CN112679743A - Super-hydrophilic and underwater super-oleophobic material and preparation method and application thereof - Google Patents

Super-hydrophilic and underwater super-oleophobic material and preparation method and application thereof Download PDF

Info

Publication number
CN112679743A
CN112679743A CN202011302908.XA CN202011302908A CN112679743A CN 112679743 A CN112679743 A CN 112679743A CN 202011302908 A CN202011302908 A CN 202011302908A CN 112679743 A CN112679743 A CN 112679743A
Authority
CN
China
Prior art keywords
super
hydrophilic
chitosan oligosaccharide
underwater
mesoporous sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011302908.XA
Other languages
Chinese (zh)
Other versions
CN112679743B (en
Inventor
蔡建国
石洪雁
刘锐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Breit Environmental Protection Technology Co ltd
Original Assignee
Jiangsu Helper Functional Materials Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Helper Functional Materials Co ltd filed Critical Jiangsu Helper Functional Materials Co ltd
Priority to CN202011302908.XA priority Critical patent/CN112679743B/en
Publication of CN112679743A publication Critical patent/CN112679743A/en
Application granted granted Critical
Publication of CN112679743B publication Critical patent/CN112679743B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/204Keeping clear the surface of open water from oil spills

Abstract

The invention discloses a super-hydrophilic and underwater super-oleophobic material, a preparation method and application thereof, wherein the preparation method of the material comprises the following steps: acid liquor is adopted to treat mesoporous SiO2Acidizing the nano material; acidized mesoporous SiO2Mixing the nano material with the chitosan oligosaccharide solution, stirring for reaction to obtain mesoporous SiO coupled with the chitosan oligosaccharide2A nanomaterial; coupling mesoporous SiO of chitosan oligosaccharide2Mixing the nano material and dianhydrogalactitol in an organic solvent, and refluxing for 5-10 hours at 80-130 ℃; and after the reaction is finished, collecting and purifying the product to obtain the super-hydrophilic and underwater super-oleophobic material. The super-hydrophilic and underwater super-oleophobic material can be used for oil-water separation, and can improve the oil-water separation efficiency.

Description

Super-hydrophilic and underwater super-oleophobic material and preparation method and application thereof
Technical Field
The invention relates to the technical field of oil-water separation materials, in particular to a super-hydrophilic and underwater super-oleophobic material and a preparation method and application thereof.
Background
In recent years, the production of industrial oily wastewater has been greatly increased under the drive of environmental and economic demands, and thus there is a strong demand for materials capable of effectively separating oil and water. Oil/water separation has been a global challenge, and designing novel materials with specific wettability is an efficient and easy process. However, the types of materials that are currently called "oil-removing" materials, such as kapok, carbon-based materials, hydrophobic aerogels, Polytetrafluoroethylene (PTFE) coated screens, Polydimethylsiloxane (PDMS) coated nanowire films, nanoporous polydivinylbenzene materials, crosslinked oil-absorbing polymer gels, and the like, are not amenable to gravity-driven separation due to their inherent oleophilicity, and are easily contaminated, clogged, and even destroyed by some high viscosity oils. Especially, the oil adhered to the coal chemical industry/petroleum industry, especially the oil with high viscosity, can seriously affect the separation efficiency of the material after being used for a limited time. In addition, the adhered or absorbed oil is difficult to remove, which results in secondary pollution of the oleophilic material during the post-treatment process, resulting in waste. Therefore, it is very important to develop a material having high separation ability for the separation of petroleum-based wastewater.
At present, functional oil removing materials with stable super-hydrophilicity and underwater super-lipophobicity appear in the prior art, a water layer can be formed on the surface of the materials, when only gravity is a driving force, only water is allowed to freely pass through, and oil is reserved, so that oil and harsh oil can be separated. However, the super oleophobic interface of the oil removing material is highly dependent on the modification of the fluorinated material, but the introduced fluorine is easy to cause secondary pollution of water.
Disclosure of Invention
The invention aims to provide a fluoride-free super-hydrophilic and underwater super-oleophobic material.
In order to solve the technical problems, the invention provides the following technical scheme:
the invention provides a super-hydrophilic and underwater super-oleophobic material, which has the following structural formula:
Figure BDA0002787373950000021
wherein the content of the first and second substances,
Figure BDA0002787373950000022
represents mesoporous SiO2And (3) nano materials, wherein n is 2-10.
The second aspect of the invention provides a preparation method of the super-hydrophilic and underwater super-oleophobic material, which comprises the following steps:
(i) acid liquor is adopted to treat mesoporous SiO2Acidizing the nano material;
(ii) acidized mesoporous SiO2Mixing the nanometer material with Chitosan Oligosaccharide (COS) solution, stirring for reaction to obtain mesoporous SiO coupled with chitosan oligosaccharide2A nanomaterial; removing excessive chitosan oligosaccharide after the reaction is finished;
(iii) coupling the mesoporous SiO of the chitosan oligosaccharide2Mixing the nano material and dianhydrogalactitol (VAL-083) in an organic solvent, and refluxing for 5-10 hours at the temperature of 80-130 ℃; and after the reaction is finished, collecting and purifying the product to obtain the super-hydrophilic and underwater super-oleophobic material.
In the invention, mesoporous SiO is used2The nano material is a carrier, has large surface area, low relative density, light weight, good permeability and high chemical stability, and has more hydroxyl groups on the surface, and-OH belongs to a polar chemical bond, so that SiO2Has hydrophilic and oleophobic properties; the chitosan oligosaccharide is used as a raw material, contains amino and hydroxyl hydrophilic groups, is easy to dissolve in water, is non-toxic and is biodegradable. The synthesized material has the characteristics of super-hydrophilicity and super-lipophobicity under water, and can be used for oil-water separation.
Further, in the step (i), the acid solution is hydrochloric acid, acetic acid, sulfuric acid or oxalic acid, and the concentration of the acid solution is preferably 2% -10%.
Further, in step (i), the mesoporous SiO2The mesh number of the nano material is 35-200 meshes.
Further, in the step (i), the time of the acidification treatment is 5-12 hours.
Further, in the step (ii), the chitosan oligosaccharide solution is obtained by dissolving chitosan oligosaccharide in water or hydrochloric acid, acetic acid, sulfuric acid, oxalic acid.
Further, in the step (ii), the stirring time is 4-8 hours.
Further, in step (iii), the organic solvent is DMF, DMSO, THF, ethanol, toluene, 1, 4-dioxane, or acetonitrile.
Further, in step (iii), the collected and purified product is specifically: and filtering the solution, washing the obtained product for 2-5 times by using deionized water or absolute ethyl alcohol, and drying at 60-100 ℃.
The third aspect of the invention provides the application of the super-hydrophilic and underwater super-oleophobic material in the first aspect in the field of oil-water separation.
The invention has the beneficial effects that:
1. the invention uses dianhydrogalactitol to crosslink chitosan oligosaccharide and mesoporous SiO2The nano material is modified, so that the super-hydrophilic and underwater super-oleophobic material suitable for oil-water separation is successfully prepared; the preparation method is simple and adopts a one-step solution soaking method; the raw materials are cheap and easy to obtain, and the paint is non-toxic, harmless, green and pollution-free.
2. The super-hydrophilic and underwater super-oleophobic material disclosed by the invention has low adhesion to oil drops underwater and strong anti-fouling capability, can be used for oil-water separation, and particularly has high separation efficiency in the aspect of being used for coal tar wastewater.
Drawings
FIG. 1 is a schematic of the synthetic route for the superhydrophilic and underwater superoleophobic material of the invention;
FIG. 2 is a stability test chart (inlet water 1000ppm) of the degreasing material synthesized in example 5;
FIG. 3 is a comparison of the effluent of the deoiled material synthesized in example 5: the left picture is the original emulsified oil, and the right picture is the effluent after being treated by the oil removing material.
Detailed Description
The present invention is further described below in conjunction with the following figures and specific examples so that those skilled in the art may better understand the present invention and practice it, but the examples are not intended to limit the present invention.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terminology used in the description of the invention herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.
Preparation of super-hydrophilic and underwater super-oleophobic material
Example 1
1.2 g of SiO2The mesoporous nano material (40 meshes) is soaked in 60ml of 2% hydrochloric acid for 6 hours and then is acidified and hydrolyzed.
2. 5g of chitosan oligosaccharide was dissolved in 100ml of deionized water, and stirred for 6 hours to obtain a chitosan oligosaccharide solution.
3. The acidified SiO2And adding the mesoporous nano material into the chitosan oligosaccharide solution, stirring for 5 hours at room temperature, and filtering to remove the redundant chitosan oligosaccharide solution.
4. 30ml of 1M dianhydrogalactitol (solvent used: DMF) was added thereto and refluxed at 80 ℃ for 5 hours.
5. Filtering to remove excessive mixed solution, washing the product with anhydrous ethanol for 3 times, and drying in an oven at 60 deg.C.
Example 2
1. 4g of SiO2The mesoporous nano material (100 meshes) is soaked in 80ml of 6% acetic acid for 8 hours and then is acidified and hydrolyzed.
2. 7g of chitosan oligosaccharide was dissolved in 150ml of deionized water and stirred for 6 hours.
3. The acidified SiO2And adding the mesoporous nano material into the chitosan oligosaccharide solution, stirring for 6 hours at room temperature, and filtering to remove the redundant chitosan oligosaccharide solution.
4. 80ml of 1.5M dianhydrogalactitol (solvent used: DMSO) was added thereto and refluxed at 130 ℃ for 6 hours.
5. The excess mixed solution was removed by filtration, and the product was washed 4 times with deionized water and dried in an oven at 80 ℃.
Example 3
1. 4g of SiO2The mesoporous nano material is soaked in 80ml of 8 percent oxalic acid for 12 hours and then is acidified and hydrolyzed.
2. 4g of chitosan oligosaccharide was dissolved in 100ml of deionized water and stirred for 6 hours.
3. The acidified SiO2And adding the mesoporous nano material into the chitosan oligosaccharide solution, stirring for 5 hours at room temperature, and filtering to remove the redundant chitosan oligosaccharide solution.
4. 50ml of 0.9M dianhydrogalactitol (solvent used: ethanol) was added thereto and refluxed at 100 ℃ for 5 hours.
5. Filtering to remove excessive mixed solution, washing the product with anhydrous ethanol for 3 times, and drying in an oven at 50 deg.C.
Example 4
1. Mixing 8g of SiO2The mesoporous nano material (200 meshes) is soaked in 100ml of 4% sulfuric acid for 12 hours and then is acidified and hydrolyzed.
2. 9g of chitosan oligosaccharide was dissolved in 200ml of deionized water and stirred for 5 hours.
3. The acidified SiO2And adding the mesoporous nano material into the chitosan oligosaccharide solution, stirring for 8 hours at room temperature, and filtering to remove the redundant chitosan oligosaccharide solution.
4. 100ml of 3M dianhydrogalactitol (solvent used: acetonitrile) was added thereto and refluxed at 120 ℃ for 8 hours.
5. The excess mixed solution was removed by filtration, and the product was washed 3 times with deionized water and dried in an oven at 80 ℃.
Example 5
1. 3g of SiO2The mesoporous nano material (70 mesh) is soaked in 80ml of 2% acetic acid for 6 hours and then is acidified and hydrolyzed.
2. 2g of chitosan oligosaccharide was dissolved in 100ml of deionized water and stirred for 6 hours.
3. The acidified SiO2And adding the mesoporous nano material into the chitosan oligosaccharide solution, stirring for 7 hours at room temperature, and filtering to remove the redundant chitosan oligosaccharide solution.
4. 40ml of 1.2M dianhydrogalactitol (solvent used: DMF) was added thereto and refluxed at 90 ℃ for 10 hours.
5. Filtering to remove excessive mixed solution, washing the product with anhydrous ethanol for 4 times, and drying in an oven at 70 deg.C.
Performance testing
The deoiling performance of the deoiling materials synthesized in examples 1 to 5 was tested by using an OIL480 type infrared spectroscopic OIL meter, wherein the evaluation parameters of the deoiling materials were as follows: selecting a column with the height-diameter ratio of 6: 1, 10ml of filler and 5BV/H of flow rate; raw water (oil-water mixture): emulsified oil (raw water containing oil 1000-. The results obtained are shown in table 1.
Table 1 results of oil removing performance test of oil removing materials synthesized in examples 1 to 5
Figure BDA0002787373950000061
Figure BDA0002787373950000071
From the results of Table 1, it is understood that the content of the raw water after the treatment of the degreasing materials of examples 1-5 was reduced from 1000-2000ppm to 30ppm or less, indicating that the degreasing material of the present invention has excellent degreasing ability. Wherein the oil content of the effluent after treatment with the degreasing material of example 5 was only 4.6ppm, which is consistent with the results of fig. 3, and the effluent became clear after treatment with the degreasing material.
Referring to fig. 2, the oil content of the effluent of the oil removing material of example 5 is still only about 6ppm after the oil removing treatment for 30d, which shows that the oil removing material of the present invention has good oil removing stability.
The above-mentioned embodiments are merely preferred embodiments for fully illustrating the present invention, and the scope of the present invention is not limited thereto. The equivalent substitution or change made by the technical personnel in the technical field on the basis of the invention is all within the protection scope of the invention. The protection scope of the invention is subject to the claims.

Claims (10)

1. A super-hydrophilic and underwater super-oleophobic material is characterized by having a structural formula as shown in the following formula:
Figure FDA0002787373940000011
wherein the content of the first and second substances,
Figure FDA0002787373940000012
represents mesoporous SiO2And (3) nano materials, wherein n is 2-10.
2. The method of claim 1, comprising the steps of:
(i) acid liquor is adopted to treat mesoporous SiO2Acidizing the nano material;
(ii) acidized mesoporous SiO2Mixing the nano material with the chitosan oligosaccharide solution, stirring for reaction to obtain mesoporous SiO coupled with the chitosan oligosaccharide2A nanomaterial; removing excessive chitosan oligosaccharide after the reaction is finished;
(iii) coupling the mesoporous SiO of the chitosan oligosaccharide2Mixing the nano material and dianhydrogalactitol in an organic solvent, and refluxing for 5-10 hours at 80-130 ℃; and after the reaction is finished, collecting and purifying the product to obtain the super-hydrophilic and underwater super-oleophobic material.
3. The method for preparing super hydrophilic and underwater super oleophobic material of claim 2, wherein in step (i), the acid solution is hydrochloric acid, acetic acid, sulfuric acid or oxalic acid.
4. The method for preparing the super-hydrophilic and underwater super-oleophobic material of claim 2, wherein in step (i), the mesoporous SiO is2The mesh number of the nano material is 35-200 meshes.
5. The method for preparing the super-hydrophilic and underwater super-oleophobic material of claim 2, wherein in step (i), the time for the acidification treatment is 5-12 hours.
6. The method for preparing super hydrophilic and underwater super oleophobic material of claim 2, wherein in step (ii), the chitosan oligosaccharide solution is obtained by dissolving chitosan oligosaccharide in water or hydrochloric acid, acetic acid, sulfuric acid, oxalic acid.
7. The method for preparing the super-hydrophilic and underwater super-oleophobic material of claim 2, wherein in step (ii), the stirring time is 4-8 hours.
8. The method according to claim 2, wherein in step (iii), the organic solvent is DMF, DMSO, THF, ethanol, toluene, 1, 4-dioxane or acetonitrile.
9. The method according to claim 2, wherein in step (iii), the collected and purified product is: and filtering the solution, washing the obtained product for 2-5 times by using deionized water or absolute ethyl alcohol, and drying at 60-100 ℃.
10. The use of the superhydrophilic and underwater superoleophobic material of claim 1 in the field of oil-water separation.
CN202011302908.XA 2020-11-19 2020-11-19 Super-hydrophilic and underwater super-oleophobic material and preparation method and application thereof Active CN112679743B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011302908.XA CN112679743B (en) 2020-11-19 2020-11-19 Super-hydrophilic and underwater super-oleophobic material and preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011302908.XA CN112679743B (en) 2020-11-19 2020-11-19 Super-hydrophilic and underwater super-oleophobic material and preparation method and application thereof

Publications (2)

Publication Number Publication Date
CN112679743A true CN112679743A (en) 2021-04-20
CN112679743B CN112679743B (en) 2022-10-04

Family

ID=75446077

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011302908.XA Active CN112679743B (en) 2020-11-19 2020-11-19 Super-hydrophilic and underwater super-oleophobic material and preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN112679743B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114133772A (en) * 2021-12-31 2022-03-04 武汉理工大学 Durable super-amphiphobic thin film material with gradient structure and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101664567A (en) * 2009-09-18 2010-03-10 浙江大学 Method for crosslinking, enhancing and modifying three-dimensional chitosan bar material by using epoxy chloropropane
CN104474576A (en) * 2014-12-03 2015-04-01 兰州凯博药业股份有限公司 Chitosan hemostatic material formed through covalent crosslinking and preparation method thereof
CN107179381A (en) * 2017-06-13 2017-09-19 爱美客技术发展股份有限公司 The external gradient degradation method of multiple cross-linked chitosan or derivatives thereof gel
WO2018026328A1 (en) * 2016-08-04 2018-02-08 Nanyang Technological University Multifunctional superhydrophilic and underwater superoleophobic activated glass derived from waste glass
CN110420502A (en) * 2019-07-12 2019-11-08 兰州交通大学 The preparation method of the super hydrophilic underwater superoleophobic hard particles filtrate of Chitosan-coated

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101664567A (en) * 2009-09-18 2010-03-10 浙江大学 Method for crosslinking, enhancing and modifying three-dimensional chitosan bar material by using epoxy chloropropane
CN104474576A (en) * 2014-12-03 2015-04-01 兰州凯博药业股份有限公司 Chitosan hemostatic material formed through covalent crosslinking and preparation method thereof
WO2018026328A1 (en) * 2016-08-04 2018-02-08 Nanyang Technological University Multifunctional superhydrophilic and underwater superoleophobic activated glass derived from waste glass
CN107179381A (en) * 2017-06-13 2017-09-19 爱美客技术发展股份有限公司 The external gradient degradation method of multiple cross-linked chitosan or derivatives thereof gel
CN110420502A (en) * 2019-07-12 2019-11-08 兰州交通大学 The preparation method of the super hydrophilic underwater superoleophobic hard particles filtrate of Chitosan-coated

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J LIU ET.AL: ""Modified superhydrophilic and underwater superoleophobic PVDF membrane with ultralow oil-adhesion for highly efficient oil/water emulsion separation"", 《MATERIALS LETTERS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114133772A (en) * 2021-12-31 2022-03-04 武汉理工大学 Durable super-amphiphobic thin film material with gradient structure and preparation method thereof

Also Published As

Publication number Publication date
CN112679743B (en) 2022-10-04

Similar Documents

Publication Publication Date Title
CN107312198A (en) Super-hydrophobic cavernous body and preparation method thereof
Yang et al. Robust membranes with tunable functionalities for sustainable oil/water separation
He et al. Facile preparation of robust superhydrophobic/superoleophilic TiO2-decorated polyvinyl alcohol sponge for efficient oil/water separation
CN112679743B (en) Super-hydrophilic and underwater super-oleophobic material and preparation method and application thereof
Lu et al. Development of coin-shaped ZIF-7 functionalized superhydrophobic polysulfone composite foams for continuous removal of oily contaminants from water
CN107163573A (en) A kind of halloysite nanotubes and polyaniline compound oil absorption material
CN106178599A (en) A kind of automatically cleaning polybenzoxazine super-hydrophobic super-oleophylic fiber web material and preparation thereof and application in oil-water separation
Pethsangave et al. Super-hydrophobic carrageenan cross-linked graphene sponge for recovery of oil and organic solvent from their water mixtures
Liu et al. Fabrication of 3D silica with outstanding organic molecule separation and self-cleaning performance
CN110280048B (en) Underwater super-oleophobic and oil-super-hydrophobic material for oil-water emulsion separation and solvent-free preparation method thereof
Yao et al. Ultra-selective microfiltration SiO2/carbon membranes for emulsified oil-water separation
Zhang et al. Polyester fabrics coated with cupric hydroxide and cellulose for the treatment of kitchen oily wastewater
Liu et al. Robust and durable superhydrophobic and oil-absorbent silica particles with ultrahigh separation efficiency and recyclability
CN112058099B (en) Modified PVDF (polyvinylidene fluoride) membrane and preparation method thereof
CN113069939A (en) Titanium dioxide modified film and preparation method thereof
Ghaedi et al. Facile fabrication of robust superhydrophobic polyurethane sponge modified with polydopamine-silica nanoparticle for effective oil/water separation
CN109718726B (en) Production process of amphiphilic silica-chitosan composite aerogel
CN111926458B (en) Nano fiber membrane with caterpillar structure and preparation method and application thereof
CN113663528A (en) Preparation method of fluorine-containing oil-water separation membrane with high oil pollution resistance and stability
CN107413206A (en) Montmorillonite modified polyvinyl chloride flat ultrafiltration membrane and preparation method thereof
Ghorbankhani et al. Micro-cellular polymer foam supported polyaniline-nanofiber: Eco-friendly tool for petroleum oil spill cleanup
CN112409634A (en) Silanized boron nitride modified super-hydrophobic sponge for oil/water separation and preparation method thereof
CN111893766A (en) Preparation method of multifunctional pH-responsive super-wetting material and application of multifunctional pH-responsive super-wetting material in oil-water separation
CN116139544A (en) Environment-friendly oil-water separation material and preparation method and application thereof
CN115155342B (en) Environment-friendly super-hydrophilic copolymer and preparation method thereof for oil-water separation net film

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20221229

Address after: Room 1504, Wanlong Building, No. 29, Xinfa Road, Suzhou Industrial Park, Jiangsu Province, 215000

Patentee after: Suzhou Breit Environmental Protection Technology Co.,Ltd.

Address before: Room B502-1, 505-2, No. 150 Renai Road, Suzhou Industrial Park, Jiangsu Province

Patentee before: JIANGSU HELPER FUNCTIONAL MATERIALS CO.,LTD.