CN112675149B - Preparation method and application of brain-targeted drug delivery system loaded with cyclosporin A - Google Patents
Preparation method and application of brain-targeted drug delivery system loaded with cyclosporin A Download PDFInfo
- Publication number
- CN112675149B CN112675149B CN202110001630.0A CN202110001630A CN112675149B CN 112675149 B CN112675149 B CN 112675149B CN 202110001630 A CN202110001630 A CN 202110001630A CN 112675149 B CN112675149 B CN 112675149B
- Authority
- CN
- China
- Prior art keywords
- csa
- ferritin
- brain
- acetone
- delivery system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 title claims abstract description 9
- 108010036949 Cyclosporine Proteins 0.000 title claims abstract description 9
- 229930105110 Cyclosporin A Natural products 0.000 title claims abstract description 8
- 238000012377 drug delivery Methods 0.000 title claims abstract description 8
- 238000002360 preparation method Methods 0.000 title claims abstract description 8
- 229960001265 ciclosporin Drugs 0.000 title claims description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims abstract description 51
- 102000008857 Ferritin Human genes 0.000 claims abstract description 28
- 108050000784 Ferritin Proteins 0.000 claims abstract description 28
- 238000008416 Ferritin Methods 0.000 claims abstract description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims abstract description 10
- 239000002904 solvent Substances 0.000 claims abstract description 4
- 239000003814 drug Substances 0.000 claims description 19
- 206010008118 cerebral infarction Diseases 0.000 claims description 16
- 201000006474 Brain Ischemia Diseases 0.000 claims description 11
- 206010008120 Cerebral ischaemia Diseases 0.000 claims description 11
- 210000004556 brain Anatomy 0.000 claims description 7
- 238000004925 denaturation Methods 0.000 claims description 6
- 230000036425 denaturation Effects 0.000 claims description 6
- 238000004153 renaturation Methods 0.000 claims description 6
- 238000003756 stirring Methods 0.000 claims description 6
- 206010063837 Reperfusion injury Diseases 0.000 claims description 4
- 238000001704 evaporation Methods 0.000 claims description 2
- 239000012528 membrane Substances 0.000 claims description 2
- 239000012046 mixed solvent Substances 0.000 claims description 2
- 238000005303 weighing Methods 0.000 claims 2
- 230000008020 evaporation Effects 0.000 claims 1
- 238000001914 filtration Methods 0.000 claims 1
- 239000011148 porous material Substances 0.000 claims 1
- 238000007789 sealing Methods 0.000 claims 1
- 230000008685 targeting Effects 0.000 claims 1
- 230000000302 ischemic effect Effects 0.000 abstract description 27
- 230000008499 blood brain barrier function Effects 0.000 abstract description 24
- 210000001218 blood-brain barrier Anatomy 0.000 abstract description 24
- 230000002490 cerebral effect Effects 0.000 abstract description 14
- 210000002569 neuron Anatomy 0.000 abstract description 13
- 108010067028 Mitochondrial Permeability Transition Pore Proteins 0.000 abstract description 8
- 210000004027 cell Anatomy 0.000 abstract description 7
- 238000009825 accumulation Methods 0.000 abstract description 4
- 210000004781 brain capillary Anatomy 0.000 abstract description 3
- 210000002889 endothelial cell Anatomy 0.000 abstract description 3
- 230000002438 mitochondrial effect Effects 0.000 abstract description 3
- 102000007238 Transferrin Receptors Human genes 0.000 abstract description 2
- 108010033576 Transferrin Receptors Proteins 0.000 abstract description 2
- 102000018832 Cytochromes Human genes 0.000 abstract 1
- 108010052832 Cytochromes Proteins 0.000 abstract 1
- 230000002757 inflammatory effect Effects 0.000 abstract 1
- 230000019581 neuron apoptotic process Effects 0.000 abstract 1
- 230000004112 neuroprotection Effects 0.000 abstract 1
- 241000699670 Mus sp. Species 0.000 description 21
- 210000005013 brain tissue Anatomy 0.000 description 20
- 229940079593 drug Drugs 0.000 description 18
- 230000000694 effects Effects 0.000 description 16
- 238000009826 distribution Methods 0.000 description 14
- 208000032382 Ischaemic stroke Diseases 0.000 description 12
- 239000002245 particle Substances 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 210000001519 tissue Anatomy 0.000 description 9
- 208000037823 Cerebral ischemia/reperfusion injury Diseases 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 241000699666 Mus <mouse, genus> Species 0.000 description 6
- 239000012153 distilled water Substances 0.000 description 6
- 238000000338 in vitro Methods 0.000 description 6
- 238000011068 loading method Methods 0.000 description 6
- 238000010186 staining Methods 0.000 description 6
- 210000003462 vein Anatomy 0.000 description 6
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 5
- 210000000805 cytoplasm Anatomy 0.000 description 5
- 230000006378 damage Effects 0.000 description 5
- 238000010172 mouse model Methods 0.000 description 5
- 206010061216 Infarction Diseases 0.000 description 4
- 102100026144 Transferrin receptor protein 1 Human genes 0.000 description 4
- 210000000269 carotid artery external Anatomy 0.000 description 4
- 208000026106 cerebrovascular disease Diseases 0.000 description 4
- 239000012091 fetal bovine serum Substances 0.000 description 4
- 230000007574 infarction Effects 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 230000007658 neurological function Effects 0.000 description 4
- 239000012188 paraffin wax Substances 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 102000005741 Metalloproteases Human genes 0.000 description 3
- 108010006035 Metalloproteases Proteins 0.000 description 3
- 238000010826 Nissl staining Methods 0.000 description 3
- 230000006907 apoptotic process Effects 0.000 description 3
- 239000007853 buffer solution Substances 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 210000001700 mitochondrial membrane Anatomy 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 230000000324 neuroprotective effect Effects 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- COXVTLYNGOIATD-HVMBLDELSA-N CC1=C(C=CC(=C1)C1=CC(C)=C(C=C1)\N=N\C1=C(O)C2=C(N)C(=CC(=C2C=C1)S(O)(=O)=O)S(O)(=O)=O)\N=N\C1=CC=C2C(=CC(=C(N)C2=C1O)S(O)(=O)=O)S(O)(=O)=O Chemical compound CC1=C(C=CC(=C1)C1=CC(C)=C(C=C1)\N=N\C1=C(O)C2=C(N)C(=CC(=C2C=C1)S(O)(=O)=O)S(O)(=O)=O)\N=N\C1=CC=C2C(=CC(=C(N)C2=C1O)S(O)(=O)=O)S(O)(=O)=O COXVTLYNGOIATD-HVMBLDELSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000017531 blood circulation Effects 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 210000001168 carotid artery common Anatomy 0.000 description 2
- 210000004004 carotid artery internal Anatomy 0.000 description 2
- 230000005779 cell damage Effects 0.000 description 2
- 208000037887 cell injury Diseases 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000000502 dialysis Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 229960003699 evans blue Drugs 0.000 description 2
- 238000007490 hematoxylin and eosin (H&E) staining Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 230000008595 infiltration Effects 0.000 description 2
- 238000001764 infiltration Methods 0.000 description 2
- 210000004969 inflammatory cell Anatomy 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 239000012982 microporous membrane Substances 0.000 description 2
- 210000003470 mitochondria Anatomy 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 230000010412 perfusion Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000001338 self-assembly Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 238000013042 tunel staining Methods 0.000 description 2
- ZKHQWZAMYRWXGA-KQYNXXCUSA-J ATP(4-) Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-J 0.000 description 1
- ZKHQWZAMYRWXGA-UHFFFAOYSA-N Adenosine triphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)C(O)C1O ZKHQWZAMYRWXGA-UHFFFAOYSA-N 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- 108010077544 Chromatin Proteins 0.000 description 1
- 102100030497 Cytochrome c Human genes 0.000 description 1
- 108010075031 Cytochromes c Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 108010083687 Ion Pumps Proteins 0.000 description 1
- PIWKPBJCKXDKJR-UHFFFAOYSA-N Isoflurane Chemical compound FC(F)OC(Cl)C(F)(F)F PIWKPBJCKXDKJR-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 102000006386 Myelin Proteins Human genes 0.000 description 1
- 108010083674 Myelin Proteins Proteins 0.000 description 1
- 208000028389 Nerve injury Diseases 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 208000031074 Reinjury Diseases 0.000 description 1
- 208000006011 Stroke Diseases 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 206010052428 Wound Diseases 0.000 description 1
- 210000004100 adrenal gland Anatomy 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 210000001043 capillary endothelial cell Anatomy 0.000 description 1
- 230000006567 cellular energy metabolism Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 230000008084 cerebral blood perfusion Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229940044683 chemotherapy drug Drugs 0.000 description 1
- 210000003483 chromatin Anatomy 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 229930182912 cyclosporin Natural products 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 230000037149 energy metabolism Effects 0.000 description 1
- 230000002461 excitatory amino acid Effects 0.000 description 1
- 239000003257 excitatory amino acid Substances 0.000 description 1
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 230000007954 hypoxia Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000006749 inflammatory damage Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229960002725 isoflurane Drugs 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 239000008176 lyophilized powder Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 210000003657 middle cerebral artery Anatomy 0.000 description 1
- 210000005012 myelin Anatomy 0.000 description 1
- 239000002091 nanocage Substances 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 230000008764 nerve damage Effects 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 230000004693 neuron damage Effects 0.000 description 1
- 239000002547 new drug Substances 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 230000036542 oxidative stress Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 230000004796 pathophysiological change Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000002488 pyknotic effect Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000010410 reperfusion Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 238000013112 stability test Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
Images
Landscapes
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种生物制药领域,具体涉及治疗脑缺血/再灌注损伤的一种新型靶向递药系统。The invention relates to the field of biopharmaceuticals, in particular to a novel targeted drug delivery system for treating cerebral ischemia/reperfusion injury.
背景技术Background technique
缺血性脑卒中是致残和死亡的最主要原因之一。目前缺血性脑卒中的主要治疗手段是尽快恢复缺血区域脑血流灌注,但当缺血脑组织被血液再次灌注时,会造成一系列的再次伤害。脑缺血/再灌注损伤的机制复杂,包含诸多的病理生理变化,如能量代谢障碍、氧化应激、兴奋性氨基酸毒性及炎性损伤等。最新研究显示,线粒体在脑缺血/再灌注损伤中发挥重要作用。在脑缺血的时候,脑缺血组织中氧气和葡萄糖供应不足,细胞三磷酸腺苷合成受阻,导致细胞能量代谢障碍,并进一步造成细胞内乳酸堆积、离子紊乱等。而再灌注时,缺血脑组织pH快速上升,线粒体内膜上的电压门控通道开启,导致线粒体通透性转换孔(mitochondrial permeability transition pore,mPTP)的异常开放。mPTP的异常开放会引起渗透膨胀和线粒体的外膜破裂,自由基大量产生并释放到细胞浆中,细胞浆中过量的自由基既能直接引起蛋白质、核酸和脂质等生物大分子物质的损伤,又可以破坏线粒体膜上的钙离子泵,降低线粒体膜电位并进一步加重m PTP的开放,形成恶性循环。与此同时,缺血区域大量的自由基还能够激活金属蛋白酶前蛋白,降解神经血管基质,导致血脑屏障破坏,对缺血区域细胞造成更加严重的损伤。Ischemic stroke is one of the leading causes of disability and death. At present, the main treatment for ischemic stroke is to restore cerebral blood perfusion in the ischemic area as soon as possible, but when the ischemic brain tissue is reperfused with blood, it will cause a series of re-injury. The mechanism of cerebral ischemia/reperfusion injury is complex, including many pathophysiological changes, such as energy metabolism disorders, oxidative stress, excitatory amino acid toxicity and inflammatory damage. Recent studies have shown that mitochondria play an important role in cerebral ischemia/reperfusion injury. During cerebral ischemia, the supply of oxygen and glucose in cerebral ischemic tissue is insufficient, and the synthesis of adenosine triphosphate in cells is blocked, which leads to the disorder of cellular energy metabolism, and further causes the accumulation of intracellular lactic acid and ion disturbance. During reperfusion, the pH of the ischemic brain tissue rises rapidly, and the voltage-gated channels on the inner mitochondrial membrane are opened, resulting in the abnormal opening of the mitochondrial permeability transition pore (mPTP). The abnormal opening of mPTP can cause osmotic swelling and rupture of the outer membrane of mitochondria, and free radicals are produced and released into the cytoplasm. Excessive free radicals in the cytoplasm can directly cause damage to biological macromolecules such as proteins, nucleic acids and lipids. , which can destroy the calcium ion pump on the mitochondrial membrane, reduce the mitochondrial membrane potential and further aggravate the opening of mPTP, forming a vicious circle. At the same time, a large number of free radicals in the ischemic area can also activate the metalloproteinase proproteins, degrade the neurovascular matrix, lead to the breakdown of the blood-brain barrier, and cause more serious damage to the cells in the ischemic area.
环孢菌素A(cyclosporine A,CsA)是一种经典的mPTP抑制剂。CsA能与线粒体的亲环孢素结合,从而抑制线粒体mPTP的开放,减少ROS及细胞色素c等在胞浆内的释放,减少细胞凋亡,从而发挥神经保护作用。然而,CsA进入血液循环后,主要分布在脂肪含量较高的组织,如脂肪、肝脏、肾上腺和胰脏等,但很少能进入中枢神经系统。Cyclosporine A (cyclosporine A, CsA) is a classic mPTP inhibitor. CsA can combine with mitochondrial cyclosporine, thereby inhibiting the opening of mitochondrial mPTP, reducing the release of ROS and cytochrome c in the cytoplasm, reducing cell apoptosis, and thus exerting neuroprotective effects. However, after CsA enters the blood circulation, it is mainly distributed in tissues with high fat content, such as fat, liver, adrenal gland and pancreas, etc., but it rarely enters the central nervous system.
铁蛋白颗粒是一个空心球状体,中空的内腔可以用来封装药物。而且,铁蛋白药物载体能识别并结合脑毛细血管内皮细胞表面的转铁蛋白受体1(TfR1),经过TfR1的介导,穿过血脑屏障,在脑缺血区域富集并释放自身携带的化疗药物。因此,我们构建了负载CsA的铁蛋白(Ferritin,Fn)纳米颗粒(CsA@Fn),增加CsA在脑缺血区域内的分布,抑制神经细胞mPTP的开放,抑制ROS在细胞浆中的释放,从而减少神经细胞的损伤;同时,缺血组织内ROS的减少还能避免金属蛋白酶前蛋白的过度激活,减少神经血管基质的降解,起到保护血脑屏障的效果,双重途径提高治疗脑缺血/再灌注损伤的效果。The ferritin particle is a hollow spheroid with a hollow lumen that can be used to encapsulate the drug. Moreover, the ferritin drug carrier can recognize and bind to the transferrin receptor 1 (TfR1) on the surface of brain capillary endothelial cells, mediated by TfR1, cross the blood-brain barrier, enrich in the ischemic area of the brain and release its own carry of chemotherapy drugs. Therefore, we constructed CsA-loaded ferritin (Fn) nanoparticles (CsA@Fn) to increase the distribution of CsA in the brain ischemic area, inhibit the opening of mPTP in nerve cells, and inhibit the release of ROS in the cytoplasm. Thereby reducing the damage of nerve cells; at the same time, the reduction of ROS in ischemic tissue can also avoid the excessive activation of metalloproteinase proproteins, reduce the degradation of neurovascular matrix, protect the blood-brain barrier, and improve the treatment of cerebral ischemia through dual approaches. /Effect of reperfusion injury.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种负载环孢菌素A的脑靶向递药系统的制备方法和应用,采用一种新方法将CsA装载进入铁蛋白的空心结构中,并用于治疗脑缺血/再灌注损伤。CsA@Fn能够通过脑毛细血管内皮细胞表面的TfR1介导穿过血脑屏障并富集于脑缺血区域,释放CsA,抑制神经细胞mPTP的开放,抑制ROS在细胞浆中的释放,从而减少神经细胞的损伤;同时,缺血组织内ROS的减少还能避免金属蛋白酶前蛋白的过度激活,减少神经血管基质的降解,起到保护血脑屏障的效果,双重途径提高治疗脑缺血/再灌注损伤的效果。The object of the present invention is to provide a preparation method and application of a brain-targeted drug delivery system loaded with cyclosporin A, adopt a new method to load CsA into the hollow structure of ferritin, and use it for the treatment of cerebral ischemia/ reperfusion injury. CsA@Fn can cross the blood-brain barrier mediated by TfR1 on the surface of brain capillary endothelial cells and accumulate in the brain ischemic area, releasing CsA, inhibiting the opening of mPTP in nerve cells, and inhibiting the release of ROS in the cytoplasm, thereby reducing the Nerve cell damage; at the same time, the reduction of ROS in ischemic tissue can also avoid the excessive activation of metalloproteinase proproteins, reduce the degradation of neurovascular matrix, protect the blood-brain barrier, and improve the treatment of cerebral ischemia/regeneration through dual approaches Effects of perfusion injury.
本发明的技术方案是:一种负载环孢菌素A的脑靶向递药系统的制备方法,其特征是,利用铁蛋白在丙酮中变性,在蒸馏水中复性的特点,将铁蛋白和CsA分散在55%的丙酮溶液中((丙酮与水的体积比为55:45),密闭搅拌30min后,挥发除去丙酮,铁蛋白复性,同时CsA溶解度下降,形成纳米颗粒CsA@Fn;CsA@Fn能够穿过血脑屏障,将CsA递送到脑缺血区域内,在脑缺血组织内有效蓄积,显著提高脑缺血区域内神经细胞的密度,用于治疗脑缺血/再灌注损伤;其中CsA@Fn的粒径为25nm,电位为mV,CsA载药量为10.4%。The technical scheme of the present invention is: a preparation method of a brain-targeted drug delivery system loaded with cyclosporin A, which is characterized in that the ferritin is denatured in acetone and renatured in distilled water by using the characteristics of CsA was dispersed in 55% acetone solution ((the volume ratio of acetone to water was 55:45), and after 30 min of airtight stirring, the acetone was removed by volatilization, the ferritin was renatured, and the solubility of CsA decreased to form nanoparticles CsA@Fn; CsA @Fn can cross the blood-brain barrier, deliver CsA into the cerebral ischemic area, effectively accumulate in the cerebral ischemic tissue, significantly increase the density of nerve cells in the cerebral ischemic area, and be used for the treatment of cerebral ischemia/reperfusion injury ; where the particle size of CsA@Fn is 25 nm, the potential is mV, and the drug loading of CsA is 10.4%.
本发明技术方案的特点:Features of the technical solution of the present invention:
①本发明利用铁蛋白在丙酮中变性,在蒸馏水中复性的特点,将铁蛋白和CsA分散在55%的丙酮(丙酮:水=55:45)中,密闭搅拌30min后,挥发除去丙酮,铁蛋白复性,同时CsA溶解度下降,将CsA装载进入铁蛋白的空心结构中。①The present invention utilizes the characteristics of denaturation of ferritin in acetone and renaturation in distilled water to disperse ferritin and CsA in 55% acetone (acetone:water=55:45), and after airtight stirring for 30min, volatilize and remove acetone, Ferritin renatures, while the solubility of CsA decreases, loading CsA into the hollow structure of ferritin.
②本发明利用铁蛋白能与脑毛细血管内皮细胞表面TfR1结合的特点,将CsA递送到脑缺血区域内,用于治疗脑缺血/再灌注损伤。②The present invention utilizes the feature that ferritin can combine with TfR1 on the surface of cerebral capillary endothelial cells to deliver CsA into the cerebral ischemia area for the treatment of cerebral ischemia/reperfusion injury.
本发明的创新性:①开发了一种新的铁蛋白载药方法,利用铁蛋白在丙酮中变性,在蒸馏水中复性的特点,将药物装载进入铁蛋白的空心结构中。②构建了一种能够穿过血脑屏障,同时减少神经细胞损伤和保护血脑屏障,治疗脑缺血/再灌注损伤的递药系统。Innovation of the present invention: ① A new drug loading method of ferritin is developed, which utilizes the characteristics of denaturation of ferritin in acetone and renaturation in distilled water to load the drug into the hollow structure of ferritin. ②Constructed a drug delivery system that can cross the blood-brain barrier while reducing nerve cell damage and protecting the blood-brain barrier to treat cerebral ischemia/reperfusion injury.
附图说明Description of drawings
图1 CsA@Fn的粒径。(A)CsA@Fn及Fn的粒径分布图;(B)CsA@Fn及Fn的透射电镜图。Fig. 1 Particle size of CsA@Fn. (A) Particle size distributions of CsA@Fn and Fn; (B) TEM images of CsA@Fn and Fn.
图2 CsA@Fn在不同介质中的稳定性。其中n=5, Fig. 2 Stability of CsA@Fn in different media. where n=5,
图3 CsA@Fn在不同pH的PBS缓冲液中累积释放CsA的动力学曲线。其中n=3, Figure 3. Kinetic curves of cumulative release of CsA from CsA@Fn in PBS buffers with different pH. where n=3,
图4 CsA@Fn穿透体外血脑屏障的效率。n=3,**P<0.01,与游离CsA相比,##P<0.01,与CsA@BSA相比。Fig. 4 Efficiency of CsA@Fn penetrating the blood-brain barrier in vitro. n=3, **P<0.01 vs free CsA, ## P<0.01 vs CsA@BSA.
图5 CsA@Fn在缺血性脑卒中模型小鼠脑内的分布。Fig. 5 The distribution of CsA@Fn in the brain of ischemic stroke model mice.
图6 CsA@Fn对缺血性脑卒中梗死面积的影响。(A)药物处理后各组小鼠脑梗死的典型图片。(B)药物处理后各组小鼠脑组织相对梗死体积。n=3,**P<0.01,与生理盐水组相比,##P<0.01,与CsA@Fn相比。Fig. 6 The effect of CsA@Fn on the infarct size of ischemic stroke. (A) Typical pictures of cerebral infarction in mice in each group after drug treatment. (B) The relative infarct volume of brain tissue in each group of mice after drug treatment. n=3, **P<0.01 vs. saline group, ## P<0.01 vs. CsA@Fn.
图7药物处理后对缺血性脑卒中小鼠缺血区ROS的影响。Fig. 7 Effects of drug treatment on ROS in ischemic area of ischemic stroke mice.
图8药物处理后对缺血性脑卒中小鼠脑缺血区细胞凋亡的影响。Figure 8. Effect of drug treatment on apoptosis of ischemic cerebral ischemic area in mice with ischemic stroke.
图9药物处理后对缺血性脑卒中小鼠伊文斯兰漏出的影响。Figure 9 Effect of drug treatment on Evanslan leakage in ischemic stroke mice.
图10药物处理后各组小鼠的神经功能评分。n=3,**P<0.01,与生理盐水组相比,##P<0.01,与CsA@Fn相比。Figure 10. Neurological function scores of mice in each group after drug treatment. n=3, **P<0.01 vs. saline group, ## P<0.01 vs. CsA@Fn.
图11尼氏染色考察药物处理后对缺血性脑卒中小鼠神经细胞的影响。Figure 11 Nissl staining to examine the effects of drug treatment on nerve cells in mice with ischemic stroke.
图12镀银染色考察药物处理后对缺血性脑卒中小鼠神经髓鞘的影响。Figure 12 Silver-plated staining to investigate the effect of drug treatment on the nerve myelin of ischemic stroke mice.
具体实施方式Detailed ways
1研究方法1 Research methods
1.1 CsA@Fn的制备及表征1.1 Preparation and characterization of CsA@Fn
(1)基于溶剂的变性/复性自组装法制备CsA@Fn:利用铁蛋白在丙酮中变性,在水中复性的特点,采用溶剂挥发法制备CsA@Fn。称取铁蛋白50mg,加入到50ml的混合溶剂中(丙酮:水=55:45),室温密封搅拌30min使铁蛋白变性;称取150mg CsA,溶于0.5ml丙酮后加入到上述铁蛋白溶液中,室温密封搅拌10min使铁蛋白与CsA充分混合均匀;将上述溶液加入到蒸发皿中,室温搅拌促进丙酮挥发,10h后,利用孔径为0.22μm的微孔滤膜过滤,除去未包裹在铁蛋白中的CsA,即得CsA@Fn。(1) Preparation of CsA@Fn by solvent-based denaturation/renaturation self-assembly method: CsA@Fn was prepared by solvent evaporation method by taking advantage of the characteristics of ferritin denaturation in acetone and renaturation in water. Weigh 50 mg of ferritin, add it to 50 ml of mixed solvent (acetone: water = 55:45), seal and stir at room temperature for 30 min to denature ferritin; weigh 150 mg of CsA, dissolve it in 0.5 ml of acetone and add it to the above ferritin solution , sealed and stirred at room temperature for 10 minutes to fully mix ferritin and CsA; the above solution was added to an evaporating dish, and stirred at room temperature to promote the volatilization of acetone. CsA in , namely CsA@Fn.
(2)CsA@Fn的粒径和电位表征:取上述CsA@Fn溶液100μl,加入1.5ml蒸馏水稀释后,采用zeta电位及激光粒度测定仪测定CsA@Fn的粒径、zeta电位及多分散系数(PDI)。同时,取少量CsA@Fn溶液,滴加在玻璃片上,放置于35℃真空干燥箱中干燥2h,镀金,采用场发射扫描电镜观察CsA@Fn的形态。(2) Characterization of particle size and potential of CsA@Fn: Take 100 μl of the above CsA@Fn solution, add 1.5 ml of distilled water to dilute, and use zeta potential and laser particle size analyzer to measure the particle size, zeta potential and polydispersity coefficient of CsA@Fn (PDI). At the same time, a small amount of CsA@Fn solution was taken, dropped on a glass slide, dried in a vacuum drying oven at 35 °C for 2 h, and plated with gold. The morphology of CsA@Fn was observed by field emission scanning electron microscopy.
(3)CsA@Fn稳定性考察:量取一定量CsA@Fn,分别分散在蒸馏水、PBS(pH 7.4)、10%FBS及DMEM溶液中,通过zeta电位及激光粒度测定仪测定CsA@Fn在上述介质中的稳定性。(3) Investigation of the stability of CsA@Fn: A certain amount of CsA@Fn was measured and dispersed in distilled water, PBS (pH 7.4), 10% FBS and DMEM solutions, respectively. Stability in the above media.
(4)CsA@Fn载药量的测定:色谱柱为Dikma ODS C18柱(250mm×4.6mm,5μm),检测波长为210nm,流动相组成为乙腈/水=90/10(v/v),流速:1.0ml/min,进样量:20μl,柱温:55℃。称取CsA@Fn冻干粉10mg,加入1ml甲醇,超声2min,0.22μm微孔滤膜过滤后,按照上述色谱条件,进样20μl,记录峰面积,根据工作曲线计算CsA的浓度,计算出CsA@Fn中CsA的载药量。(4) Determination of CsA@Fn drug loading: the chromatographic column is Dikma ODS C18 column (250mm×4.6mm, 5μm), the detection wavelength is 210nm, and the mobile phase composition is acetonitrile/water=90/10(v/v), Flow rate: 1.0 ml/min, injection volume: 20 μl, column temperature: 55°C. Weigh 10 mg of CsA@Fn lyophilized powder, add 1 ml of methanol, sonicate for 2 min, filter with 0.22 μm microporous membrane, inject 20 μl of sample according to the above chromatographic conditions, record the peak area, calculate the concentration of CsA according to the working curve, and calculate the CsA Drug loading of CsA in @Fn.
(5)CsA@Fn在不同介质中的释药特性:称取一定量的CsA@Fn,分散在不同pH(5.0、7.4)的PBS缓冲溶液中,移至截留分子量为5000Da的透析袋中,置于60ml相应pH的PBS缓冲溶液中,37℃恒温透析。在1、2、4、8、12、24、48、96h时取透析袋中CsA@Fn 200μl补加200μl空白释放介质,采用HPLC测定CsA的浓度,采用BCA法测定铁蛋白的浓度,计算累积释药量,并绘制释药曲线。(5) Drug release characteristics of CsA@Fn in different media: Weigh a certain amount of CsA@Fn, disperse it in PBS buffer solutions of different pH (5.0, 7.4), and move it to a dialysis bag with a molecular weight cut-off of 5000 Da. Placed in 60 ml of PBS buffer solution of corresponding pH, and dialyzed at 37°C. At 1, 2, 4, 8, 12, 24, 48, and 96 h, take 200 μl of CsA@Fn in the dialysis bag and add 200 μl of blank release medium. The concentration of CsA was determined by HPLC, and the concentration of ferritin was determined by BCA method, and the accumulation was calculated. The amount of drug released, and the drug release curve was drawn.
1.2 CsA@Fn穿透体外血脑屏障的效率1.2 Efficiency of CsA@Fn penetrating the blood-brain barrier in vitro
获取bEnd3细胞,加入含10%胎牛血清的DMEM培养液,细胞浓度为1x105个/ml,取300μl加入到transwell供池中,受池中加入含10%胎牛血清的DMEM培养液,每2天更换培养液。7天后,采用电阻仪检测transwell受池和供池之间的电阻值,当电阻值大于200Ω/cm2时,即认为体外血脑屏障模型构建成功。吸弃供池和受池中的培养液,在供池中加入CsA@Fn(CsA的浓度为50μg/ml),受池中加入无血清DMEM培养液,保持供池和受池液面齐平,孵育2、4、8h后,收集受池中培养液,冻干后加入200μl甲醇,超声2min,0.22μm微孔滤膜过滤后,采用HPLC检测受池中CsA的浓度,计算CsA@Fn跨血脑屏障的转运效率。Obtain bEnd3 cells, add DMEM medium containing 10% fetal bovine serum, the cell concentration is 1×10 5 cells/ml, take 300 μl into the transwell donor pool, add DMEM medium containing 10% fetal bovine serum to the receiving pool, each Change the culture medium every 2 days. After 7 days, the resistance value between the transwell receiving pool and the donor pool was detected by a resistance meter. When the resistance value was greater than 200Ω/cm 2 , it was considered that the in vitro blood-brain barrier model was successfully constructed. Aspirate and discard the culture medium in the donor pool and the recipient pool, add CsA@Fn (the concentration of CsA is 50 μg/ml) in the donor pool, and add serum-free DMEM medium in the recipient pool to keep the liquid level of the donor pool and the recipient pool flush. , after 2, 4, and 8 hours of incubation, the culture medium in the receiving pool was collected, lyophilized, added with 200 μl methanol, sonicated for 2 min, filtered with a 0.22 μm microporous membrane, and the concentration of CsA in the receiving pool was detected by HPLC. Transport efficiency at the blood-brain barrier.
1.3 CsA@Fn在脑卒中小鼠脑内的分布1.3 Distribution of CsA@Fn in the brain of stroke mice
(1)采用线栓法阻断小鼠右侧大脑中动脉血流1h,制作小鼠MCAO模型。采用异氟烷麻醉小鼠,并固定在恒温台上。在小鼠颈正中剪开切口,分离颈总动脉、颈内动脉和颈外动脉,提拉右侧颈总动脉和颈内动脉,结扎右侧颈外动脉近脑端,并切断颈外动脉。在颈外动脉残端剪一切口,插入线栓。缝合伤口后,将小鼠放置于保温箱中取暖保温。缺氧1h后,剪开缝合切口,拔出线栓,缝合切口。5min内尾静脉注射Cy7.5标记的CsA@Fn 100μl(CsA浓度为500μg/ml),24h后,获取脑组织,TTC染色后,采用活体成像仪观察CsA@Fn在梗死区的分布。获取心、肝、脾、肺、肾等器官组织,活体成像仪观察CsA@Fn在正常组织内的分布。(1) The blood flow of the right middle cerebral artery in mice was blocked for 1 h by suture method, and the mouse MCAO model was established. Mice were anesthetized with isoflurane and fixed on an incubator. An incision was made in the middle of the mouse neck, the common carotid artery, internal carotid artery and external carotid artery were separated, the right common carotid artery and internal carotid artery were pulled up, the proximal end of the right external carotid artery was ligated, and the external carotid artery was cut off. An incision was made at the stump of the external carotid artery, and a suture was inserted. After the wounds were sutured, the mice were placed in an incubator to keep warm. After 1 h of hypoxia, the suture incision was cut, the suture was pulled out, and the incision was sutured. 100 μl of Cy7.5-labeled CsA@Fn (with a CsA concentration of 500 μg/ml) was injected into the tail vein within 5 min, and 24 h later, the brain tissue was obtained, and after TTC staining, the distribution of CsA@Fn in the infarcted area was observed by a live imager. The heart, liver, spleen, lung, kidney and other organs and tissues were obtained, and the distribution of CsA@Fn in normal tissues was observed by in vivo imager.
(2)将上述脑组织固定在4%多聚甲醛中,石蜡切片,采用激光共聚焦显微镜观察CsA@Fn在脑梗死区的分布。(2) The above brain tissue was fixed in 4% paraformaldehyde, paraffin sectioned, and the distribution of CsA@Fn in the cerebral infarction area was observed by laser confocal microscope.
1.4 CsA@Fn对缺血性脑卒中的治疗作用及机制1.4 The therapeutic effect and mechanism of CsA@Fn on ischemic stroke
(1)动物分组:假手术组(sham)、手术组(MACO)、游离CsA组(2.5mg/kg)、CsA@BAS组(2.5mg/kg)、CsA@Fn组(1.25、2.5mg/kg)。(1) Animal groups: sham operation group (sham), operation group (MACO), free CsA group (2.5mg/kg), CsA@BAS group (2.5mg/kg), CsA@Fn group (1.25, 2.5mg/kg) kg).
(2)CsA@Fn治疗缺血性脑卒中的效果评价:模型建立成功后,按上述实验组尾静脉注射给药,24h后,采用5分法对各组小鼠的神经功能进行评分,考察CsA@Fn对MACO小鼠的神经保护作用;获取小鼠脑组织,切成5片后,TTC染色,体视显微镜观察CsA@Fn对MACO小鼠脑梗死面积的影响;获取小鼠脑组织,石蜡切片,H&E染色及TUNEL染色,观察CsA@Fn对MACO小鼠对小鼠脑组织形态和凋亡的影响。(2) Evaluation of the effect of CsA@Fn in the treatment of ischemic stroke: After the model was successfully established, the mice in the experimental group were administered by tail vein injection. The neuroprotective effect of CsA@Fn on MACO mice; the mouse brain tissue was obtained, cut into 5 slices, stained with TTC, and the effect of CsA@Fn on the cerebral infarction area of MACO mice was observed by stereo microscope; the mouse brain tissue was obtained, Paraffin sections, H&E staining and TUNEL staining were used to observe the effects of CsA@Fn on the morphology and apoptosis of mouse brain tissue in MACO mice.
(3)CsA@Fn对血脑屏障的保护效果评价:MACO小鼠尾静脉给药24h后,尾静脉注射伊文斯兰溶液,30min后,心脏灌注生理盐水,获取脑组织,观察伊文斯兰在脑组织的分布;石蜡切片,采用荧光显微镜观察伊文斯兰在脑组织内的分布,考察CsA@Fn对血脑屏障的保护效果。(3) Evaluation of the protective effect of CsA@Fn on the blood-brain barrier: 24 hours after the administration of the tail vein of MACO mice, Evans blue solution was injected into the tail vein. The distribution of brain tissue; paraffin section, the distribution of Evans blue in the brain tissue was observed by fluorescence microscope, and the protective effect of CsA@Fn on the blood-brain barrier was investigated.
(4)CsA@Fn对大脑神经元的保护效果评价:MACO小鼠尾静脉给药24h后,获取脑组织,石蜡切片,尼氏染色及镀银染色后,观察CsA@Fn对大脑神经元的保护效果。(4) Evaluation of the protective effect of CsA@Fn on cerebral neurons: After 24 hours of administration to the tail vein of MACO mice, brain tissue was obtained, paraffin sectioned, Nissl staining and silver-plated staining, and the effect of CsA@Fn on cerebral neurons was observed. protective effect.
2实验结果2 Experimental results
2.1 CsA@Fn的表征2.1 Characterization of CsA@Fn
采用纳米粒度及zeta电位分析仪测定CsA@Fn的粒径与电位,结果如图1所示。CsA@Fn的粒径为25nm,与Fn的粒径基本相同,电位为mV,CsA载药量为10.4%。CsA@Fn的稳定性实验结果如图2所示,在蒸馏水、PBS缓冲液、10%FBS溶液以及DMEM溶液中,CsA@Fn的粒径在5天内没有显著增加,提示在上述介质中,CsA@Fn在5天内保持稳定。The particle size and potential of CsA@Fn were measured by nanoparticle size and zeta potential analyzer, and the results are shown in Figure 1. The particle size of CsA@Fn is 25 nm, which is basically the same as that of Fn, the potential is mV, and the drug loading of CsA is 10.4%. The stability test results of CsA@Fn are shown in Figure 2. In distilled water, PBS buffer, 10% FBS solution and DMEM solution, the particle size of CsA@Fn did not increase significantly within 5 days, suggesting that in the above media, CsA @Fn stable for 5 days.
采用HPLC法考察了CsA@Fn的体外释药特性,结果如图3所示。CsA@Fn在pH5.0的PBS缓冲溶液中,CsA的释放量显著增加,24h内,超过75%的CsA能够被释放出来。The in vitro drug release properties of CsA@Fn were investigated by HPLC, and the results are shown in Figure 3. In the PBS buffer solution of pH5.0, the release of CsA@Fn increased significantly, and within 24h, more than 75% of CsA could be released.
2.2 CsA@Fn穿透血脑屏障效果2.2 The penetration effect of CsA@Fn on the blood-brain barrier
首先,我们构建了体外血脑屏障模型,考察了CsA@Fn在体外穿过血脑屏障的效率。结果显示,CsA@Fn能够时间依赖性地穿过血脑屏障,且转运效率显著高于游离CsA和CsA@BSA,当孵育时间为8h时,38.5%的CsA@Fn能够穿过血脑屏障(图4)。First, we constructed an in vitro blood-brain barrier model to investigate the efficiency of CsA@Fn across the blood-brain barrier in vitro. The results showed that CsA@Fn could cross the blood-brain barrier in a time-dependent manner, and the transport efficiency was significantly higher than that of free CsA and CsA@BSA. When the incubation time was 8 h, 38.5% of CsA@Fn could cross the blood-brain barrier ( Figure 4).
接下来,我们建立了小鼠脑缺血在灌注模型,考察了CsA@Fn缺血脑组织内的分布。结果显示,CsA@Fn在假手术组脑组织的分布显著低于在模型小鼠脑组织内的分布;CsA@Fn在模型组脑组织内的分布显著高于CsA@BSA,而且,CsA@Fn在缺血脑组织内的分布显著高于正常脑组织(图5)。Next, we established a mouse cerebral ischemia perfusion model to investigate the distribution of CsA@Fn in ischemic brain tissue. The results showed that the distribution of CsA@Fn in the brain tissue of the sham operation group was significantly lower than that in the brain tissue of the model mice; the distribution of CsA@Fn in the brain tissue of the model group was significantly higher than that of CsA@BSA, and CsA@Fn The distribution in ischemic brain tissue was significantly higher than that in normal brain tissue (Figure 5).
2.3 CsA@Fn对脑缺血再灌注损伤的治疗效果2.3 Therapeutic effect of CsA@Fn on cerebral ischemia-reperfusion injury
TTC染色结果显示,CsA@Fn能够剂量依赖地降低小鼠脑梗死面积,且效果显著优于CsA@BSA组和游离CsA组(图6)。H&E染色结果显示,在MCAO模型小鼠脑缺血区,能够发现明显的梗死灶,并伴随有大量的炎性细胞浸润,同时,神经元的细胞核固缩,染色质凝集。而CsA@Fn处理后,在脑缺血区没有发现明显的梗死灶,炎性细胞浸润减少。ROS染色结果显示,在脑缺血在灌注后,脑缺血区域内ROS显著增强,CsA@Fn能够剂量依赖地降低脑缺血区域的ROS,而且效果优于同剂量的CsA和CsA@BSA(图7)。TUNEL染色结果显示,CsA@Fn能够剂量依赖地减少凋亡细胞的数量,且效果显著优于CsA@BSA组和游离CsA组(图8)。The results of TTC staining showed that CsA@Fn could dose-dependently reduce the size of cerebral infarction in mice, and the effect was significantly better than the CsA@BSA group and the free CsA group (Figure 6). The results of H&E staining showed that in the cerebral ischemia area of the MCAO model mice, obvious infarcts could be found, accompanied by a large number of inflammatory cells infiltration, and at the same time, the nuclei of neurons were pyknotic and chromatin was condensed. However, after CsA@Fn treatment, no obvious infarction was found in the cerebral ischemic area, and the infiltration of inflammatory cells was reduced. The results of ROS staining showed that after cerebral ischemia was perfused, the ROS in the cerebral ischemic area was significantly enhanced, and CsA@Fn could dose-dependently reduce ROS in the cerebral ischemic area, and the effect was better than the same dose of CsA and CsA@BSA ( Figure 7). The results of TUNEL staining showed that CsA@Fn could dose-dependently reduce the number of apoptotic cells, and the effect was significantly better than the CsA@BSA group and the free CsA group (Figure 8).
2.4 CsA@Fn的神经保护作用2.4 Neuroprotective effect of CsA@Fn
尾静脉注射伊文斯兰30min后,在MCAO模型小鼠脑组织能够明显观察到伊文斯兰在脑缺血组织的蓄积,而在CsA@Fn给药组小鼠的脑组织,几乎不能观察到伊文斯兰的分布,提示CsA@Fn能够保护血脑屏障的完整性,减少了伊文斯兰在脑组织内的渗透(图9)。After 30 min of tail vein injection of Evanslan, the accumulation of Evanslan in cerebral ischemic tissue could be clearly observed in the brain tissue of the MCAO model mice, while almost no Evanslan could be observed in the brain tissue of the CsA@Fn administration group. The distribution of Evanslan, suggesting that CsA@Fn can protect the integrity of the blood-brain barrier and reduce the penetration of Evanslan in brain tissue (Figure 9).
采用5分法对各组小鼠的神经功能进行评分,结果显示,MCAO模型小鼠的神经功能评分最高,达到3.4分,而CsA@Fn处理组的神经功能神经功能评分最低,为1.1分,提示CsA@Fn能够减少缺血性脑卒中对神经系统的损伤(图10)。尼氏染色和镀银染色显示,CsA@Fn能够降低脑缺血再灌注引起的神经损伤,显著提高脑缺血区域内神经细胞的密度(图11-12)。The neurological function of the mice in each group was scored by a 5-point scale. The results showed that the neurological function score of the MCAO model mice was the highest, reaching 3.4 points, while the neurological function score of the CsA@Fn treatment group was the lowest, which was 1.1 points. It was suggested that CsA@Fn could reduce the damage to the nervous system caused by ischemic stroke (Figure 10). Nissl staining and silver-plating staining showed that CsA@Fn could reduce the nerve damage caused by cerebral ischemia-reperfusion and significantly increase the density of nerve cells in the ischemic area of the brain (Figure 11-12).
3结论:3 Conclusions:
基于溶剂的变性/复性自组装法能将CsA装载进铁蛋白(Fn)纳米笼中,提高CsA的溶解性。CsA@Fn能够穿过血脑屏障,在脑缺血组织内有效蓄积。相较于游CsA和CsA@BSA,CsA@Fn不仅能够提高MCAO小鼠血脑屏障的完整性,还能减少脑梗死面积及神经元的损伤,显著提高CsA对脑缺血再灌注损伤的保护作用,具有一定的应用前景。The solvent-based denaturation/renaturation self-assembly method can load CsA into ferritin (Fn) nanocages and improve the solubility of CsA. CsA@Fn can cross the blood-brain barrier and effectively accumulate in cerebral ischemic tissue. Compared with CsA and CsA@BSA, CsA@Fn can not only improve the integrity of the blood-brain barrier in MCAO mice, but also reduce the cerebral infarct size and neuron damage, and significantly improve the protection of CsA against cerebral ischemia-reperfusion injury. It has certain application prospects.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110001630.0A CN112675149B (en) | 2021-01-04 | 2021-01-04 | Preparation method and application of brain-targeted drug delivery system loaded with cyclosporin A |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110001630.0A CN112675149B (en) | 2021-01-04 | 2021-01-04 | Preparation method and application of brain-targeted drug delivery system loaded with cyclosporin A |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112675149A CN112675149A (en) | 2021-04-20 |
CN112675149B true CN112675149B (en) | 2022-09-16 |
Family
ID=75457060
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110001630.0A Active CN112675149B (en) | 2021-01-04 | 2021-01-04 | Preparation method and application of brain-targeted drug delivery system loaded with cyclosporin A |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112675149B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008026224A2 (en) * | 2006-08-31 | 2008-03-06 | University Of Hyderabad | Novel nanoparticles of apotransferrin / transferrin, pharmaceutical composition containing them and processes for their preparation |
CN102133191A (en) * | 2011-03-16 | 2011-07-27 | 中国药科大学 | Transferrin and albumin composite nano particle and preparation method and application thereof |
CN103055322A (en) * | 2012-12-20 | 2013-04-24 | 华南理工大学 | Targeted sustained release medicine carrying nanoparticle and preparation method thereof |
CN104096231A (en) * | 2014-07-15 | 2014-10-15 | 中国农业大学 | Targeting nano sono-sensitizer and preparation method thereof |
CN104434804A (en) * | 2013-09-15 | 2015-03-25 | 李志刚 | Preparation process for cyclosporine A-pH sensitive nanoparticle |
CN110179997A (en) * | 2018-08-08 | 2019-08-30 | 昆山新蕴达生物科技有限公司北京分公司 | A kind of nano-medicament carrier for treating diabetes and combinations thereof drug |
CN111939273A (en) * | 2019-05-17 | 2020-11-17 | 南京林业大学 | A kind of preparation method of tumor nanoprobe using ferritin as carrier |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130323314A1 (en) * | 2011-12-30 | 2013-12-05 | University Of Hyderabad | Novel Nanoparticles of Lactoferrin Useful for Preparing a Pharmaceutical Composition Facilitating Easy Delivery of the Drug and a Process for Preparing the Same |
-
2021
- 2021-01-04 CN CN202110001630.0A patent/CN112675149B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008026224A2 (en) * | 2006-08-31 | 2008-03-06 | University Of Hyderabad | Novel nanoparticles of apotransferrin / transferrin, pharmaceutical composition containing them and processes for their preparation |
CN102133191A (en) * | 2011-03-16 | 2011-07-27 | 中国药科大学 | Transferrin and albumin composite nano particle and preparation method and application thereof |
CN103055322A (en) * | 2012-12-20 | 2013-04-24 | 华南理工大学 | Targeted sustained release medicine carrying nanoparticle and preparation method thereof |
CN104434804A (en) * | 2013-09-15 | 2015-03-25 | 李志刚 | Preparation process for cyclosporine A-pH sensitive nanoparticle |
CN104096231A (en) * | 2014-07-15 | 2014-10-15 | 中国农业大学 | Targeting nano sono-sensitizer and preparation method thereof |
CN110179997A (en) * | 2018-08-08 | 2019-08-30 | 昆山新蕴达生物科技有限公司北京分公司 | A kind of nano-medicament carrier for treating diabetes and combinations thereof drug |
CN111939273A (en) * | 2019-05-17 | 2020-11-17 | 南京林业大学 | A kind of preparation method of tumor nanoprobe using ferritin as carrier |
Non-Patent Citations (5)
Title |
---|
Cyclosporine A loaded brain targeting nanoparticle to treat cerebral ischemia/reperfusion injury in mice;Liu et al.;《Journal of Nanobiotechnology》;20220603;第20卷;第256页 * |
Epidermal growth factor-ferritin H-chain protein nanoparticles for tumor active targeting;Li et al.;《Small.》;20120820;第8卷(第16期);第2505-14页 * |
Transferrin-Modified Doxorubicin-Loaded Biodegradable Nanoparticles Exhibit Enhanced Efficacy in Treating Brain Glioma-Bearing Rats;Liu et al.;《CANCER BIOTHERAPY AND RADIOPHARMACEUTICALS》;20131231;第28卷(第9期);第691-696页 * |
功能化铁蛋白纳米递药系统用于缺血性脑卒中的治疗;吴雅云;《中国优秀博硕士学位论文全文数据库(硕士)医药卫生科技辑》;20190715(第07期);第E070-52页 * |
酸变性法构建转铁蛋白‐姜黄素纳米粒子及其肿瘤靶向性;朱庆等;《东南国防医药》;20190531;第21卷(第3期);第262-266页 * |
Also Published As
Publication number | Publication date |
---|---|
CN112675149A (en) | 2021-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhu et al. | Tumor‐specific self‐degradable nanogels as potential carriers for systemic delivery of anticancer proteins | |
Meng et al. | Influence of nanoparticle size on blood–brain barrier penetration and the accumulation of anti-seizure medicines in the brain | |
Guo et al. | Direct site-specific treatment of skin cancer using doxorubicin-loaded nanofibrous membranes | |
CN103222961B (en) | Injectable Cu(DDC)2 protein nanoparticle preparation for treating tumors and preparation method thereof | |
Zhou et al. | Shape regulated anticancer activities and systematic toxicities of drug nanocrystals in vivo | |
CN102512404B (en) | Lung targeting preparation of curcumin class compound as well as preparation method and application thereof | |
Li et al. | Kidney‐Targeted Nanoparticles Loaded with the Natural Antioxidant Rosmarinic Acid for Acute Kidney Injury Treatment | |
Zou et al. | Mesenchymal stem cell-derived extracellular vesicles/exosome: a promising therapeutic strategy for intracerebral hemorrhage | |
Dang et al. | Neutrophil-mediated and low density lipoprotein receptor-mediated dual-targeting nanoformulation enhances brain accumulation of scutellarin and exerts neuroprotective effects against ischemic stroke | |
WO2021226762A1 (en) | Tumor microenvironment response-type nano-composite drug loading system, and preparation method therefor and use thereof | |
Zhang et al. | Preparation, characterization and in vivo distribution of solid lipid nanoparticles loaded with syringopicroside | |
Wang et al. | Efficient exosome extraction through the conjugation of superparamagnetic iron oxide nanoparticles for the targeted delivery in rat brain | |
Huang et al. | Kidney targeting peptide-modified biomimetic nanoplatforms for treatment of acute kidney injury | |
Gao et al. | Oleanolic acid-loaded PLGA-TPGS nanoparticles combined with heparin sodium-loaded PLGA-TPGS nanoparticles for enhancing chemotherapy to liver cancer | |
Xu et al. | Emerging application of nanomedicine-based therapy in acute respiratory distress syndrome | |
Liu et al. | The development of a redox-sensitive curcumin conjugated chitosan oligosaccharide nanocarrier for the efficient delivery of docetaxel to glioma cells | |
Shaikh et al. | Bleomycin loaded exosomes enhanced antitumor therapeutic efficacy and reduced toxicity | |
CN114377141B (en) | Drug delivery carrier and anti-tumor application thereof | |
Fan et al. | Neutrophil-like pH-responsive pro-efferocytic nanoparticles improve neurological recovery by promoting erythrophagocytosis after intracerebral hemorrhage | |
CN112675149B (en) | Preparation method and application of brain-targeted drug delivery system loaded with cyclosporin A | |
Song et al. | Oligochitosan-pluronic 127 conjugate for delivery of honokiol | |
Yan et al. | Effects of magnetically targeted iron oxide@ polydopamine-labeled human umbilical cord mesenchymal stem cells in cerebral infarction in mice | |
Li et al. | Neutrophil affinity for PGP and HAIYPRH (T7) peptide dual-ligand functionalized nanoformulation enhances the brain delivery of tanshinone IIA and exerts neuroprotective effects against ischemic stroke by inhibiting proinflammatory signaling pathways | |
Wang et al. | Advances in engineered nanoparticles for the treatment of ischemic stroke by enhancing angiogenesis | |
Yan et al. | Design and preparation of naringenin loaded functional biomimetic nano-drug delivery system for Alzheimer’s disease |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |