CN112672361B - Large-scale MIMO capacity increasing method based on unmanned aerial vehicle cluster deployment - Google Patents

Large-scale MIMO capacity increasing method based on unmanned aerial vehicle cluster deployment Download PDF

Info

Publication number
CN112672361B
CN112672361B CN202011492087.0A CN202011492087A CN112672361B CN 112672361 B CN112672361 B CN 112672361B CN 202011492087 A CN202011492087 A CN 202011492087A CN 112672361 B CN112672361 B CN 112672361B
Authority
CN
China
Prior art keywords
unmanned aerial
aerial vehicle
behavior
cluster
deployment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011492087.0A
Other languages
Chinese (zh)
Other versions
CN112672361A (en
Inventor
高宁
金石
李潇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202011492087.0A priority Critical patent/CN112672361B/en
Publication of CN112672361A publication Critical patent/CN112672361A/en
Application granted granted Critical
Publication of CN112672361B publication Critical patent/CN112672361B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Abstract

The invention discloses a large-scale MIMO capacity improving method based on unmanned aerial vehicle cluster deployment, which comprises the following steps that firstly, each single-antenna unmanned aerial vehicle is randomly deployed in an area above a multi-antenna ground base station, and each unmanned aerial vehicle assists in estimating channel state information through a geographic position system; then randomly selecting an unmanned aerial vehicle to communicate with a neighbor unmanned aerial vehicle, constructing local information and calculating the current profit; according to the income learning deployment behavior, other unmanned aerial vehicles keep the positions unchanged; and finally, determining the optimal deployment position of each unmanned aerial vehicle after a plurality of rounds of interaction. According to the invention, the deployment position of each unmanned aerial vehicle is adjusted, so that the channel capacity is improved; only local information is utilized to complete deployment, an optimization control center is not provided, communication energy consumption is reduced, communication control time delay is shortened, and the cruising and real-time control capabilities of the unmanned aerial vehicle cluster are improved. Applicable wireless communication scenarios include, but are not limited to: high density place communications, battlefield communications, disaster relief and rescue communications.

Description

Large-scale MIMO capacity increasing method based on unmanned aerial vehicle cluster deployment
Technical Field
The invention belongs to the field of unmanned aerial vehicle cluster communication, and particularly relates to a method for increasing the channel capacity of an uplink communication link based on a large-scale MIMO (multiple input multiple output) capacity increase method for unmanned aerial vehicle cluster deployment.
Background
In the development process of mobile communication, the MIMO technology is a key technology for improving data rate and resisting interference in mobile communication, and in recent years, with the continuous increase of frequency bands and the explosive increase of the number of users, the number of antennas at a transmitting end and a receiving end is increased sharply, and the mobile communication technology based on large-scale MIMO becomes a hot topic in academia and industry. The unmanned aerial vehicle communication has the characteristics of high-speed mobility, deployment flexibility, strong line-of-sight communication and the like, can fully develop a large-scale MIMO (multiple input multiple output) technology in an air-ground three-dimensional space, and becomes a communication technology with great development potential in a future 6G communication network. In particular, the deployment technology of the unmanned aerial vehicle can maximize the communication performance of the large-scale MIMO network and optimize the network resource configuration by adjusting the deployment position of the unmanned aerial vehicle, and gradually draws wide attention.
In the beginning of research, the optimal deployment condition of the one-dimensional low-altitude flight platform in the altitude direction is researched by taking the maximized large-scale MIMO wireless coverage range as an optimization target. Then, researchers begin to pay attention to the situation of optimizing deployment of the unmanned aerial vehicle in the two-dimensional space, optimization targets gradually tend to diversify, and a combined optimization strategy considering unmanned aerial vehicle position deployment and network resource allocation becomes a more fire-burning research direction. Recently, the problem of unmanned aerial vehicle deployment optimization facing three-dimensional space is gradually developed. It is worth pointing out that due to the performance advantages of the multi-unmanned aerial vehicle communication scene, the problem of optimized deployment of large-scale MIMO formed by unmanned aerial vehicle clusters in two-dimensional and three-dimensional spaces is very worthy of close attention. The current unmanned aerial vehicle and unmanned aerial vehicle cluster optimization deployment methods mostly adopt a central optimization control method, and face a plurality of problems and challenges under the conditions of limited communication infrastructure and limited unmanned aerial vehicle flight capacity.
The unmanned aerial vehicle cluster deployment method based on the center optimization control requires real-time communication between the unmanned aerial vehicle and the optimization control center, which consumes a large amount of communication energy, and on the other hand, wireless communication uncertainty caused by physical phenomena such as wireless channel fading and the like will seriously reduce communication quality and does not meet the performance requirements of unmanned aerial vehicle communication control on high-reliability low-delay communication. In addition, in an actual situation, it is difficult for the drone to acquire global information of the network, so that there are some defects in the central deployment method of the drone cluster by using the global information.
Disclosure of Invention
The purpose of the invention is as follows: in order to solve the defects in the background art, the invention provides a large-scale MIMO capacity improving method based on unmanned aerial vehicle cluster deployment, and aims to solve the problems that when a line-of-sight link of an air-ground wireless channel has strong correlation, the deployment position of each unmanned aerial vehicle in a cluster is adjusted in a distributed mode by using local information to increase the rank of a channel matrix, and the channel capacity of a large-scale MIMO uplink communication link formed by an unmanned aerial vehicle cluster and a ground base station is improved.
The technical scheme is as follows: in order to achieve the purpose, the technical scheme of the invention is as follows:
a large-scale MIMO capacity improving method based on unmanned aerial vehicle cluster deployment comprises the following steps:
step 1, clustering all unmanned aerial vehicles to be deployed in an area above a ground base station, and randomly selecting an aerial position as an initial position; initializing the interaction times T =0 of the unmanned aerial vehicle, and setting the maximum interaction times as T;
step 2, each unmanned aerial vehicle of the cluster estimates the state of a channel in an auxiliary way through a geographic position system carried by the unmanned aerial vehicle;
step 3, if T =0,1, \ 8230;, T < T and the algorithm is not converged, randomly selecting an unmanned aerial vehicle m in the cluster with equal probability; otherwise, the method is terminated, the unmanned aerial vehicle cluster finishes deploying to the optimal position, and the channel capacity is improved;
step 4, the selected unmanned aerial vehicle m communicates with the neighboring unmanned aerial vehicle m, local information is constructed, and the current profit R is calculated m
Step 5, the selected unmanned aerial vehicle m selects an exploration behavior from the restricted behavior set according to the agreed behavior exploration probability;
step 6, if the current behavior is a new exploration behavior, the selected unmanned aerial vehicle m calculates income according to the new exploration behavior, updates a behavior selection strategy and returns to the step 3, and other unmanned aerial vehicles in the cluster keep the previous behavior unchanged; otherwise, directly returning to the step 3 for the next iteration interaction.
Further, the channel state in step 2 is estimated by the following formula:
Figure BDA0002841019970000031
wherein h is mn Representing the channel between drone m and ground base station nth antenna, d mn The distance between the unmanned aerial vehicle m and the nth antenna of the ground base station is defined as lambda, which is the wavelength of the signal, and H is the uplink communication link MIMO channel matrix.
Further, the channel capacity is estimated by the following equation:
C=log 2 (det[I N +ρHH H /N])
wherein I N Is an N-order identity matrix, and rho is the signal-to-noise ratio of each receiving antenna.
Further, the channel capacity boost establishes the following optimization objectives:
P:max rank(H)。
further, the profit R of step 4 m Self-income r by drone m m And its neighbor unmanned aerial vehicle profit r i Sum composition, calculated using the formula:
Figure BDA0002841019970000032
wherein
Figure BDA0002841019970000033
Set of neighbor drones representing drone m, a m Represent unmanned aerial vehicle m
Figure BDA0002841019970000034
Distance between root antenna and first unmanned aerial vehicle, d nk The distance between the nth antenna of the ground base station and the kth unmanned aerial vehicle.
Further, the behavior exploration probability of step 5 is:
Figure BDA0002841019970000035
wherein
Figure BDA0002841019970000036
For the exploration behavior currently selected by drone m,
Figure BDA0002841019970000037
in order to explore the new behavior,
Figure BDA0002841019970000038
for previous behavior, e m In order to achieve the rate of exploration,
Figure BDA0002841019970000039
is the restricted behavior set for drone m.
Further, the update behavior selection policy in step 6 is:
Figure BDA0002841019970000041
Figure BDA0002841019970000042
Figure BDA0002841019970000043
further, unmanned aerial vehicle is rotor unmanned aerial vehicle, but not limited to the rotor unmanned aerial vehicle of characteristic model.
Further, the cluster unmanned aerial vehicles in step 1 are respectively configured with a single antenna, and the ground base station is configured with a plurality of antennas.
Further, the antenna is an omni-directional antenna, but is not limited to an omni-directional antenna.
Has the beneficial effects that: compared with the prior art, the invention has the beneficial effects that:
1) In the large-scale MIMO capacity increasing method based on unmanned aerial vehicle cluster deployment, each unmanned aerial vehicle carries out distributed optimized deployment on an unmanned aerial vehicle cluster based on local information, and maximization of channel capacity of a large-scale MIMO uplink communication link is realized;
2) The method belongs to a distributed deployment method, a network optimization control center is not needed, deployment is not limited to the limitation of a specific network topology framework on the cluster optimization deployment of the unmanned aerial vehicle, and the method can be better suitable for network areas with poor communication infrastructure, such as suburbs or disaster areas;
3) The method only needs communication and local information interaction between neighboring unmanned aerial vehicles, and does not need real-time complex communication and network optimization parameter interaction with an optimization control center; compared with the existing center optimization control method, the method reduces communication energy consumption, shortens communication control time delay, and improves the cruising ability and the real-time control ability of the unmanned aerial vehicle cluster.
Drawings
FIG. 1 is a network architecture diagram of a large-scale MIMO capacity boosting method based on unmanned aerial vehicle cluster deployment according to the present invention;
fig. 2 is a flowchart of a large-scale MIMO capacity increasing method based on unmanned aerial vehicle cluster deployment according to the present invention.
Detailed Description
The invention is further illustrated by the following figures and examples.
In the embodiment of the invention, as shown in fig. 1, a large-scale MIMO capacity increasing method network architecture is deployed based on an unmanned aerial vehicle cluster, the unmanned aerial vehicle cluster is located in an area above a ground base station, M cluster unmanned aerial vehicles are respectively provided with a single antenna, each unmanned aerial vehicle is a rotor unmanned aerial vehicle, and the ground base station is provided with N antennas. For simplicity of analysis, if the number M of the cluster drones is equal to the number N of the ground base station antennas, that is, M = N, then the received signal of the ground base station can be represented as:
Figure BDA0002841019970000051
