CN112669345A - 一种面向云端部署的多目标轨迹跟踪方法及系统 - Google Patents

一种面向云端部署的多目标轨迹跟踪方法及系统 Download PDF

Info

Publication number
CN112669345A
CN112669345A CN202011616394.5A CN202011616394A CN112669345A CN 112669345 A CN112669345 A CN 112669345A CN 202011616394 A CN202011616394 A CN 202011616394A CN 112669345 A CN112669345 A CN 112669345A
Authority
CN
China
Prior art keywords
track
matching
personnel
frame
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011616394.5A
Other languages
English (en)
Other versions
CN112669345B (zh
Inventor
陈焕杰
王国利
郭雪梅
谢泳伦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN202011616394.5A priority Critical patent/CN112669345B/zh
Publication of CN112669345A publication Critical patent/CN112669345A/zh
Application granted granted Critical
Publication of CN112669345B publication Critical patent/CN112669345B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Analysis (AREA)

Abstract

本发明公开了一种面向云端部署的多目标轨迹跟踪方法及系统,该方法包括:对预构建的目标检测模型进行FP16推断优化加速,得到优化后的目标检测模型;获取摄像头的实时图像数据并基于优化后的目标检测模型对实时图像数据进行检测,得到人员框和轨迹框;根据当前人员框中的人员信息,选择匹配方式与上一帧存在的轨迹信息进行匹配,得到匹配结果;根据匹配结果对人员信息和轨迹状态进行更新。该系统包括:优化模块、检测模块、匹配模块和更新模块。本发明能够提高多目标跟踪的性能。本发明作为一种面向云端部署的多目标轨迹跟踪方法及系统,可广泛应用于多目标跟踪技术领域。

Description

一种面向云端部署的多目标轨迹跟踪方法及系统
技术领域
本发明涉及多目标跟踪技术领域,尤其涉及一种面向云端部署的多目标轨迹跟踪方法及系统。
背景技术
对于通用多目标跟踪框架的四个阶段,目前,将各个阶段的方法结合起来,构建一个云端部署的多目标实时跟踪系统时,很难有令人满意的效果,主要因为相关算法复杂度的问题,很难达到实时跟踪目标,并且对于实际应用时,人员轨迹的增加与删除,是难以把握的关键部分,当出现人员大面积遮挡或长时间遮挡时,轨迹的下一步动作判断错误将会使得跟踪的准确性降低。
发明内容
为了解决上述技术问题,本发明的目的是提供一种面向云端部署的多目标轨迹跟踪方法及系统,解决轨迹在人员大面积、长时间遮挡时的问题,提高多目标跟踪的性能。
本发明所采用的第一技术方案是:一种面向云端部署的多目标轨迹跟踪方法,包括以下步骤:
对预构建的目标检测模型进行FP16推断优化加速,得到优化后的目标检测模型;
获取摄像头的实时图像数据并基于优化后的目标检测模型对实时图像数据进行检测,得到人员框和轨迹框;
根据当前人员框中的人员信息,选择匹配方式与上一帧存在的轨迹信息进行匹配,得到匹配结果;
根据匹配结果对人员信息和轨迹状态进行更新。
进一步,所述对预构建的目标检测模型进行FP16推断优化加速,得到优化后的目标检测模型这一步骤,其具体包括:
使用YOLOv3目标检测模型作为预构建的目标检测模型;
根据预构建的目标检测模型的结构组成设置输入输出尺寸,构建onnx模型转换器并将模型权重转换为onnx模型;
实例化构建器、网络结构和解析指针并设置推断精度为16位浮点数,对onnx模型进行转换构建得到trt引擎;
对trt引擎进行本地化存储,得到优化后的目标检测模型。
进一步,所述匹配方式包括外观特征匹配、重叠面积匹配和中心距离匹配,所述根据当前人员框中的人员信息,选择匹配方式与上一帧存在的轨迹信息进行匹配,得到匹配结果这一步骤,其具体为:
提取当前人员框中的人员外观特征,选择外观特征匹配方法,与前一帧的人员外观特征计算特征距离并给予匈牙利算法进行匹配;
对于未匹配上的人员框和轨迹信息,计算重叠匹配度并基于匈牙利算法进行重新匹配;
对于仍未匹配上的人员框和轨迹信息,计算中心点之间的距离并基于匈牙利算法进行匹配;
得到匹配结果。
进一步,所述根据匹配结果对人员信息和轨迹状态进行更新。这一步骤,其具体包括:
对人员轨迹信息进行建模,将人员的轨迹信息表示为
Figure BDA0002872291040000021
其中(u,v)是当前人员轨迹的中心坐标,γ是轨迹框的长宽比,h表示轨迹框的高度,
Figure BDA0002872291040000022
表示人员在图像坐标系中的速度信息;
对于匹配上的轨迹信息,采用一个基于匀速模型和线性观测模型的卡尔曼滤波器,对该轨迹信息对应的人员信息进行更新并预测下一帧的位置,得到下一帧的轨迹信息(u,v,γ,h);
对于未匹配上的轨迹信息,基于预设规则对轨迹状态进行更新。
进一步,所述特征距离包括平方马氏距离和余弦相似度的加权融合,所述平方马氏距离的计算公式如下:
Figure BDA0002872291040000023
上式中,dj表示第j个检测框的位置,yi表示第i个轨迹对目标的预测位置,Si表示检测框位置和预测轨迹位置之间的协方差矩阵,d(1)(i,j)则表示第j个检测框和第i条预测轨迹之间的运动匹配度。
进一步,余弦相似度具体为对每一个工作人员构建一个最近一段时间的外观特征向量库,然后计算第i个检测框中的工作人员的外观特征向量库和第j个预测轨迹框的特征向量间的最小余弦距离,所述余弦相似度的计算公式如下:
Figure BDA0002872291040000024
上式中,
Figure BDA0002872291040000031
表示第i个检测框中人员的外观特征向量库中的第k个外观特征向量,rj表示第j条预测轨迹框的特征向量,d(2)(i,j)表示第i个检测框中人员的外观特征向量库和第j条预测轨迹框的特征向量之间的最小余弦距离。
进一步,所述特征距离的计算公式如下:
ci,j=λd(1)(i,j)+(1-λ)d(2)(i,j)
上式中,λ表示超参数。
进一步,所述重叠匹配度的计算公式如下:
Figure BDA0002872291040000032
上式中,A表示人员框的面积,B表示轨迹信息中轨迹框的面积。
进一步,所述轨迹状态包括待定、确认、暂停和删除,所述对于未匹配上的轨迹信息,基于预设规则对轨迹状态进行更新这一步骤,其具体包括:
将轨迹状态的初始状态设为待定;
当轨迹状态为待定,并连续成功匹配三次,状态更新为确认;
当轨迹状态为确认,并且未能成功匹配,则将更新时间加一,当轨迹的更新时间超过设定阈值且未被匹配上,则将状态设为暂停;
当轨迹状态为暂停,并且未能成功匹配,则将暂停时间加一,当轨迹的暂停时间超过设定阈值且一直未被匹配上,则将轨迹的状态设为删除;
当轨迹状态为确认或暂停,匹配成功则将状态设为确认状态,并且将更新时间和暂时时间归零。
本发明所采用的第二技术方案是:一种面向云端部署的多目标轨迹跟踪系统,包括以下模块:
优化模块,用于对预构建的目标检测模型进行FP16推断优化加速,得到优化后的目标检测模型;
检测模块,用于获取摄像头的实时图像数据并基于优化后的目标检测模型对实时图像数据进行检测,得到人员框和轨迹框;
匹配模块,用于根据当前人员框中的人员信息,选择匹配方式与上一帧存在的轨迹信息进行匹配,得到匹配结果;
更新模块,用于根据匹配结果对人员信息和轨迹状态进行更新。
本发明方法及系统的有益效果是:本发明在目标检测阶段进行了FP16推断优化,在云端部署时能够极大地提高推理速度;在人物关联阶段进行多次匹配,并且对于人员轨迹的更新提供了一个高效的算法,解决轨迹在人员大面积、长时间遮挡时的问题,提高多目标跟踪的性能。
附图说明
图1是本发明具体实施例一种面向云端部署的多目标轨迹跟踪方法的步骤流程图;
图2是本发明具体实施例一种面向云端部署的多目标轨迹跟踪系统的结构框图;
图3是本发明具体实施例基于预设规则对轨迹状态进行更新的步骤流程图。
具体实施方式
下面结合附图和具体实施例对本发明做进一步的详细说明。对于以下实施例中的步骤编号,其仅为了便于阐述说明而设置,对步骤之间的顺序不做任何限定,实施例中的各步骤的执行顺序均可根据本领域技术人员的理解来进行适应性调整。
参照图1,本发明提供了一种面向云端部署的多目标轨迹跟踪方法,该方法包括以下步骤:
S1、对预构建的目标检测模型进行FP16推断优化加速,得到优化后的目标检测模型;
S2、获取摄像头的实时图像数据并基于优化后的目标检测模型对实时图像数据进行检测,得到人员框和轨迹框;
具体地,可以得到图像中的人员空间位置和大小;
S3、根据当前人员框中的人员信息,选择匹配方式与上一帧存在的轨迹信息进行匹配,得到匹配结果;
S4、根据匹配结果对人员信息和轨迹状态进行更新。
进一步作为本方法的优选实施例,所述对预构建的目标检测模型进行FP16推断优化加速,得到优化后的目标检测模型这一步骤,其具体包括:
使用YOLOv3目标检测模型作为预构建的目标检测模型;
具体地,使用DarkNet-53网络作为骨干,使用LeakyReLU作为激活层,包括75个卷积层,72个批量标准化层和激活层;获取开源的模型参数作为该目标检测模型的权重;
根据预构建的目标检测模型的结构组成设置输入输出尺寸,构建onnx模型转换器并将模型权重转换为onnx模型;
实例化构建器、网络结构和解析指针并设置推断精度为16位浮点数,对onnx模型进行转换构建得到trt引擎;
对trt引擎进行本地化存储,得到优化后的目标检测模型。
进一步作为本方法优选实施例,所述匹配方式包括外观特征匹配、重叠面积匹配和中心距离匹配,所述根据当前人员框中的人员信息,选择匹配方式与上一帧存在的轨迹信息进行匹配,得到匹配结果这一步骤,其具体为:
提取当前人员框中的人员外观特征,选择外观特征匹配方法,与前一帧的人员外观特征计算特征距离并给予匈牙利算法进行匹配;
对于未匹配上的人员框和轨迹信息,选择重叠面积匹配方法,与前一帧的人员框计算重叠匹配度并基于匈牙利算法进行重新匹配;
对于仍未匹配上的人员框和轨迹信息,选择中心距离匹配,与前一帧的人员框计算中心点之间的距离并基于匈牙利算法进行匹配;
得到匹配结果。
具体地,对于外观特征提取,其具体包括特征提取模型的构建、优化,相关数据集的整理,以及模型的训练,参数和损失函数的调整;更具体地,根据实际场景的需要,由于工作人员服装的统一,因此模型的构建基于PCB行人重识别模型,将工作人员图像切分为多个部分,每一个部分赋予不同的权重,来提高不同工作人员之间外观特征向量的区别度;另外通过添加实际场景中的工作人员数据图像,以此提升特征提取效果;
进一步作为本发明的优选实施例,所述根据匹配结果对人员信息和轨迹状态进行更新。这一步骤,其具体包括:
对人员轨迹信息进行建模,将人员的轨迹信息表示为
Figure BDA0002872291040000051
其中(u,v)是当前人员轨迹的中心坐标,γ是轨迹框的长宽比,h表示轨迹框的高度,
Figure BDA0002872291040000052
表示人员在图像坐标系中的速度信息;
对于匹配上的轨迹信息,采用一个基于匀速模型和线性观测模型的卡尔曼滤波器,对该轨迹信息对应的人员信息进行更新并预测下一帧的位置,得到下一帧的轨迹信息(u,v,γ,h);
对于未匹配上的轨迹信息,基于预设规则对轨迹状态进行更新。
具体地,对于匹配上的轨迹框,使用匹配上的人员信息进行更新,并对下一帧的位置进行预测这一步骤,具体包括对人物运动状态的建模,包括空间坐标、人物大小、运动速度等信息,采用匀速模型和观测模型的卡尔曼滤波器进行轨迹更新预测。
进一步作为本发明优选实施例,所述特征距离包括平方马氏距离和余弦相似度的加权融合,所述平方马氏距离的计算公式如下:
Figure BDA0002872291040000061
上式中,dj表示第j个检测框的位置,yi表示第i个轨迹对目标的预测位置,Si表示检测框位置和预测轨迹位置之间的协方差矩阵,d(1)(i,j)则表示第j个检测框和第i条预测轨迹之间的运动匹配度。
具体地,马氏距离通过计算检测框位置和平均轨迹位置之间的标准差将状态测量的不确定性进行了考虑,如果某次关联的马氏距离小于指定的阈值,则设置运动状态的关联为成功;
进一步作为本发明优选实施例,所述余弦相似度的计算公式如下:
Figure BDA0002872291040000062
上式中,
Figure BDA0002872291040000063
表示第i个检测框中人员的外观特征向量库中的第k个外观特征向量,rj表示第j条预测轨迹框的特征向量,d(2)(i,j)表示第i个检测框中人员的外观特征向量库和第j条预测轨迹框的特征向量之间的最小余弦距离。
具体地,如果某次关联的余弦最小距离小于指定的阈值,那么这个关联就是成功的。
进一步作为本方法的优选实施例,所述特征距离的计算公式如下:
ci,j=λd(1)(i,j)+(1-λ)d(2)(i,j)
上式中,λ表示超参数,用于调整两种度量方法的权重。
进一步作为本方法的优选实施例,所述重叠匹配度的计算公式如下
Figure BDA0002872291040000064
上式中,A表示人员框的面积,B表示轨迹信息中轨迹框的面积。
进一步作为本方法的优选实施例,计算每一对人物框的中心点(x1,y1)和轨迹框的中心点(x2,y2)之间的距离,所述计算中心点之间的距离的具体计算公式如下:
Figure BDA0002872291040000065
然后设置一个最小阈值,使用匈牙利算法进行匹配,获得在满足阈值的情况下使总代价最小的匹配方案;
进一步作为本方法的优选实施例,参照图3,所述轨迹状态包括待定、确认、暂停和删除,所述对于未匹配上的轨迹信息,基于预设规则对轨迹状态进行更新这一步骤,其具体包括:
将轨迹状态的初始状态设为待定;
当轨迹状态为待定,并连续成功匹配三次,状态更新为确认;
当轨迹状态为确认,并且未能成功匹配,则将更新时间加一,当轨迹的更新时间超过设定阈值且未被匹配上,则将状态设为暂停;
当轨迹状态为暂停,并且未能成功匹配,则将暂停时间加一,当轨迹的暂停时间超过设定阈值且一直未被匹配上,则将轨迹的状态设为删除;
当轨迹状态为确认或暂停,匹配成功则将状态设为确认状态,并且将更新时间和暂时时间归零。
如图2所示,一种面向云端部署的多目标轨迹跟踪系统,包括以下模块:
优化模块,用于对预构建的目标检测模型进行FP16推断优化加速,得到优化后的目标检测模型;
检测模块,用于获取摄像头的实时图像数据并基于优化后的目标检测模型对实时图像数据进行检测,得到人员框和轨迹框;
匹配模块,用于根据当前人员框中的人员信息,选择匹配方式与上一帧存在的轨迹信息进行匹配,得到匹配结果;
更新模块,用于根据匹配结果对人员信息和轨迹状态进行更新。
上述系统实施例中的内容均适用于本方法实施例中,本方法实施例所具体实现的功能与上述系统实施例相同,并且达到的有益效果与上述系统实施例所达到的有益效果也相同。
以上是对本发明的较佳实施进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (10)

1.一种面向云端部署的多目标轨迹跟踪方法,其特征在于,包括以下步骤:
对预构建的目标检测模型进行FP16推断优化加速,得到优化后的目标检测模型;
获取摄像头的实时图像数据并基于优化后的目标检测模型对实时图像数据进行检测,得到人员框和轨迹信息;
根据当前人员框中的人员信息,选择匹配方式与上一帧存在的轨迹信息进行匹配,得到匹配结果;
根据匹配结果对人员信息和轨迹状态进行更新。
2.根据权利要求1所述一种面向云端部署的多目标轨迹跟踪方法,其特征在于,所述对预构建的目标检测模型进行FP16推断优化加速,得到优化后的目标检测模型这一步骤,其具体包括:
使用YOLOv3目标检测模型作为预构建的目标检测模型;
根据预构建的目标检测模型的结构组成设置输入输出尺寸,构建onnx模型转换器并将模型权重转换为onnx模型;
实例化构建器、网络结构和解析指针并设置推断精度为16位浮点数,对onnx模型进行转换构建得到trt引擎;
对trt引擎进行本地化存储,得到优化后的目标检测模型。
3.根据权利要求2所述一种面向云端部署的多目标轨迹跟踪方法,其特征在于,所述匹配方式包括外观特征匹配、重叠面积匹配和中心距离匹配,所述根据当前人员框中的人员信息,选择匹配方式与上一帧存在的轨迹信息进行匹配,得到匹配结果这一步骤,其具体为:
提取当前人员框中的人员外观特征,选择外观特征匹配方法,与前一帧的人员外观特征计算特征距离并给予匈牙利算法进行匹配;
对于未匹配上的人员框和轨迹信息,计算重叠匹配度并基于匈牙利算法进行重新匹配;
对于仍未匹配上的人员框和轨迹信息,计算中心点之间的距离并基于匈牙利算法进行匹配;
得到匹配结果。
4.根据权利要求3所述一种面向云端部署的多目标轨迹跟踪方法,其特征在于,所述根据匹配结果对人员信息和轨迹状态进行更新这一步骤,其具体包括:
对人员轨迹信息进行建模,将人员的轨迹信息表示为
Figure FDA0002872291030000011
其中(u,v)是当前人员轨迹的中心坐标,γ是轨迹框的长宽比,h表示轨迹框的高度,
Figure FDA0002872291030000021
表示人员在图像坐标系中的速度信息;
对于匹配上的轨迹信息,采用一个基于匀速模型和线性观测模型的卡尔曼滤波器,对该轨迹信息对应的人员信息进行更新并预测下一帧的位置,得到下一帧的轨迹信息(u,v,γ,h);
对于未匹配上的轨迹信息,基于预设规则对轨迹状态进行更新。
5.根据权利要求4所述一种面向云端部署的多目标轨迹跟踪方法,其特征在于,所述特征距离包括平方马氏距离和余弦相似度的加权融合,所述平方马氏距离的计算公式如下:
Figure FDA0002872291030000022
上式中,dj表示第j个检测框的位置,yi表示第i个轨迹对目标的预测位置,Si表示检测框位置和预测轨迹位置之间的协方差矩阵,d(1)(i,j)则表示第j个检测框和第i条预测轨迹之间的运动匹配度。
6.根据权利要求5所述一种面向云端部署的多目标轨迹跟踪方法,其特征在于,所述余弦相似度的计算公式如下:
Figure FDA0002872291030000023
上式中,
Figure FDA0002872291030000024
表示第i个检测框中人员的外观特征向量库中的第k个外观特征向量,rj表示第j条预测轨迹框的特征向量,d(2)(i,j)表示第i个检测框中人员的外观特征向量库和第j条预测轨迹框的特征向量之间的最小余弦距离。
7.根据权利要求6所述一种面向云端部署的多目标轨迹跟踪方法,其特征在于,所述特征距离的计算公式如下:
ci,j=λd(1)(i,j)+(1-λ)d(2)(i,j)
上式中,λ表示超参数。
8.根据权利要求7所述一种面向云端部署的多目标轨迹跟踪方法,其特征在于,所述重叠匹配度的计算公式如下:
Figure FDA0002872291030000025
上式中,A表示人员框的面积,B表示轨迹信息中轨迹框的面积。
9.根据权利要求8所述一种面向云端部署的多目标轨迹跟踪方法,其特征在于,所述轨迹状态包括待定、确认、暂停和删除,所述对于未匹配上的轨迹信息,基于预设规则对轨迹状态进行更新这一步骤,其具体包括:
将轨迹状态的初始状态设为待定;
当轨迹状态为待定,并连续成功匹配三次,状态更新为确认;
当轨迹状态为确认,并且未能成功匹配,则将更新时间加一,当轨迹的更新时间超过设定阈值且未被匹配上,则将状态设为暂停;
当轨迹状态为暂停,并且未能成功匹配,则将暂停时间加一,当轨迹的暂停时间超过设定阈值且一直未被匹配上,则将轨迹的状态设为删除;
当轨迹状态为确认或暂停,匹配成功则将状态设为确认状态,并且将更新时间和暂时时间归零。
10.一种面向云端部署的多目标轨迹跟踪系统,其特征在于,包括以下模块:
优化模块,用于对预构建的目标检测模型进行FP16推断优化加速,得到优化后的目标检测模型;
检测模块,用于获取摄像头的实时图像数据并基于优化后的目标检测模型对实时图像数据进行检测,得到人员框和轨迹框;
匹配模块,用于根据当前人员框中的人员信息,选择匹配方式与上一帧存在的轨迹信息进行匹配,得到匹配结果;
更新模块,用于根据匹配结果对人员信息和轨迹状态进行更新。
CN202011616394.5A 2020-12-30 2020-12-30 一种面向云端部署的多目标轨迹跟踪方法及系统 Active CN112669345B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011616394.5A CN112669345B (zh) 2020-12-30 2020-12-30 一种面向云端部署的多目标轨迹跟踪方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011616394.5A CN112669345B (zh) 2020-12-30 2020-12-30 一种面向云端部署的多目标轨迹跟踪方法及系统

Publications (2)

Publication Number Publication Date
CN112669345A true CN112669345A (zh) 2021-04-16
CN112669345B CN112669345B (zh) 2023-10-20

Family

ID=75411409

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011616394.5A Active CN112669345B (zh) 2020-12-30 2020-12-30 一种面向云端部署的多目标轨迹跟踪方法及系统

Country Status (1)

Country Link
CN (1) CN112669345B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113673395A (zh) * 2021-08-10 2021-11-19 深圳市捷顺科技实业股份有限公司 一种车辆轨迹的处理方法及装置
CN114972418A (zh) * 2022-03-30 2022-08-30 北京航空航天大学 基于核自适应滤波与yolox检测结合的机动多目标跟踪方法
CN117670939A (zh) * 2024-01-31 2024-03-08 苏州元脑智能科技有限公司 多相机的多目标跟踪方法、装置、存储介质及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110458868A (zh) * 2019-08-15 2019-11-15 湖北经济学院 基于sort的多目标跟踪识别展示系统
CN110490901A (zh) * 2019-07-15 2019-11-22 武汉大学 抗姿态变化的行人检测跟踪方法
CN111476817A (zh) * 2020-02-27 2020-07-31 浙江工业大学 一种基于yolov3的多目标行人检测跟踪方法
WO2020155873A1 (zh) * 2019-02-02 2020-08-06 福州大学 一种基于深度表观特征和自适应聚合网络的多人脸跟踪方法
CN111626194A (zh) * 2020-05-26 2020-09-04 佛山市南海区广工大数控装备协同创新研究院 一种使用深度关联度量的行人多目标跟踪方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020155873A1 (zh) * 2019-02-02 2020-08-06 福州大学 一种基于深度表观特征和自适应聚合网络的多人脸跟踪方法
CN110490901A (zh) * 2019-07-15 2019-11-22 武汉大学 抗姿态变化的行人检测跟踪方法
CN110458868A (zh) * 2019-08-15 2019-11-15 湖北经济学院 基于sort的多目标跟踪识别展示系统
CN111476817A (zh) * 2020-02-27 2020-07-31 浙江工业大学 一种基于yolov3的多目标行人检测跟踪方法
CN111626194A (zh) * 2020-05-26 2020-09-04 佛山市南海区广工大数控装备协同创新研究院 一种使用深度关联度量的行人多目标跟踪方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
雷景生;李誉坤;杨忠光;: "融合二维姿态信息的相似多目标跟踪", 计算机工程与设计, no. 10, pages 276 - 283 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113673395A (zh) * 2021-08-10 2021-11-19 深圳市捷顺科技实业股份有限公司 一种车辆轨迹的处理方法及装置
CN114972418A (zh) * 2022-03-30 2022-08-30 北京航空航天大学 基于核自适应滤波与yolox检测结合的机动多目标跟踪方法
CN114972418B (zh) * 2022-03-30 2023-11-21 北京航空航天大学 基于核自适应滤波与yolox检测结合的机动多目标跟踪方法
CN117670939A (zh) * 2024-01-31 2024-03-08 苏州元脑智能科技有限公司 多相机的多目标跟踪方法、装置、存储介质及电子设备
CN117670939B (zh) * 2024-01-31 2024-04-19 苏州元脑智能科技有限公司 多相机的多目标跟踪方法、装置、存储介质及电子设备

Also Published As

Publication number Publication date
CN112669345B (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
CN113269098B (zh) 一种基于无人机的多目标跟踪定位与运动状态估计方法
CN112669345A (zh) 一种面向云端部署的多目标轨迹跟踪方法及系统
CN110210417B (zh) 一种行人运动轨迹的预测方法、终端及可读存储介质
CN107861508B (zh) 一种移动机器人局部运动规划方法及装置
CN110533695A (zh) 一种基于ds证据理论的轨迹预测装置及方法
CN109556607A (zh) 一种快速处理移动机器人定位“绑架”问题的方法
CN110046677B (zh) 数据预处理方法、地图构建方法、回环检测方法及系统
CN113177968A (zh) 目标跟踪方法、装置、电子设备及存储介质
Guo et al. Evaluation-oriented façade defects detection using rule-based deep learning method
KR102303432B1 (ko) 장애물의 특성을 고려한 dqn 및 slam 기반의 맵리스 내비게이션 시스템 및 그 처리 방법
US11928813B2 (en) Method and system for detecting change to structure by using drone
CN113688797A (zh) 一种基于骨架提取的异常行为识别方法及系统
CN115239508A (zh) 基于人工智能的场景规划调整方法、装置、设备及介质
CN114387462A (zh) 一种基于双目相机的动态环境感知方法
Wei et al. Camera control for learning nonlinear target dynamics via Bayesian nonparametric Dirichlet-process Gaussian-process (DP-GP) models
CN117077727A (zh) 基于时空注意力机制和神经常微分方程的轨迹预测方法
CN111309035A (zh) 多机器人协同移动与动态避障方法、装置、设备及介质
CN116562332A (zh) 一种人机共融环境下的机器人社交性运动规划方法
Li et al. Vision-based obstacle avoidance algorithm for mobile robot
CN114353779B (zh) 一种采用点云投影快速更新机器人局部代价地图的方法
CN113916223B (zh) 定位方法及装置、设备、存储介质
CN111862218B (zh) 计算机设备定位方法、装置、计算机设备和存储介质
CN114943873A (zh) 一种工地人员异常行为分类方法及装置
Ukyo et al. Pedestrian tracking using 3d lidars–case for proximity scenario
Hsu et al. Enhanced simultaneous localization and mapping (ESLAM) for mobile robots

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant