔滨工业大学 | A method for measuring the initial alignment error of a centrifuge |
CN111879335A (en) * | 2019-09-20 | 2020-11-03 | 天津科技大学 | A centrifuge-based multi-position gyroscope drift coefficient calibration method |
CN111781400B (en) * | 2020-07-10 | 2021-08-10 | 哈尔滨工业大学 | Method for calibrating high-order error coefficient of accelerometer |
CN111947683B (en) * | 2020-07-17 | 2022-07-05 | 北京航天控制仪器研究所 | Off-line measurement and on-line compensation method and device for radius error of precision centrifuge |
-
2021
- 2021-03-24 CN CN202110313204.0A patent/CN112698055B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN112698055A (en) | 2021-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112698055B (en) | Parameter calibration method of accelerometer on precision centrifuge | |
CN110006450B (en) | A calibration method of laser strapdown inertial navigation system on horizontal three-axis turntable | |
CN103808331B (en) | A kind of MEMS three-axis gyroscope error calibrating method | |
CN101629969B (en) | Calibration compensation and test method and device for output error of low-precision optical fiber inertial group | |
CN111781400A (en) | A method for calibrating high-order error coefficients of accelerometers | |
CN101067628B (en) | Vector correcting method for non-gyro accelerometer array mounting error | |
CN113156166A (en) | Symmetry melting and elimination test method of quartz accelerometer on precision centrifuge | |
CN112666368A (en) | Method for quickly calibrating accelerometer on variable-speed centrifuge | |
CN102841218A (en) | Double-shaft centrifuge based gyro accelerometer testing method | |
CN109029502B (en) | Method for determining output value of quartz accelerometer of inertial platform system | |
Ren et al. | Calibration method of accelerometer’s high-order error model coefficients on precision centrifuge | |
CN108917788B (en) | Method and system for testing dynamic precision of accelerometer of inertial platform system | |
CN115979311B (en) | PIGA Cross Quadratic Coefficient Calibration Method, System, Equipment and Medium | |
CN102636184B (en) | Specific force-sensitive term calibration method for flexible gyroscope based on centrifuge in environment without angular movement | |
Sun et al. | Sequential calibration method of nonlinear errors of PIGA on counter-rotating platform centrifuge | |
CN113945230B (en) | A method for identifying higher-order error coefficients of inertial devices | |
Ermakov et al. | Angular velocity estimation of rotary table bench using aggregate information from the sensors of different physical nature | |
CN115876225A (en) | MEMS IMU calibration method and system based on two-degree-of-freedom turntable | |
Yingbo et al. | Calibration method of quartz accelerometer on dynamic centrifuge | |
CN114034885B (en) | A testing method of gyro accelerometer on a dual-axis centrifuge based on full error analysis | |
CN113701747B (en) | Inertial measurement system attitude angle error separation method based on centrifugal machine excitation | |
CN114324977B (en) | Method for calibrating accelerometer of inertial navigation on centrifugal machine based on full-error analysis | |
CN115931009B (en) | Inertial device centrifugal measurement method based on gyroscope and laser ranging | |
Liu et al. | On pseudo second-order term of pendulous integrating gyro accelerometer calibrated in dual-axis precision centrifuge | |
Hegazy et al. | Calibration and compensation of scale factor non-linearity and non-orthogonality errors for dynamically tuned gyroscope (DTG) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20250113 Address after: 150001 No. 92 West straight street, Nangang District, Heilongjiang, Harbin Patentee after: HARBIN INSTITUTE OF TECHNOLOGY Country or region after: China Address before: 100089 293, 3 / F, block D, building 24, yard 68, Beiqing Road, Haidian District, Beijing Patentee before: SHENRUI TECHNOLOGY (BEIJING) CO.,LTD. Country or region before: China Patentee before: HARBIN INSTITUTE OF TECHNOLOGY |