wherein E is s For transmit power, s is the transmit signal of the drone cluster, n 0 Is zero mean, unit variance N 0 H is the uplink communication link MIMO channel matrix. Neglecting the distance difference between each unmanned aerial vehicle and the ground base station
Figure BDA0002841019970000052
Represents the channel between the mth unmanned aerial vehicle and the nth antenna of the ground base station, d mn The distance between the mth unmanned aerial vehicle and the nth antenna of the ground base station is defined, and lambda is the wavelength of the signal.
The instantaneous capacity of the MIMO channel can be expressed as:
C=log 2 (det[I N +ρHH H /N])
wherein, I N Is an N-order identity matrix, rho = E s /N 0 For the signal-to-noise ratio of each receive antenna.
Considering that strong correlation exists in the air-ground wireless channel line-of-sight link, the uplink communication link channel is a rank degraded channel, and in order to maximize the channel capacity, the following optimization targets are established:
P:max rank(H)
however, considering the case where each drone of the cluster can only obtain local information of neighboring drones, the above optimization problem is decomposed into M optimization sub-problems, where the mth optimization sub-problem can be expressed as:
P-m:max rank(H m ),
Figure BDA0002841019970000053
wherein H m The channel matrix formed by the unmanned aerial vehicle m and the neighboring unmanned aerial vehicles.
In order to ensure that the sub-problem P-m of channel capacity maximization of each unmanned aerial vehicle is consistent with the result of the global channel capacity maximization problem P, the optimization problem needs to be modeled as a potential game problem:
Figure BDA0002841019970000054
wherein V =1,2, \ 8230, M is a set of drones,
Figure BDA0002841019970000061
behavior of the mth droneCollection 1
Figure DA00028410199751181510
Respectively represent up, down, left, right, front, back, hovering behaviors, R m For the m' th unmanned aerial vehicle, including its own profit r m And the profit r of the neighboring unmanned aerial vehicle i Two parts, in particular, the yield function of the mth drone is:
Figure BDA0002841019970000062
wherein
Figure BDA0002841019970000063
d n l is the distance between the nth antenna of the ground base station and the first unmanned aerial vehicle, d nk The distance between the nth antenna of the ground base station and the kth unmanned aerial vehicle,
Figure BDA0002841019970000064
set of neighbor drones representing drone m, a m Representing the behaviour of the drone m,
Figure BDA0002841019970000065
the behavior of a neighbor drone on behalf of drone m.
The corresponding potential function is:
Figure BDA0002841019970000066
according to the gain function and the potential function, the following unmanned aerial vehicle cluster distributed optimal deployment method is constructed, and the channel capacity of a large-scale MIMO uplink communication link is maximized.
The specific steps of the large-scale MIMO capacity increasing method shown in fig. 2 are as follows:
step 1, initializing interaction times T =0, and setting the maximum interaction times as T; randomly selecting an aerial position as an initial deployment position by each unmanned aerial vehicle in the cluster;
2.t =0,1, \8230, wherein T < T, and one unmanned aerial vehicle m in the cluster is randomly selected according to equal probability;
step 3, the selected unmanned aerial vehicle m communicates with the neighboring unmanned aerial vehicle m, local information is constructed, and the current profit R is calculated m
Step 4, the selected unmanned aerial vehicle m limits the behavior set according to the appointed behavior exploration probability
Figure BDA0002841019970000067
In which an exploration behavior is selected
Figure BDA0002841019970000068
Is provided with
Figure BDA0002841019970000069
In order to explore the new behavior, the method comprises the following steps of,
Figure BDA00028410199700000610
for previous behavior, e m For the exploration rate, the agreed behavior exploration probability is:
Figure BDA0002841019970000071
step 5, if
Figure BDA0002841019970000072
The selected unmanned aerial vehicle m calculates income according to the new exploration behaviors, updates the behavior selection strategy and returns to the step 2, meanwhile, other unmanned aerial vehicles in the cluster keep the previous behaviors unchanged, and the behavior selection strategy updating rule is expressed as:
Figure BDA0002841019970000073
Figure BDA0002841019970000074
Figure BDA0002841019970000075
otherwise, directly returning to the step 2 to perform the next round of interaction until the number of interactions T = T or the algorithm is converged, and terminating.
Through the interaction of the steps 1-5, the unmanned aerial vehicle cluster can be deployed to an optimal position in a distributed mode, the correlation of the air-ground wireless channel line-of-sight link is reduced, and the maximization of the large-scale MIMO uplink communication link channel capacity is realized by improving the rank of the channel matrix.
The above embodiments are merely illustrative of the technical idea of the present invention, and the scope of the present invention should not be limited thereby; meanwhile, for a person skilled in the art, any modifications made in the specific embodiments and the application scope according to the idea of the present invention fall within the protection scope of the present invention.

Claims (3)

1. A large-scale MIMO capacity improving method based on unmanned aerial vehicle cluster deployment is characterized by comprising the following steps:
step 1, deploying all unmanned aerial vehicles in an area above a ground base station, and randomly selecting an aerial position as an initial position; initializing the interaction times T =0 of the unmanned aerial vehicle, and setting the maximum interaction times as T;
step 2, each unmanned aerial vehicle of the cluster estimates the state of a channel in an auxiliary way through a geographic position system carried by the unmanned aerial vehicle;
step 3, if T =0,1, \8230, T < T and the algorithm is not converged, randomly selecting an unmanned aerial vehicle m in the cluster according to equal probability; otherwise, the method is terminated, the unmanned aerial vehicle cluster finishes deploying to the optimal position, and the channel capacity is improved;
step 4, the selected unmanned aerial vehicle m communicates with the neighboring unmanned aerial vehicle m, local information is constructed, and the current profit R is calculated m
Step 5, the selected unmanned aerial vehicle m selects an exploration behavior from the restricted behavior set according to the agreed behavior exploration probability;
step 6, if the current behavior is a new exploration behavior, the selected unmanned aerial vehicle m calculates income according to the new exploration behavior, updates a behavior selection strategy and returns to the step 3, and other unmanned aerial vehicles in the cluster keep the previous behavior unchanged; otherwise, directly returning to the step 3 to carry out the next iteration interaction;
wherein the content of the first and second substances,
the channel state in step 2 is estimated by the following formula:
Figure FDA0003816215630000011
wherein h is mn Representing the channel between the drone m and the nth antenna of the ground base station, d mn The distance between an unmanned aerial vehicle m and an nth antenna of a ground base station is defined, lambda is the wavelength of a signal, and H is an uplink communication link MIMO channel matrix;
the channel capacity is estimated using the following equation:
C=log 2 (det[I N +ρHH H /N])
in which I N Is an N-order unit matrix, and rho is the signal-to-noise ratio of each receiving antenna;
the channel capacity boost establishes the following optimization objectives:
P:max rank(H);
profit R described in step 4 m Self-income r by drone m m And neighbor unmanned aerial vehicle profit r i Sum composition, calculated using the formula:
Figure FDA0003816215630000021
wherein
Figure FDA0003816215630000022
Set of neighbor drones representing drone m, a m Representative of nobody
Figure FDA0003816215630000023
Distance between nth antenna and l unmanned aerial vehicle, d nk For ground basic station nth antenna and kth unmanned aerial vehicleThe distance therebetween;
the behavior exploration probability of the step 5 is as follows:
Figure FDA0003816215630000024
wherein
Figure FDA0003816215630000025
For the exploration behavior currently selected by drone m,
Figure FDA0003816215630000026
in order to explore the new behavior,
Figure FDA0003816215630000027
for previous behavior, e m In order to achieve the purpose of the exploration rate,
Figure FDA0003816215630000028
is the restricted behavior set of drone m;
the update behavior selection policy in step 6 is:
Figure FDA0003816215630000029
Figure FDA00038162156300000210
Figure FDA00038162156300000211
the cluster unmanned aerial vehicle is respectively provided with a single antenna, and the ground base station is provided with N antennas.
2. The massive MIMO capacity boosting method based on unmanned aerial vehicle cluster deployment of claim 1, wherein the unmanned aerial vehicle is a rotary-wing unmanned aerial vehicle or a specific type of rotary-wing unmanned aerial vehicle.
3. The massive MIMO capacity boosting method based on drone swarm deployment of claim 1, wherein the antennas are omni-directional antennas.
CN202011492087.0A 2020-12-17 2020-12-17 Large-scale MIMO capacity increasing method based on unmanned aerial vehicle cluster deployment Active CN112672361B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011492087.0A CN112672361B (en) 2020-12-17 2020-12-17 Large-scale MIMO capacity increasing method based on unmanned aerial vehicle cluster deployment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011492087.0A CN112672361B (en) 2020-12-17 2020-12-17 Large-scale MIMO capacity increasing method based on unmanned aerial vehicle cluster deployment

Publications (2)

Publication Number Publication Date
CN112672361A CN112672361A (en) 2021-04-16
CN112672361B true CN112672361B (en) 2022-12-02

Family

ID=75404346

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011492087.0A Active CN112672361B (en) 2020-12-17 2020-12-17 Large-scale MIMO capacity increasing method based on unmanned aerial vehicle cluster deployment

Country Status (1)

Country Link
CN (1) CN112672361B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113342060B (en) * 2021-06-02 2022-08-12 南京臻融科技有限公司 Relative positioning-based unmanned aerial vehicle cluster relay network construction method
CN113406974B (en) * 2021-08-19 2021-11-02 南京航空航天大学 Learning and resource joint optimization method for unmanned aerial vehicle cluster federal learning
CN114553290A (en) * 2022-01-07 2022-05-27 西安理工大学 Wireless ultraviolet light communication tracking and maintaining method based on MIMO structure
CN114697975B (en) * 2022-04-11 2024-01-05 东南大学 Unmanned aerial vehicle cluster distributed deployment method for enhancing land wireless coverage
CN114915998B (en) * 2022-05-31 2023-05-05 电子科技大学 Channel capacity calculation method for unmanned aerial vehicle auxiliary ad hoc network communication system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104836640A (en) * 2015-04-07 2015-08-12 西安电子科技大学 Unmanned plane formation distributed cooperative communication method
CN111711960A (en) * 2020-01-16 2020-09-25 中国人民解放军陆军工程大学 Energy efficiency perception unmanned aerial vehicle cluster three-dimensional deployment method
CN111786713A (en) * 2020-06-04 2020-10-16 大连理工大学 Unmanned aerial vehicle network hovering position optimization method based on multi-agent deep reinforcement learning
CN111800185A (en) * 2020-07-06 2020-10-20 中国人民解放军陆军工程大学 Distributed air-ground joint deployment method in unmanned aerial vehicle auxiliary communication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104836640A (en) * 2015-04-07 2015-08-12 西安电子科技大学 Unmanned plane formation distributed cooperative communication method
CN111711960A (en) * 2020-01-16 2020-09-25 中国人民解放军陆军工程大学 Energy efficiency perception unmanned aerial vehicle cluster three-dimensional deployment method
CN111786713A (en) * 2020-06-04 2020-10-16 大连理工大学 Unmanned aerial vehicle network hovering position optimization method based on multi-agent deep reinforcement learning
CN111800185A (en) * 2020-07-06 2020-10-20 中国人民解放军陆军工程大学 Distributed air-ground joint deployment method in unmanned aerial vehicle auxiliary communication

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
3-D Deployment of UAV Swarm for Massive MIMO Communications;Ning Gao等;《IEEE Journal on Selected Areas in Communications 》;20210614;全文 *
Distributed UAV Placement Optimization for Cooperative Line-of-sight MIMO Communications;Samer Hanna;《ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)》;20190517;全文 *
Performance Analysis of Three-Dimensional MIMO Antenna Arrays for UAV channel;Yuming Bi;《2018 IEEE/CIC International Conference on Communications in China (ICCC Workshops)》;20180818;全文 *
一种基于无人机MIMO信道的容量分析方法;李璞等;《无线电工程》;20131231;全文 *

Also Published As

Publication number Publication date
CN112672361A (en) 2021-04-16

Similar Documents

Publication Publication Date Title
CN112672361B (en) Large-scale MIMO capacity increasing method based on unmanned aerial vehicle cluster deployment
CN108616302B (en) Unmanned aerial vehicle multiple coverage model under power control and deployment method
CN113162679B (en) DDPG algorithm-based IRS (intelligent resilient software) assisted unmanned aerial vehicle communication joint optimization method
CN110673635B (en) Unmanned aerial vehicle three-dimensional trajectory design method based on wireless energy transmission network
CN113645635A (en) Design method of intelligent reflector-assisted high-energy-efficiency unmanned aerial vehicle communication system
CN103746729B (en) Distributed MIMO system base station side antenna position optimization method
CN111245485B (en) Airborne millimeter wave communication beam forming and position deployment method
CN111800185A (en) Distributed air-ground joint deployment method in unmanned aerial vehicle auxiliary communication
CN110312265B (en) Power distribution method and system for unmanned aerial vehicle formation communication coverage
CN115441939B (en) MADDPG algorithm-based multi-beam satellite communication system resource allocation method
CN113873575A (en) Intelligent reflector assisted non-orthogonal multiple access unmanned aerial vehicle air-ground communication network energy-saving optimization method
CN112367668A (en) Unmanned aerial vehicle base station deployment method utilizing reflected wave beam to supplement coverage
CN110083175B (en) Unmanned aerial vehicle formation network cooperative scheduling method and device
CN114286312A (en) Method for enhancing unmanned aerial vehicle communication based on reconfigurable intelligent surface
CN114980169A (en) Unmanned aerial vehicle auxiliary ground communication method based on combined optimization of track and phase
CN111711960A (en) Energy efficiency perception unmanned aerial vehicle cluster three-dimensional deployment method
Almalki et al. A machine learning approach to evolving an optimal propagation model for last mile connectivity using low altitude platforms
CN104852758A (en) Vertical beamforming method in three-dimensional large-scale antenna network and device
CN113784314A (en) Unmanned aerial vehicle data and energy transmission method assisted by intelligent reflection surface
Zhao et al. MADRL-based 3D deployment and user association of cooperative mmWave aerial base stations for capacity enhancement
Mahmood et al. PSO-based joint UAV positioning and hybrid precoding in UAV-assisted massive MIMO systems
CN117270559A (en) Unmanned aerial vehicle cluster deployment and track planning method based on reinforcement learning
CN116896777A (en) Unmanned aerial vehicle group general sense one-body energy optimization method based on reinforcement learning
CN114499615B (en) Near-far field unified transmitting beam forming method in terahertz communication system
CN115967948A (en) Mobile vehicle-mounted network downlink secure communication method based on intelligent reflecting surface of unmanned aerial vehicle

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant