CN112690759A - 一种自动睡眠分期的建立方法及其应用 - Google Patents

一种自动睡眠分期的建立方法及其应用 Download PDF

Info

Publication number
CN112690759A
CN112690759A CN202011548920.9A CN202011548920A CN112690759A CN 112690759 A CN112690759 A CN 112690759A CN 202011548920 A CN202011548920 A CN 202011548920A CN 112690759 A CN112690759 A CN 112690759A
Authority
CN
China
Prior art keywords
sleep
scale
entropy
stage
sampling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011548920.9A
Other languages
English (en)
Other versions
CN112690759B (zh
Inventor
黄锷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Biomedical Valley Construction Development Co ltd
Original Assignee
Jiangsu Aidi Science And Technology Research Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Aidi Science And Technology Research Institute Co ltd filed Critical Jiangsu Aidi Science And Technology Research Institute Co ltd
Priority to CN202011548920.9A priority Critical patent/CN112690759B/zh
Priority to US17/618,502 priority patent/US20220323000A1/en
Priority to PCT/CN2021/071979 priority patent/WO2022134242A1/zh
Publication of CN112690759A publication Critical patent/CN112690759A/zh
Application granted granted Critical
Publication of CN112690759B publication Critical patent/CN112690759B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4815Sleep quality
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4812Detecting sleep stages or cycles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4809Sleep detection, i.e. determining whether a subject is asleep or not
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4863Measuring or inducing nystagmus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/372Analysis of electroencephalograms
    • A61B5/374Detecting the frequency distribution of signals, e.g. detecting delta, theta, alpha, beta or gamma waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7246Details of waveform analysis using correlation, e.g. template matching or determination of similarity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Psychiatry (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Evolutionary Computation (AREA)
  • Anesthesiology (AREA)
  • Psychology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

本发明提供一种自动睡眠分期的建立方法及其应用。该自动睡眠分期的建立方法包括:获取若干组PSG信号以及PSG信号的人工睡眠标记信息;预分析,将PSG信号中的原始时间序列分解为一组类本征模态函数;将所述类本征模态函数进行组合,得到m组时间序列集合;多尺度熵分析,使用n个采样尺度对m组时间序列集合进行熵值计算,得到具有m×n个元素的熵矩阵;建立所述意识水平与熵矩阵的元素之间的相关系数矩阵,找出相关系数矩阵中最大正相关元素或者最大负相关元素相对应的采样尺度和滤波尺度;采样尺度为粗粒度尺度;根据最大正相关元素或最大负相关元素的采样尺度和滤波尺度,计算待测者在该采样尺度和滤波尺度的熵值,根据该熵值判断患者的睡眠状态。

Description

一种自动睡眠分期的建立方法及其应用
技术领域
本发明涉及数据处理技术领域,特别涉及一种自动睡眠分期的建立方法及其应用。
背景技术
我们一生中三分之一的时间是在睡眠中度过的,睡眠是我们生活中至关重要的一部分。睡眠质量不仅影响了我们的日常健康,也会影响我们的经济生产力。尽管睡眠的功能还不完全清楚,但是最近的研究发现,除了传统认为的增强记忆以外,神经胶质细胞的收缩和脑脊液冲洗的增加在废物清除中也起着关键的作用。研究还表明,睡眠不是一个统一的状态,从一个状态到另一个状态的切换是高度非线性且不稳定的过程。睡眠障碍会带来严重的后果,包括生活质量下降、并发症、早期死亡等,并对经济社会成本造成巨大的影响。这些因素使得对睡眠的研究至关重要。传统上,根据R&K(Rechtschaffen and Kales)标准,正常的睡眠分为五个阶段:快速眼动(REM)和其他四个非快速眼动(NREM)阶段(1-4)。根据多导睡眠图记录的特征(包括脑电图,肌电图和眼电图以及其他参数)来估计睡眠状态,在临床实践中,睡眠技术人员以视觉方式确定每个30s的睡眠阶段。但是,手动评分是一个耗时的过程,并且由于不同阶段之间具有相似性,不同的人可能会得出不一致的结果。因此,通过多导睡眠图评估睡眠质量是一项劳动强度大,耗时长且容易出错的过程。除此之外,随着睡眠监测的患者数量的增多,有限的睡眠分析师越来越难以满足日渐增多的睡眠图分析需求。
因此,目前亟需一种准确且客观的方法来对睡眠阶段进行自动分期并评估睡眠质量。
发明内容
为了解决上述问题,在本发明中,我们提出了本征多尺度熵iMSE(intrinsicMultiscale Entropy,iMSE)作为一种新的信号分析方法。首先,使用多尺度熵MSE(Multiscale Entropy,MSE)来研究睡眠状态,旨在利用多个时间尺度上的熵求和来量化复杂度。在多尺度熵中,熵定义为对多个时间尺度上的粗粒化非线性时间序列进行“不可预测”的物理测量,在计算熵时,可以使用样本熵或者近似熵来定义。合并为一个样本的不重叠样本的数量被定义为MSE中粗粒化的时间尺度。在进行数字信号处理时,时间尺度1表示测量的原始时间,并按原始采样率进行数字化。时间尺度n表示粗粒化的时间序列,采样间隔为原始数据的n倍,采样率为原始采样率的1/n。因此,粗粒化的时间尺度以原始采样间隔的数量表示时间长度。MSE的方法反映了一个观点,即熵是一种取决于采样间隔时间尺度的度量。其次,由于睡眠过程不是稳定的过程,因此,我们提出本征多尺度熵(iMSE),即通过结合经验模态分解(Empirical Mode Decomposition,EMD)与多尺度熵来解决非稳态的限制。经验模态分解算法能够执行去噪声和去趋势两个预处理步骤,以便从非线性和非稳态的真实信号中提取所需要的信息。EMD可以作为自适应的二元滤波器组,将复杂的时间序列分解为一组本征模态函数(IMFs)。每一个本征模态函数具有带宽较小且零均值的特征,因此,本征模态函数是稳态的。可以使用本征模态函数的不同组合来重建滤波后的时间序列,重建后的时间序列可以从原始的时间序列中滤除高频噪声成分或者低频趋势。作为一种功能组合(functional combination),我们提出了iMSE方法作为一种新的信号分析方法。
此外,为了避免高计算成本和EMD的其他细节问题,我们引入一种简单的基于滤波器的伪EMD方法,该方法模仿了EMD的功能,避免模态混叠的问题,从而从时间序列中系统地提取了滤波后的分量。iMSE在多个粗粒度时标(即采样尺度)上对量化后的分量的熵进行量化。同时,滤波频带代表iMSE中的第二滤波尺度。然后,将熵值显示在采样尺度和滤波尺度的两个轴上的二维矩阵中,极大地增强了原始MSE的功能。
在本发明中,我们提供一种自动睡眠分期的建立方法,通过对采样尺度和滤波尺度的两个轴上的熵矩阵进行分析,找出适用于自动睡眠分期的最佳采样尺度和滤波尺度。在分析患者的睡眠状态时,采用本方法只需要计算最佳采样尺度和滤波尺度的熵值,即可以通过该熵值进行自动睡眠分期。该方法将大大减少用多尺度熵进行睡眠分期的计算量,进而提高了自动睡眠分期的速度。
为了实现上述发明目的,本发明提供一种自动睡眠分期的建立方法,包括以下步骤:获取若干组PSG信号以及PSG信号的人工睡眠标记信息;预分析,用于将PSG信号中的每一阶段的原始时间序列分解为一组本征模态函数或者类本征模态函数;将所述本征模态函数或者类本征模态函数进行组合,得到m组时间序列集合;多尺度熵分析,使用n个采样尺度对m组时间序列集合进行熵值计算,得到具有m×n个元素的熵矩阵;建立意识水平与熵矩阵元素之间的相关系数矩阵,找出相关系数矩阵中最大正相关元素或者最大负相关元素的采样尺度和滤波尺度;所述采样尺度为所述粗粒度尺度;所述滤波尺度为时间序列集合;根据最大正相关元素或者最大负相关元素的采样尺度和滤波尺度,计算待测者在该采样尺度和滤波尺度的熵值,根据该熵值判断患者的睡眠状态。
优选地,将PSG信号中的每一阶段的原始时间序列分解为一组本征模态函数时,采用模态分解方法,所述模态分解方法为下列方法其中之一:经验模态分解法,集合经模态分解法,自适应性二进位遮罩经验模态分解法。
优选地,将PSG信号中的每一阶段的原始时间序列分解为一组类本征模态函数时,采用一组高通滤波器,所述高通滤波器的截止频率分别为32Hz、16Hz、8Hz、4Hz、2Hz和1Hz。
优选地,PSG信号至少包含以下脑电信号其中之一:Fp4-A1,F4-A1,C4-A1,P4-A1,O2-A1。
优选地,意识水平根据人工睡眠标记信息而定,所述意识水平用于反映睡眠中的清醒程度,其中,清醒阶段被量化为6,快速眼动阶段被量化为5,NREM1阶段被量化为4,NREM2阶段被量化为3,NREM3阶段被量化为2,以及NREM4阶段被量化为1。
优选地,建立意识水平与熵矩阵元素之间的相关系数矩阵时,基于Pearson系数。
优选地,根据待测者在最大正相关元素或者最大负相关元素的采样尺度和滤波尺度的熵值判断患者的睡眠状态时,采用人工智能方法计算不同睡眠状态之间的阈值。
本发明还提供一种自动睡眠分期方法,其特征在于,包含以下步骤:获取待测试者的PSG信号;将待测试者的PSG信号分解为若干个阶段的原始时间序列;取得一个阶段的原始时间序列,将该原始时间序列分解为一组本征模态函数或者类本征模态函数;根据最大正相关元素或者最大负相关元素的采样尺度和滤波尺度,获得在该尺度的熵值;根据所述熵值,判断待测试者在该阶段的睡眠状态。
优选地,PSG信号至少包含以下脑电信号其中之一:Fp4-A1,F4-A1,C4-A1,P4-A1,O2-A1。
优选地,将待测试者的PSG信号分解为若干个阶段的原始时间序列时,每一阶段的时间为30秒。
通过本发明中的自动睡眠分期建立方法,我们可以建立一种自动睡眠分期方法,该方法只需要测量待测患者在最佳采样尺度和滤波尺度的熵值,即可以通过该熵值进行自动睡眠分期。该方法将大大减少用多尺度熵进行睡眠分期的计算量,进而提高了自动睡眠分期的速度。
附图说明
图1本发明自动睡眠分期的建立方法流程图。
图2为六种不同睡眠阶段的五通道EEG图像。
图3是6种睡眠状态的典型的类IMF集合(通道为C4-A1)。
图4为本发明中进行原始时间序列分解及重新组合得到时间序列集合的方法流程图。
图5为对于每一组时间序列集合均进行从1到n的采样尺度的熵值计算。
图6为六种不同睡眠阶段的二维熵矩阵的示例图。
图7为5个EEG记录通道的5个熵矩阵中离散意识水平和各个熵矩阵元素之间的相关系数矩阵。
图8a为F4-A1通道中手动标定睡眠阶段、PEDCL和NEDCL的时间序列和趋势;图8b为C4-A1通道中手动标定睡眠阶段、PEDCL和NEDCL的时间序列和趋势。
图9a为五通道的六个睡眠状态的PEDCL值之间的受试者内部比较结果;图9b为五通道的六个睡眠状态的NEDCL值之间的受试者内部比较结果。
图10a为五通道的六个睡眠状态的PEDCL值之间的受试者之间比较结果;图10b为五通道的六个睡眠状态的NEDCL值之间的受试者之间比较结果。
图11为本发明中自动睡眠分期方法的流程图。
具体实施方式
以下配合附图及本发明的较佳实施例,进一步阐述本发明为达成预定发明目的所采取的技术手段。
请参照图1所示,为本发明自动睡眠分期的建立方法的详细实施方式。在步骤110中,获取若干组多导睡眠图(polysomnographic,PSG)信号以及多导睡眠图的人工睡眠标记信息。多导睡眠图仪器可被用来测量并记录一种或多种生理信号,如F3-A2脑波信号,F4-A1脑波信号,C3-A2脑波信号,C4-A1脑波信号,P3-A2脑波信号,P4-A1脑波信号,左眼眼动信号,右眼眼动信号等。由于睡眠属于脑波活动,因此离脑部越近的生理信号越能反映睡眠状态,一般选用脑波信号来进行睡眠分期。睡眠中的循环交替模式(cyclic alternatingpattern,CAP)是在非快速眼动睡眠期出现的一种呈周期性的脑波改变,该成分反映了睡眠的微观结构。睡眠中的循环交替模式中的多导睡眠图记录可以从Phsionet网站上下载。该数据库提供了一共108种PSG记录,其中包含了8种不同的病理情况。在本发明中,我们仅选择正常、失眠和嗜睡症三种病理情况进行研究,为了减少本发明自动睡眠分期建立方法的变量,我们还要求这些多导睡眠图记录中记录的脑电波(Electroencephalogram,EEG)通道和采样频率必须一致。基于这些标准,我们以512Hz的采样率采样的Fp4,F4,C4,P4和O2这五个EEG通道采集的PSG记录。六个正常对照受试者(n1,n2,n3,n5,n10和n11),五个失眠受试者(ins2,ins4,ins6,ins7和ins8)和五个嗜睡症受试者(narco1,narco2,narco3,narco4和narco5)用于本发明中的研究。对于每个PSG记录,文本文件中都包含事件时间,睡眠阶段和CAP注释信息。图2为睡眠状态典型的五通道脑电波图谱,睡眠状态中包括清醒阶段、非快速眼动阶段(包括第一阶段-第四阶段,分别记为NREM1,NREM2,NREM3和NREM4)以及快速眼动(rapid eye movement,REM)阶段。图2中显示了六个示例,分别对应于上述六种不同睡眠阶段的五通道EEG图像。从图2中可以看出,表示深度睡眠阶段的NREM3和NREM4的EEG信号中包含了低频振荡。因此,NREM3和NREM4也被称作为慢波睡眠。
步骤120,对上述PSG信号中若干阶段的原始时间序列分别分解为一组本征模态函数或者类本征模态函数。因为PSG记录中,将睡眠按照30s分为一个阶段,进行睡眠状态的分析。因此,在本发明中我们建立自动睡眠分期方法时,也将30s作为一个阶段进行分析,将PSG信号中若干阶段的原始时间序列分别分解为一组本征模态函数或者类本征模态函数。预分析的本质是将原始时间序列分解为一组独立的窄带宽和具有二进频带的去趋势零均值的本征模态函数或者类本征模态函数。该步骤至关重要,因为熵是根据数据的概率密度函数计算得出的,但是概率密度只能在没有趋势的数据上进行计算。在对原始时间序列进行分解时,可以采用模态分解的方法进行分解。因为经验模态分解是理想的二元滤波器组,可以将非线性时间序列自适应地分解为一组本征模态函数。模态分解方法指本发明中利用任意一种可以取得本征模态函数分量的模态分解方法,例如经验模态分解法(EmpiricalMode Decomposition,EMD),集合经模态分解法(Ensemble Empirical ModeDecomposition,EEMD),或者自适应性二进位遮罩经验模态分解法(Conjugate AdaptiveDyadic Masking Empirical Mode Decomposition,CADM-EMD)。
在本发明中,我们还提供一种替代方法用于克服模态分解方法用于睡眠分期的不足。模态分解方法用于睡眠分期存在以下缺陷:(1)除非在增强算法中使用昂贵的计算和精心设计的屏蔽方法,否则很难完全解决模态混叠问题,所得的本征模态函数(IMF)可能在不同的睡眠阶段具有不同的IMF固有频段的失配。例如,来自记录在NREM1的睡眠阶段的EEG信号的IMF1的瞬时频率的分布不同于记录在NREM4的睡眠阶段的EEG信号的瞬时频率的分布。(2)将来自IMF的结果频段与EEG信号的通用频段对齐并不容易。例如,通常定义的δ频段是0.5-4Hz,θ频段为4-8Hz,α频段为8-16Hz,β频段为16-30Hz,γ频段为30-60Hz。这些频段是相似的,但是并非完全相同。为了便于与通常定义的频段进行比较,我们可以模拟一个预定的(但是不是自适应的)滤波器组,以另一种方法从EEG信号中提取一组类IMF函数。(3)对于那些不熟悉模态分解方法的人,使用滤波器方法更容易实现。在本发明提供的替代方法中,使用截止频率为64Hz的低通滤波器首先从时间序列中去除高频噪声。然后,使用一组截止频率依次为32Hz、16Hz、8Hz、4Hz、2Hz和1Hz的高阶高通滤波器来提取前6个类IMF。从理论上来讲,通过替代方法分解的前6个类IMF的频段为32-64Hz(类似于γ频段)、16-32Hz(β频段)、8-16Hz(α频段)、4-8Hz(θ频段)、2-4Hz(δ频段)和1-2Hz(低δ频段),其对应关系如表1中所示。
Figure BDA0002857151280000061
Figure BDA0002857151280000071
表1
采用滤波器方法取得的类IMF函数,可以很好地解决来自IMF的结果频段与EEG通用频段不易对齐的问题。图3是通过该方法得到的6种睡眠状态的典型的类IMF集合,该附图中选取的EEG通道为C4-A1通道。其中类IMF1-6的滤波频带分别为γ频段(32-64Hz)、β频段(16-32Hz)、α频段(8-16Hz)、θ频段(4-8Hz)、δ频段(2-4Hz)和低δ频段(1-2Hz)。
步骤121,将分解得到的本征模态函数或者类本征模态函数进行组合,得到m组时间序列集合。可以使用本征模态函数或者类本征模态函数的各种组合将这组滤波后的时间序列重组为m组去趋势零均值时间序列的新集合,该新集合显示了原始数据不同方面的信息(如仅高频)或者任何特定的选定频段。如图4所示,显示了步骤120-步骤121的过程,将一组复杂的时间序列通过模态分解或者其替代方法,分解得到一组本征模态函数或者类本征模态函数,再将该组本征模态函数或者类本征模态函数进行组合,重新组合的滤波时间序列将覆盖原始数据的所有可能的频率分段表示。以上述的6个类本征模态函数为例,从这最初的6个类本征模态函数中,可以重建14个额外的滤波时间序列,以进行进一步的分析。20个经过过滤的时间序列包括仅IMF1,IMFs 1-2,IMFs 1-3,IMFs 1-4,IMFs 1-5,IMFs 1-6;仅IMF2,IMFs2-3,IMFs2-4,IMFs2-5,IMFs 2-6;仅IMF 3,IMFs3-4,IMFs3-5,IMFs 3-6;仅IMF 4,IMFs4-5,IMFs 4-6;仅IMF5和IMF5-6。
步骤130,多尺度熵分析,使用n个采样尺度对步骤121中得到的m组时间序列集合分别进行熵值计算,得到具有m×n个元素的熵矩阵。如图5中所示,对于每一组时间序列集合均进行从1到n的采样尺度的熵值计算,从而得到一个具有m×n个元素的熵矩阵。多尺度熵分析是根据对应于多个不同时间尺度的熵值来评估时间序列的复杂度。在iMSE中,可以使用多个采样尺度来估计每个包含一个或多个本征模态函数或者类本征模态函数的组合后的滤波时间序列的熵值,以获得熵的行向量。采样尺度定义为从原始时间序列中非重叠地合并到一个粗粒度时间序列的连续样本的数量。采样时间序列的长度是原始时间序列长度的1/n,其中n是采样尺度。只有采样尺度为1的时间序列才是原始时间序列。可以采用任何熵定义方法来计算粗粒度时间序列中的熵值,如近似熵,样本熵等。在本发明中,我们选择近似熵(approximate entropy,ApEn)来计算多尺度熵分析中经过滤波的时间序列的熵向量。为了减小个例以及不同睡眠阶段对熵值的影响,客观地显示各个不同睡眠状态的熵值情况,我们可以选择多个睡眠阶段进行研究,分别按照步骤120至步骤130,求出各个睡眠阶段的熵矩阵,然后针对具有相同人工标记的睡眠阶段的熵矩阵求出平均值,得到平均熵矩阵。请参照图6所示,为本发明中20种不同的滤波尺度的时间序列从2-120的60个采样尺度以2为步长进行熵值计算的结果。在60个不同的采样尺度上,针对20个滤波后的时间序列,计算了具有20×60个元素的二维平均熵矩阵。图6代表了6种不同睡眠阶段的6个典型的平均熵矩阵。在这些子图中,熵值以不同的颜色显示,X轴标注从2到120的采样尺度,步长为2,Y轴标注在类本征模态函数中的滤波尺度,从1到20。每个熵矩阵代表在滤波和采样的多个控制条件下针对同一阶段的EEG信号的熵度量,不同睡眠阶段之间存在明显的差异。
步骤140,建立意识水平与熵矩阵元素之间的相关系数矩阵,找出相关系数矩阵中最大正相关元素或最大负相关元素的采样尺度和滤波尺度。其中,意识水平根据PSG信号的人工睡眠标记而定。为了建立意识水平与熵测值之间的关系,首先根据手动分类的睡眠阶段定义睡眠中的离散意识水平(discrete consciousness level,DCL),意识水平用于反映睡眠中的清醒程度。代表最高意识水平的清醒阶段被量化为6,快速眼动阶段被量化为5,NREM1阶段被量化为4,NREM2阶段被量化为3,NREM3阶段被量化为2,以及代表最低意识水平的NREM4阶段被量化为1。平均而言,每个受试者在一夜的睡眠中有将近1000个阶段,这形成了具有上述定义的有幅值的时间序列,成为DCL序列。接下来,我们将检查DCL序列与每个iMSE矩阵元素的时间序列之间的相关性。我们发现,基于Pearson相关系数,一些元素与睡眠中的DCL呈正相关,另一些元素则呈负相关。图7显示了针对5个EEG记录通道的5个熵矩阵中DCL和各个元素之间的相关系数矩阵。前五个子图表示从五个不同的EEG通道得出的相关系数矩阵,第六个子图显示前五个子图的均值矩阵。然后,我们从每个相关系数矩阵中各选取一个与DCL序列正相关性和负相关性最大的一个元素。例如,通道Fp2-A1(子图1)的矩阵中,最大正相关的元素的滤波尺度为IMFs1-3(α-γ频段),采样尺度为2(即在512Hz的采样率下2/512秒的采样尺度),其相关系数为0.64869;而最大负相关的元素的滤波尺度为IMF1(γ频段),采样尺度为102(即在512Hz的采样率下102/512秒的采样尺度),其相关系数为-0.73802。该位置对于所有的六个受试者和所有的五个电极都是接近的,我们可以选择该采样尺度和滤波尺度作为待测患者的最佳采样尺度和滤波尺度,进而根据该采样尺度和滤波尺度下的熵值对待测患者自动进行睡眠分期。正如上图中的平均矩阵所示,这个结论是正确的。因此,我们决定根据整体结果选择这两个熵元素,如子图6所示,以代表所有的受试者。在本发明中,除了使用最大正相关元素或最大负相关元素的采样尺度和滤波尺度位置的熵值之外,还可以采集最大正相关元素或最大负相关元素附近的几个采样尺度和滤波尺度位置的熵值,增加该自动睡眠分期方法的适应性。请参照图8所示,我们研究了本征熵与离散意识水平之间的正负关系。与DCL序列正相关的熵元素记为PEDCL(Positive Entropyfor DCL),与DCL序列负相关的熵元素记为NEDCL(Negative Entropy for DCL)。图8显示了F4-A1(图8a)和C4-A1(图8b)的两个EEG通道的手动标记睡眠状态,PEDCL和NEDCL。不同阶段的PEDCL和NEDCL值以及其趋势均在图中显示,其中趋势是指截止频率为每小时1周期的数字低通滤波器过滤的实际各个阶段的读数。手动睡眠标记,PEDCL和NEDCL的采样率是使用30s一个周期每小时120个周期对睡眠进行标记。如图8中所示,PEDCL和手动睡眠阶段的趋势是相似的,而NEDCL与手动睡眠阶段趋势呈负相关。从F4-A1和C4-A1通道获得的两个结果都与6个不同受试者的手动睡眠周期完全匹配。因此,本发明中提供的自动睡眠分期方法将可以很好地对睡眠状态进行分期。
步骤150,根据最大正相关元素或最大负相关元素的采样尺度和滤波尺度,计算待测者在该采样尺度和滤波尺度下的熵值,根据该熵值判断患者的睡眠状态。在本发明中,还可以采集最大正相关元素或者最大负相关元素附近的几个采样尺度和滤波尺度位置的熵值,增加该自动睡眠分期方法的适应性。
为了验证离散意识水平的取值是否具有合理性,我们研究了本征多尺度熵中进行的复杂性度量是否与离散意识水平的取值一致。应当指出的是,根据手动睡眠阶段,前述离散的意识水平(DCL)的值为1-6并非是线性的。但是,可以肯定的是,NREM3的意识水平在理论上要高于NREM4,但是NREM4和NREM3的意识水平之间并不存在线性关系。将清醒状态的意识定义为睡眠周期中的最高级别是符合逻辑的,并且四个NREM睡眠阶段的意识级别应按照以下顺序排列:NREM1>NREM2>NREM3>NREM4。因此,PEDCL被认为是一种使用的熵测量,与睡眠中的意识水平呈正相关。现在,至关重要的是要验证通过iMSE进行的复杂性度量是否与此意识水平的取值一致。图9给出了六个睡眠阶段的受试者内部统计比较的结果,其中显示了所有受试者和五个EEG通道的PEDCL平均值和标准差值,其中,图9a为五通道的六个睡眠状态的PEDCL值之间的受试者内部比较结果;图9b为五通道的六个睡眠状态的NEDCL值之间的受试者内部比较结果。通常,结果支持PEDCL值按以下顺序排列:清醒>NREM1>NREM2>NREM3>NREM4。在图中,NREM4的缩写为“N4”;NREM3的缩写为“N3”;NREM2的缩写为“N2”;NREM1的缩写为“N1”;REM的缩写为“R”;清醒状态的缩写为“W”。与PEDCL的结果相反,NEDCL值的顺序是清醒<NREM1<NREM2<NREM3<NREM4。唯一例外的是REM。尽管REM睡眠状态是在50多年前发现的,但是对REM和非REM睡眠之间的神经回路转换仍然知之甚少。因此,REM阶段称为反常睡眠阶段。目前已经有研究提出了在REM和非REM睡眠阶段之间切换的脑干触发器控制。重要的是,我们的结果表明REM的PEDCL和NEDCL值更加接近于NREM2阶段的值:对于PEDCL,REM阶段的值低于NREM1和清醒阶段;对于NEDCL,REM阶段的值高于NREM1和清醒阶段。但是,这种独特的特征足以让我们仅根据EEG记录对睡眠阶段进行分类。结合眼电位描记法(EOG)和肌张力数据,我们可以消除任何不确定性,并使得这种分类很容易确定。接下来,我们将检查不同睡眠阶段的受试者间的比较。结果在图10中给出,其中给出了在六个受试者之间针对PEDCL和NEDCL值的受试者之间比较的平均值和标准偏差,其中,图10a为五通道的六个睡眠状态的PEDCL值之间的受试者之间比较结果;图10b为五通道的六个睡眠状态的NEDCL值之间的受试者之间比较结果。个体受试者的值均无显著差异(统计学显著性通过Kolmogorov-Smirnov检验,P<0.05)。这些结果表明,PEDCL和NEDCL可以用作客观定量方法,以基于PEDCL和NEDCL的动态范围反映睡眠周期的波动模式。出于自动对睡眠阶段进行分类的目的,可以考虑动态范围以确定睡眠阶段之间分类的阈值。
通过本发明中的自动睡眠分期建立方法,我们可以建立一种自动睡眠分期方法,该方法只需要测量待测患者在最佳采样尺度和滤波尺度的熵值,即可以通过该熵值进行自动睡眠分期。该方法将大大减少用多尺度熵进行睡眠分期的计算量,进而提高了自动睡眠分期的速度。
请参照图11所示,本发明还提供一种自动睡眠分期方法。该自动睡眠分期方法包括步骤210,获取待测试者的PSG信号,用此PSG信号对睡眠进行分期。步骤220,将待测试者的PSG信号分解为若干个阶段的原始时间序列,每个阶段的时间可以与自动睡眠分期的建立方法一致,目前的手动分期中,均是以30秒为一个阶段,本发明并不以此为限,也可以缩短每个阶段的时间以更好地检查睡眠状态对其他方面的影响。步骤230,取得一个阶段的原始时间序列,将该原始时间序列分解为一组本征模态函数或者类本征模态函数。在该步骤中,原始时间序列的分解方法与自动睡眠分期建立方法中的步骤120相同。步骤240,根据最佳滤波尺度和采样尺度对本征模态函数或类本征模态函数进行分析,获得在该尺度的熵值。此处,最佳滤波尺度和采样尺度是指在自动睡眠分期建立方法中,相关系数矩阵中最大正相关元素或者最大负相关元素的采样尺度和滤波尺度。在图8中,我们已经看到在最佳滤波尺度和采样尺度的熵值与人工睡眠分期的结果趋势一致,该尺度下的熵值非常适用于人工睡眠分期。步骤250,根据最佳滤波尺度和采样尺度的熵值,判断待测试者在该阶段的睡眠状态。步骤260,判断是否所有的阶段均判断完毕。如未判断完毕,则返回步骤230,获取下一个阶段的原始时间序列;若所有阶段均判断完毕,则输出待测试者的睡眠分期结果。采用本发明中的自动睡眠分期方法,只需要测量待测患者在最佳采样尺度和滤波尺度的熵值,即可以通过该熵值进行自动睡眠分期。该方法将大大减少用多尺度熵进行睡眠分期的计算量,进而提高了自动睡眠分期的速度。
为了克服个体差异以及不同睡眠状态之间的阈值问题,本发明中还提供一种人工智能方法,用于辅助进行睡眠分期。该人工智能方法使用Matlab工具箱中的两层前馈模式识别神经网络模型。从五个熵矩阵的五个不同EEG通道中总共选择了200个熵值作为神经网络模型的输入,并且将四个不同的睡眠阶段定义为慢波睡眠(SWS,包括NREM3和NREM4),轻睡眠(NREM1和NREM2),快速眼动阶段(REM)和清醒阶段作为模型的训练目标。自动睡眠分级的性能可以在混淆矩阵中显示,如表2所示。作为混淆矩阵中对角线元素的四个类别的校正百分比分别为88.6%、85.8%、84.2%和81.8%。以上四个状态判定分类与目标分类的一致性均大于80%。因此,本发明提供的自动睡眠分期方法具有较好的正确率,其输出结果与手动标定的睡眠状态高度匹配。
Figure BDA0002857151280000121
表2
以上所述仅是本发明的优选实施例而已,并非对本发明做任何形式上的限制,虽然本发明已以优选实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案的范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本实用发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (10)

1.一种自动睡眠分期的建立方法,其特征在于,包括以下步骤:
获取若干组PSG信号以及PSG信号的人工睡眠标记信息,;
预分析,用于将PSG信号中的每一阶段的原始时间序列分解为一组本征模态函数或者类本征模态函数;将所述本征模态函数或者类本征模态函数进行组合,得到m组时间序列集合;
多尺度熵分析,使用n个采样尺度对m组时间序列集合进行熵值计算,得到具有m×n个元素的熵矩阵;
意识水平根据人工睡眠标记信息而定;
建立所述意识水平与所述熵矩阵的元素之间的相关系数矩阵,找出相关系数矩阵中最大正相关元素或者最大负相关元素相对应的采样尺度和滤波尺度;所述采样尺度为所述粗粒度尺度;
根据最大正相关元素或者最大负相关元素的采样尺度和滤波尺度,计算待测者在该采样尺度和滤波尺度的熵值,根据该熵值判断患者的睡眠状态。
2.根据权利要求1中的自动睡眠分期的建立方法,其特征在于,将PSG信号中的每一阶段的原始时间序列分解为一组本征模态函数时,采用模态分解方法,所述模态分解方法为下列方法其中之一:经验模态分解法,集合经模态分解法,自适应性二进位遮罩经验模态分解法。
3.根据权利要求1中的自动睡眠分期的建立方法,其特征在于,将PSG信号中的每一阶段的原始时间序列分解为一组类本征模态函数时,采用一组高通滤波器,所述高通滤波器的截止频率分别为32Hz、16Hz、8Hz、4Hz、2Hz和1Hz。
4.根据权利要求1中的自动睡眠分期的建立方法,其特征在于,所述PSG信号至少包含以下脑电信号其中之一:Fp4-A1,F4-A1,C4-A1,P4-A1,O2-A1。
5.根据权利要求1中的自动睡眠分期的建立方法,其特征在于,所述意识水平根据人工睡眠标记信息而定,所述意识水平用于反映睡眠中的清醒程度,其中,清醒阶段被量化为6,快速眼动阶段被量化为5,NREM1阶段被量化为4,NREM2阶段被量化为3,NREM3阶段被量化为2,以及NREM4阶段被量化为1。
6.根据权利要求1中的自动睡眠分期的建立方法,其特征在于,建立意识水平与熵矩阵元素之间的相关系数矩阵时,基于Pearson系数。
7.根据权利要求1中的自动睡眠分期的建立方法,其特征在于,根据待测者在最大正相关元素或者最大负相关元素的采样尺度和滤波尺度的熵值判断患者的睡眠状态时,采用人工智能方法计算不同睡眠状态之间的阈值。
8.一种权利要求1的方法的应用,其特征在于,包含以下步骤:
获取待测试者的PSG信号;
将待测试者的PSG信号分解为若干个阶段的原始时间序列;
取得一个阶段的原始时间序列,将该原始时间序列分解为一组本征模态函数或者类本征模态函数;
根据权利要求1中的最大正相关元素或者最大负相关元素相对应的采样尺度和滤波尺度,计算待测试者在所述采样尺度和滤波尺度的熵值;
根据所述熵值,判断待测试者在该阶段的睡眠状态。
9.根据权利要求8中的自动睡眠分期方法,其特征在于:所述PSG信号至少包含以下脑电信号其中之一:Fp4-A1,F4-A1,C4-A1,P4-A1,O2-A1。
10.根据权利要求8中的自动睡眠分期方法,其特征在于,将待测试者的PSG信号分解为若干个阶段的原始时间序列时,每一阶段的时间为30秒。
CN202011548920.9A 2020-12-24 2020-12-24 一种自动睡眠分期的建立方法及其应用 Active CN112690759B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202011548920.9A CN112690759B (zh) 2020-12-24 2020-12-24 一种自动睡眠分期的建立方法及其应用
US17/618,502 US20220323000A1 (en) 2020-12-24 2021-01-15 A Construction Method for Automatic Sleep Staging and Use Thereof
PCT/CN2021/071979 WO2022134242A1 (zh) 2020-12-24 2021-01-15 一种自动睡眠分期的建立方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011548920.9A CN112690759B (zh) 2020-12-24 2020-12-24 一种自动睡眠分期的建立方法及其应用

Publications (2)

Publication Number Publication Date
CN112690759A true CN112690759A (zh) 2021-04-23
CN112690759B CN112690759B (zh) 2022-04-19

Family

ID=75509682

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011548920.9A Active CN112690759B (zh) 2020-12-24 2020-12-24 一种自动睡眠分期的建立方法及其应用

Country Status (3)

Country Link
US (1) US20220323000A1 (zh)
CN (1) CN112690759B (zh)
WO (1) WO2022134242A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116509336A (zh) * 2023-06-27 2023-08-01 安徽星辰智跃科技有限责任公司 基于波形分析的睡眠周期性检测及调节方法、系统和装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7088153B2 (ja) * 2019-09-19 2022-06-21 カシオ計算機株式会社 Cap(周期性脳波活動)検出装置、cap(周期性脳波活動)検出方法及びプログラム
CN115422984B (zh) * 2022-11-04 2023-01-24 北京理工大学 一种基于时间尺度信号分解及熵特征的信号分类方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100217146A1 (en) * 2009-02-24 2010-08-26 Laszlo Osvath Method and system for sleep stage determination
CN102274022A (zh) * 2011-05-10 2011-12-14 浙江大学 一种基于脑电信号的睡眠状态监测方法
US20170360362A1 (en) * 2014-12-05 2017-12-21 Agency For Science, Technology And Research Sleep profiling system with feature generation and auto-mapping
CN108968915A (zh) * 2018-06-12 2018-12-11 山东大学 基于熵特征及支持向量机的睡眠状态分类方法及系统
CN111050642A (zh) * 2017-07-07 2020-04-21 国立大学法人大阪大学 利用了趋势分析的疼痛判别、机器学习、经济性判别模型及应用了IoT的医疗装置、定制化机器学习、以及新型疼痛判别用脑波特征量

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006255134A (ja) * 2005-03-17 2006-09-28 Ikeda Denshi Kogaku Kenkyusho:Kk 脳波計測表示方法及び装置
CN106473705B (zh) * 2016-09-21 2019-05-07 广州视源电子科技股份有限公司 用于睡眠状态监测的脑电信号处理方法和系统
CN108742517B (zh) * 2018-03-27 2023-12-29 重庆邮电大学 一种基于Stacking单导联脑电睡眠自动分期方法
CN109602417A (zh) * 2018-11-23 2019-04-12 杭州妞诺科技有限公司 基于随机森林的睡眠分期方法及系统
CN110897639A (zh) * 2020-01-02 2020-03-24 清华大学深圳国际研究生院 一种基于深度卷积神经网络的脑电睡眠分期方法
CN111493822B (zh) * 2020-03-23 2023-01-31 济南国科医工科技发展有限公司 一种基于睡眠脑电的快速眼动期睡眠行为障碍分类方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100217146A1 (en) * 2009-02-24 2010-08-26 Laszlo Osvath Method and system for sleep stage determination
CN102274022A (zh) * 2011-05-10 2011-12-14 浙江大学 一种基于脑电信号的睡眠状态监测方法
US20170360362A1 (en) * 2014-12-05 2017-12-21 Agency For Science, Technology And Research Sleep profiling system with feature generation and auto-mapping
CN111050642A (zh) * 2017-07-07 2020-04-21 国立大学法人大阪大学 利用了趋势分析的疼痛判别、机器学习、经济性判别模型及应用了IoT的医疗装置、定制化机器学习、以及新型疼痛判别用脑波特征量
CN108968915A (zh) * 2018-06-12 2018-12-11 山东大学 基于熵特征及支持向量机的睡眠状态分类方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHIH-EN KUO 等: "Automatic stage scoring of single-channel sleep EEG based on multiscale permutation entropy", 《ANNUAL IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS) - ENGINEERING TOMORROW"S HEALTHCARE》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116509336A (zh) * 2023-06-27 2023-08-01 安徽星辰智跃科技有限责任公司 基于波形分析的睡眠周期性检测及调节方法、系统和装置
CN116509336B (zh) * 2023-06-27 2024-05-03 安徽星辰智跃科技有限责任公司 基于波形分析的睡眠周期性检测及调节方法、系统和装置

Also Published As

Publication number Publication date
US20220323000A1 (en) 2022-10-13
WO2022134242A1 (zh) 2022-06-30
CN112690759B (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
CN112690759B (zh) 一种自动睡眠分期的建立方法及其应用
Srinivasan et al. Artificial neural network based epileptic detection using time-domain and frequency-domain features
Clayson et al. How does noise affect amplitude and latency measurement of event‐related potentials (ERPs)? A methodological critique and simulation study
CN110960233B (zh) 一种基于脑电波的抑郁状态检测方法及系统
Chua et al. Automatic identification of epileptic electroencephalography signals using higher-order spectra
CN106413541B (zh) 用于诊断睡眠的系统和方法
CN111166327A (zh) 基于单通道脑电信号和卷积神经网络的癫痫诊断装置
CN112641451B (zh) 基于单通道脑电信号多尺度残差网络睡眠分期方法及系统
Decat et al. Beyond traditional sleep scoring: Massive feature extraction and data-driven clustering of sleep time series
Chowdhury et al. Seizure and non-seizure EEG signals detection using 1-D convolutional neural network architecture of deep learning algorithm
Al-Salman et al. Extracting epileptic features in EEGs using a dual-tree complex wavelet transform coupled with a classification algorithm
Si et al. An expert system for EEG monitoring in the pediatric intensive care unit
Kloosterman et al. Boosts in brain signal variability track liberal shifts in decision bias
CN115281685A (zh) 基于异常检测的睡眠分期识别方法、装置以及计算机可读存储介质
Aydemir et al. Determination of hypertension disease using chirp z-transform and statistical features of optimal band-pass filtered short-time photoplethysmography signals
CN115966308B (zh) 一种睡眠记忆活跃水平检测量化的方法、系统和装置
Le Cam et al. A Bayesian approach for simultaneous spike/LFP separation and spike sorting
Kloosterman et al. Boosting brain signal variability underlies liberal shifts in decision bias
Babaeian et al. Applying HRV based online clustering method to identify driver drowsiness
GÜl et al. Automated pre-seizure detection for epileptic patients using machine learning methods
Bhattacharya et al. Unsupervised Seizure Detection in EEG Using Long Short Term Memory Network and Clustering
Das et al. A Computer-aided Method for Sleep Stage Scoring Employing Single Channel Electroencephalogram Signal
Wolfson et al. EEG Complexity Analysis of Brain States, Tasks and ASD Risk
Abdelkader Analysis of significant EEG frequency Bands for Epilepsy Disease using the Self-Organizing map
Zhou et al. Real-Time Epileptic Seizure Detection Based on Deep Learning

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230506

Address after: No. 2 Lijing Road, Jiangbei New District, Nanjing City, Jiangsu Province, 210000

Patentee after: Nanjing Biomedical Valley Construction Development Co.,Ltd.

Address before: 210000 4th floor, building 04, life science and technology Island, 11 Yaogu Avenue, Jiangbei new district, Nanjing City, Jiangsu Province

Patentee before: Jiangsu Aidi science and Technology Research Institute Co.,Ltd.

PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A method for establishing automatic sleep staging and its application

Effective date of registration: 20231220

Granted publication date: 20220419

Pledgee: Bank of Hangzhou Limited by Share Ltd. Nanjing branch

Pledgor: Nanjing Biomedical Valley Construction Development Co.,Ltd.

Registration number: Y2023980072756