CN112668125A - Method, system, medium and device for improving evaluation precision of incomplete small arc - Google Patents
Method, system, medium and device for improving evaluation precision of incomplete small arc Download PDFInfo
- Publication number
- CN112668125A CN112668125A CN202110010711.7A CN202110010711A CN112668125A CN 112668125 A CN112668125 A CN 112668125A CN 202110010711 A CN202110010711 A CN 202110010711A CN 112668125 A CN112668125 A CN 112668125A
- Authority
- CN
- China
- Prior art keywords
- point set
- data
- data point
- period
- smoothing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009499 grossing Methods 0.000 claims abstract description 131
- 238000011156 evaluation Methods 0.000 claims abstract description 65
- 238000000034 method Methods 0.000 claims abstract description 61
- 230000008859 change Effects 0.000 claims abstract description 14
- 238000004364 calculation method Methods 0.000 claims description 33
- 238000003860 storage Methods 0.000 claims description 6
- 238000005259 measurement Methods 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 13
- 230000003044 adaptive effect Effects 0.000 description 12
- 238000004422 calculation algorithm Methods 0.000 description 8
- 238000004590 computer program Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 238000005457 optimization Methods 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 230000002457 bidirectional effect Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000012854 evaluation process Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 2
- 238000010835 comparative analysis Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明涉及一种提高非完整小圆弧评价精度的方法、系统、介质及设备,其包括:确定预先建立的三次指数平滑预测模型的第一个最佳平滑系数;进一步确定其余最佳平滑系数;将最佳平滑系数拟合出平滑系数的变化趋势曲线,根据拟合公式获取数据点集外预测期数的平滑系数;利用数据点集外预测期数的平滑系数计算预测实测数据点集外的数据点;判断是否达到预先设定的预测期数,达到则将数据点集逆序;将原实测数据点集与预测数据点集合并形成新数据点集,将该新数据点集利用评价方法进行曲率参数评价,提高了非完整小圆弧评价精度。本发明能提高曲率半径参数评价的准确性,有效提高了非完整小圆弧曲率半径参数评价的稳定性和准确性。
The invention relates to a method, system, medium and equipment for improving the evaluation accuracy of non-complete small circular arcs, comprising: determining the first optimal smoothing coefficient of a pre-established triple exponential smoothing prediction model; ; Fit the change trend curve of the smoothing coefficient with the best smoothing coefficient, and obtain the smoothing coefficient of the predicted period outside the data point set according to the fitting formula; use the smoothing coefficient of the predicted period outside the data point set to calculate and predict the outside of the measured data point set to determine whether the preset number of forecast periods is reached, and reverse the order of the data point set; combine the original measured data point set and the predicted data point set to form a new data point set, and use the new data point set to use the evaluation method The evaluation of curvature parameters is carried out to improve the evaluation accuracy of non-complete small arcs. The invention can improve the accuracy of the evaluation of the curvature radius parameter, and effectively improve the stability and accuracy of the evaluation of the curvature radius parameter of the incomplete small arc.
Description
技术领域technical field
本发明涉及一种机械部件性能检测技术领域,特别是关于一种提高非完整小圆弧评价精度的方法、系统、介质及设备。The invention relates to the technical field of performance detection of mechanical parts, in particular to a method, system, medium and equipment for improving the evaluation accuracy of non-complete small circular arcs.
背景技术Background technique
非完整小圆弧指的是圆弧轮廓对应中心角度小于120°的、曲率半径范围为0~25mm的弧线或弧面。非完整小圆弧轮廓因其特殊性能在国防科技工业和精密制造业中得到广泛应用:例如航空发动机叶片的前后缘轮廓,对发动机的气动性能和叶片的疲劳性能产生直接影响;数控机床刀具的刀尖部分,直接决定其加工精度;一些精密零部件的边缘倒角,用于去除加工毛刺,改善零部件应力集中的情况。曲率半径参数作为小圆弧轮廓的核心参数,其精度对工件的生产制造性能极为重要,因此存在迫切的精确测量及评定需要。然而由于其非完整性和圆弧半径范围小的特点,导致测量及评价的难度大,在曲率半径参数估计的准确性上一直存在着争议。The non-complete small arc refers to the arc or arc surface with the corresponding center angle of the arc contour less than 120° and the radius of curvature ranging from 0 to 25 mm. The non-complete small arc profile is widely used in the defense technology industry and precision manufacturing due to its special properties: for example, the front and rear edge profiles of aero-engine blades have a direct impact on the aerodynamic performance of the engine and the fatigue performance of the blades; The tool tip directly determines its machining accuracy; the edge chamfering of some precision parts is used to remove machining burrs and improve the stress concentration of parts. As the core parameter of the small arc profile, the curvature radius parameter is very important to the production performance of the workpiece, so there is an urgent need for accurate measurement and evaluation. However, due to its non-integrity and small arc radius, it is difficult to measure and evaluate, and there has been controversy over the accuracy of curvature radius parameter estimation.
影响评价精度的主要圆弧参数有圆弧的理论半径、圆弧轮廓点集所对中心角以及圆弧轮廓点集的轮廓度误差。通常情况下,圆弧的理论半径越小,评价的难度及误差就越大;圆弧轮廓点集所对中心角度越小,曲率半径评价的准确性也越差;轮廓点集的轮廓度误差越大,评价精度也相应随之下降。The main arc parameters that affect the evaluation accuracy are the theoretical radius of the arc, the center angle of the arc contour point set and the contour error of the arc contour point set. In general, the smaller the theoretical radius of the arc, the greater the difficulty and error of evaluation; the smaller the center angle of the arc contour point set, the worse the accuracy of the evaluation of the curvature radius; the contour error of the contour point set The larger the value, the lower the evaluation accuracy.
在上述三个影响因素中,圆弧半径是要求取的目标值,无法对其进行调节。因此,学者们普遍从圆弧轮廓点集所对中心角以及圆弧轮廓点集的轮廓度误差上着手,通过减小轮廓度误差的影响或者增大中心角度的方法来提高评价的精度。如Guevara等提出一种基于平均绝对误差来拟合一组点的鲁棒几何方法,该方法通过最小化到数据点的几何距离之和,基于梯度或二阶导数的快速迭代算法,以左手及右手导数确定迭代新方向,将数据点拟合成圆弧,继而求取半径。该算法在计算效率上可作为常规算法的替代方法,原理上降低了轮廓度误差对评价过程的影响,增强了算法的鲁棒性,使其对异常值和数据噪声不敏感,进而提升评价精度。Fei等从非完整小圆弧所对中心角度着手,采用一种基于径向基函数神经网络(RBFNN)的双向预测方法,将观测数据视为时间序列,并对其进行双向延伸,再进行插值,通过增大圆弧长度进而增大圆弧轮廓所对中心角度,经过大量数据的训练学习,最终证实该方法拟合的稳定性和准确性远胜于预测之前。Among the above three influencing factors, the arc radius is the required target value and cannot be adjusted. Therefore, scholars generally start from the center angle of the arc contour point set and the contour error of the arc contour point set, and improve the evaluation accuracy by reducing the influence of the contour error or increasing the center angle. For example, Guevara et al. proposed a robust geometric method for fitting a set of points based on the mean absolute error. This method minimizes the sum of the geometric distances to the data points, and uses a fast iterative algorithm based on gradients or second derivatives. The right-hand derivative determines the new direction of iteration, fits the data points to an arc, and then finds the radius. The algorithm can be used as an alternative to conventional algorithms in terms of computational efficiency. In principle, the influence of contour error on the evaluation process is reduced, the robustness of the algorithm is enhanced, and it is insensitive to outliers and data noise, thereby improving the evaluation accuracy. . Fei et al. started from the perspective of the center of the non-complete small arc, and adopted a bidirectional prediction method based on radial basis function neural network (RBFNN), which regarded the observation data as a time series, and extended it in both directions, and then interpolated it. , by increasing the length of the arc to increase the center angle of the arc profile, and after training and learning with a large amount of data, it is finally confirmed that the stability and accuracy of the method fitting are far better than those before prediction.
以上方法在一些特定领域及工作条件下具有很好的应用,但都具有一定的局限性。如基于径向基函数神经网络(RBFNN)的双向预测法,所需圆弧轮廓数据样本量巨大,实际工程中可供用于训练学习的圆弧数据样本量基本难以达到要求,运用的普适性不高。The above methods have good applications in some specific fields and working conditions, but they all have certain limitations. For example, the bidirectional prediction method based on Radial Basis Function Neural Network (RBFNN) requires a huge amount of arc profile data samples. not tall.
发明内容SUMMARY OF THE INVENTION
针对上述问题,本发明的目的是提供一种提高非完整小圆弧评价精度的方法、系统、介质及设备,利用该方法对小圆弧轮廓数据点集进行预测延伸后,再使用评价方法对处理后的数据点集进行评价,能提高曲率半径参数评价的准确性,有效提高了非完整小圆弧曲率半径参数评价的稳定性和准确性。In view of the above problems, the purpose of the present invention is to provide a method, system, medium and equipment for improving the evaluation accuracy of non-complete small arcs. The evaluation of the processed data point set can improve the accuracy of the evaluation of the radius of curvature parameter, and effectively improve the stability and accuracy of the evaluation of the radius of curvature of the non-complete small arc.
为实现上述目的,本发明采取以下技术方案:一种提高非完整小圆弧评价精度的方法,其包括:In order to achieve the above object, the present invention adopts the following technical solutions: a method for improving the evaluation accuracy of non-complete small circular arcs, comprising:
步骤1)、确定预先建立的三次指数平滑预测模型的第一个最佳平滑系数α1;Step 1), determine the first optimal smoothing coefficient α 1 of the pre-established triple exponential smoothing prediction model;
步骤2)、进一步确定其余n-k个最佳平滑系数;n为实测样本点个数,k为时间序列的期数,k<n;Step 2), further determine the remaining n-k optimal smoothing coefficients; n is the number of measured sample points, k is the number of periods of the time series, k<n;
步骤3)、将n-k个最佳平滑系数拟合出平滑系数α的变化趋势曲线,根据拟合公式获取数据点集外预测期数的平滑系数;Step 3), fitting n-k best smoothing coefficients to the variation trend curve of smoothing coefficient α, and obtaining the smoothing coefficient of the predicted period number outside the data point set according to the fitting formula;
步骤4)、利用数据点集外预测期数的平滑系数计算预测实测数据点集外的数据点;Step 4), utilize the smoothing coefficient of prediction period number outside the data point set to calculate and predict the data point outside the measured data point set;
步骤5)、判断是否达到预先设定的预测期数,达到则将数据点集逆序,重复步骤1)~步骤4);Step 5), judging whether the preset number of forecast periods is reached, and if it is reached, reverse the order of the data point set, and repeat steps 1) to 4);
步骤6)、将原实测数据点集与预测数据点集合并形成新数据点集,将该新数据点集利用评价方法进行曲率参数评价,提高了非完整小圆弧评价精度。Step 6): Combine the original measured data point set and the predicted data point set to form a new data point set, and use the evaluation method to evaluate the curvature parameters of the new data point set, thereby improving the evaluation accuracy of the incomplete small arc.
进一步,所述步骤1)中,第一个最佳平滑系数α1确定方法为:利用现有实测小圆弧轮廓数据横坐标点集和纵坐标点集,实测样本点个数为n,并将序数视为时间序列的期数;假定每次预测固定采用k期数据;从第1期数据开始,第一次计算将第1期数据到第k期数据进行三次指数平滑预测,向右移动计算;平滑系数α在取值空间[0,1]内遍历搜索,设置每次计算的步长,得到若干组k+1期预测值,将k+1期预测值与第k+1期实测数据比较,根据误差平方和最小化原则,确定最佳平滑系数α1。Further, in the step 1), the method for determining the first optimal smoothing coefficient α 1 is: using the existing measured small circular arc outline data abscissa point set and ordinate point set, the number of measured sample points is n, and The ordinal number is regarded as the number of periods of the time series; it is assumed that k periods of data are fixed for each forecast; starting from the first period of data, the first calculation performs three exponential smoothing forecasts from the first period of data to the kth period of data, and moves to the right Calculation; the smoothing coefficient α traverses and searches in the value space [0,1], sets the step size of each calculation, and obtains several groups of k+1 period predicted values, and compares the k+1 period predicted value with the k+1 period measured The data is compared, and the optimal smoothing coefficient α 1 is determined according to the principle of minimizing the sum of squares of errors.
进一步,所述步骤2)中,确定方法为:去掉第1期数据,采用第2期至第k+1期实测数据,重复第一个最佳平滑系数确定方法,得到第二个最佳平滑系数α2,最后得到第n-k个最佳平滑系数αn-k,总共得到n-k个最佳平滑系数。Further, in the step 2), the determination method is: remove the first phase data, use the second phase to k+1 phase measured data, repeat the first optimal smoothing coefficient determination method, and obtain the second optimal smoothing coefficient coefficient α 2 , and finally the nkth best smoothing coefficient α nk is obtained, and nk best smoothing coefficients are obtained in total.
进一步,所述步骤4)中,预测实测数据点集外的数据点的计算方法为:当计算移动至采用第n-k期到第n期实测圆弧数据点集计算第n+1期预测点时,将拟合后得到的平滑系数αn-k+1代入三次指数平滑预测模型,每次预测后均将预测点并入上一轮计算的数据点集中,并剔除最早一期的数据点,将得到的新数据点集用于下一轮计算,最后使用第n+m-k-1期到n+m-1期数据,代入αn-k+m计算第n+m期预测值点。Further, in the described step 4), the calculation method of predicting the data points outside the measured data point set is: when the calculation moves to the n+1 period prediction point calculated from the nkth period to the nth period measured arc data point set , the smoothing coefficient α n-k+1 obtained after fitting is substituted into the triple exponential smoothing prediction model, the prediction points are merged into the data point set of the previous round of calculation after each prediction, and the data points of the earliest period are eliminated, The new set of data points obtained is used for the next round of calculation, and finally, the data of the n+mk-1 to n+m-1 periods are used, and α n-k+m is used to calculate the predicted value points of the n+mth period.
进一步,所述三次指数平滑预测模型为:Further, the triple exponential smoothing prediction model is:
其中,和为第m期预测点的横纵坐标值,t为实测数据的期数,m为预测的步数,at1,bt1,ct1和at2,bt2,ct2分别为圆弧数据点x方向和y方向预测模型参数。in, and is the abscissa and ordinate value of the prediction point of the mth period, t is the period of the measured data, m is the number of predicted steps, a t1 , b t1 , c t1 and a t2 , b t2 , c t2 are the arc data points respectively The model parameters are predicted in the x and y directions.
进一步,所述参数at1,bt1,ct1的求取与参数at2,bt2,ct2相同,公式如下:Further, the parameters a t1 , b t1 , and c t1 are obtained in the same way as the parameters a t2 , b t2 , and c t2 , and the formula is as follows:
一种提高非完整小圆弧评价精度的系统,其包括:第一确定模块、第二确定模块、拟合模块、点集外数据点获取模块、判断模块和评价模块;A system for improving the evaluation accuracy of non-complete small arcs, comprising: a first determination module, a second determination module, a fitting module, a data point acquisition module outside the point set, a judgment module and an evaluation module;
所述第一确定模块,确定预先建立的三次指数平滑预测模型的第一个最佳平滑系数α1;The first determining module determines the first optimal smoothing coefficient α 1 of the pre-established triple exponential smoothing prediction model;
所述第二确定模块,进一步确定其余n-k个最佳平滑系数;n为实测样本点个数,k为时间序列的期数,k<n;The second determination module further determines the remaining n-k optimal smoothing coefficients; n is the number of measured sample points, k is the number of periods of the time series, and k<n;
所述拟合模块,将n-k个最佳平滑系数拟合出平滑系数α的变化趋势曲线,根据拟合公式获取数据点集外预测期数的平滑系数;The fitting module fits the n-k best smoothing coefficients to obtain the change trend curve of the smoothing coefficient α, and obtains the smoothing coefficients of the predicted periods outside the data point set according to the fitting formula;
所述点集外数据点获取模块,利用数据点集外预测期数的平滑系数计算预测实测数据点集外的数据点;The data point acquisition module outside the point set uses the smoothing coefficient of the forecast period outside the data point set to calculate and predict the data points outside the measured data point set;
所述判断模块,判断是否达到预先设定的预测期数,达到则将数据点集逆序,重复执行所述第一确定模块、第二确定模块、拟合模块和点集外数据点获取模块;The judging module judges whether the preset number of prediction periods is reached, and if it is reached, the data point set is reversed, and the first determining module, the second determining module, the fitting module and the data point acquiring module outside the point set are repeatedly executed;
所述评价模块,将原实测数据点集与预测数据点集合并形成新数据点集,将该新数据点集利用评价方法进行曲率参数评价,提高了非完整小圆弧评价精度。The evaluation module combines the original measured data point set and the predicted data point set to form a new data point set, and uses the evaluation method to evaluate the curvature parameters of the new data point set, thereby improving the evaluation accuracy of the incomplete small arc.
进一步,所述第一确定模块中,第一个最佳平滑系数α1确定方法为:利用现有实测小圆弧轮廓数据横坐标点集和纵坐标点集,实测样本点个数为n,并将序数视为时间序列的期数;假定每次预测固定采用k期数据;从第1期数据开始,第一次计算将第1期数据到第k期数据进行三次指数平滑预测,向右移动计算;平滑系数α在取值空间[0,1]内遍历搜索,设置每次计算的步长,得到若干组k+1期预测值,将k+1期预测值与第k+1期实测数据比较,根据误差平方和最小化原则,确定最佳平滑系数α1。Further, in the first determination module, the method for determining the first optimal smoothing coefficient α 1 is: using the existing measured small arc outline data abscissa point set and ordinate point set, the number of measured sample points is n, The ordinal number is regarded as the number of periods of the time series; it is assumed that k periods of data are fixed for each forecast; starting from the first period of data, the first calculation will perform three exponential smoothing forecasts on the first period of data to the kth period of data, rightwards Mobile calculation; the smoothing coefficient α traverses and searches in the value space [0,1], sets the step size of each calculation, and obtains several groups of k+1 period predicted values, and compares the k+1 period predicted value with the k+1 period Comparing the measured data, the optimal smoothing coefficient α 1 is determined according to the principle of minimizing the sum of squares of errors.
一种存储一个或多个程序的计算机可读存储介质,所述一个或多个程序包括指令,所述指令当由计算设备执行时,使得所述计算设备执行上述方法中的任一方法。A computer-readable storage medium storing one or more programs comprising instructions that, when executed by a computing device, cause the computing device to perform any of the above methods.
一种计算设备,其包括:一个或多个处理器、存储器及一个或多个程序,其中一个或多个程序存储在所述存储器中并被配置为所述一个或多个处理器执行,所述一个或多个程序包括用于执行上述的方法中的任一方法的指令。A computing device comprising: one or more processors, a memory, and one or more programs, wherein the one or more programs are stored in the memory and configured to be executed by the one or more processors, the The one or more programs include instructions for performing any of the methods described above.
本发明由于采取以上技术方案,其具有以下优点:1、本发明将研究对象缩小至所对中心角为60°以下非完整小圆弧,增强了此类圆弧曲率半径参数评价的稳定性,使评价精度的提升效果更为明显。2、本发明针对一般三次指数平滑预测过程中平滑系数α的选取主观性太强、灵敏性太弱的问题,在三次指数平滑的基础上添加自适应改进算法,通过自身数据的趋势变化实时搜索预测的最佳平滑系数。并将原先累加式迭代改为固定样本点移动式迭代,减少了预测过程中由于预测样本点数量变化产生的影响,使最佳平滑系数的变化趋势更容易分析,得到更准确的预测点。3、本发明使用不同数据在相同评价方法下的评价结果比对分析,验证了此法对评价精度提升效果最佳的预测角度;使用同组数据不同评价方法下的评价结果比对分析,验证了该法运用的普适性。Because the present invention adopts the above technical scheme, it has the following advantages: 1, the present invention reduces the research object to a small non-complete arc with a central angle of less than 60°, which enhances the stability of the evaluation of the curvature radius parameter of this type of arc, The effect of improving the evaluation accuracy is more obvious. 2. Aiming at the problem that the selection of the smoothing coefficient α is too subjective and the sensitivity is too weak in the general triple exponential smoothing prediction process, the present invention adds an adaptive improvement algorithm on the basis of the triple exponential smoothing, and searches in real time through the trend change of its own data. The best smoothing coefficient for the prediction. The original cumulative iteration is changed to a fixed sample point moving iteration, which reduces the influence of the change in the number of predicted sample points in the prediction process, makes the change trend of the optimal smoothing coefficient easier to analyze, and obtains more accurate prediction points. 3. The present invention uses the comparative analysis of the evaluation results of different data under the same evaluation method to verify the prediction angle that this method has the best effect of improving the evaluation accuracy; the comparative analysis of the evaluation results under different evaluation methods of the same group of data is used to verify the universality of the law's application.
附图说明Description of drawings
图1是本发明实施例中方法的整体流程示意图。FIG. 1 is a schematic overall flow diagram of a method in an embodiment of the present invention.
图2是本发明实施例中的固定样本移动计算示意图;2 is a schematic diagram of a fixed sample moving calculation in an embodiment of the present invention;
图3是本发明实施例中小圆弧中心角度对评价影响的趋势图;Fig. 3 is the trend diagram of the influence of the center angle of the small circular arc on the evaluation in the embodiment of the present invention;
图4是单独使用三次指数平滑处理后的圆弧拟合图;Fig. 4 is the arc fitting diagram after using three exponential smoothing alone;
图5是本发明实施例中自适应三次指数平滑系数拟合图及后期推导值图;5 is a fitting diagram of an adaptive cubic exponential smoothing coefficient and a later derivation value diagram in the embodiment of the present invention;
图6是本发明实施例中自适应三次指数平滑法双向预测拟合效果图。FIG. 6 is a fitting effect diagram of bidirectional prediction by the adaptive triple exponential smoothing method in the embodiment of the present invention.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions of the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings of the embodiments of the present invention. Obviously, the described embodiments are some, but not all, embodiments of the present invention. Based on the described embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art fall within the protection scope of the present invention.
下面结合附图和实施例对本发明进行详细的介绍。The present invention will be described in detail below with reference to the accompanying drawings and embodiments.
本发明提供一种提高非完整小圆弧评价精度的方法,该方法针对轮廓所对中心角为60°以下的小圆弧曲率半径参数的评价。本发明采用自适应动态三次指数平滑模型,即在传统三次指数平滑预测模型的基础上添加自适应算法进行优化。自适应三次指数平滑法并不是像传统的三次指数平滑法一样将所有点全部代入直接预测,而是根据现有的数据点集,从第一期数据开始,只截取其中部分点进行三次指数平滑;计算出这一期的预测数据后,就往后移动一步计算,每次移动都将最先一期的数据剔除并加入后一期实测数据。同时遍历平滑系数α的取值空间,进行定步距计算,得出一系列预测点,将所有预测点与当期的实测点进行比较,根据误差平方和最小化原则,得出误差最小的预测点,反推出预测该点的平滑系数值即为实时最佳平滑预测值。经过前期历史数据的训练,可拟合出平滑系数α的变化趋势曲线,在点集外预测时,由于缺少实测值的比较,此时则需要根据α的拟合曲线方程计算后期平滑系数值,直接利用此平滑系数参与计算预测实测数据点集外的数据点。本发明基于自适应三次指数平滑预测模型的方法来增大轮廓数据点集所对中心角,进而提升非完整小圆弧曲率半径参数评价精度。The invention provides a method for improving the evaluation accuracy of a non-complete small circular arc, which is aimed at evaluating the curvature radius parameter of a small circular arc with a central angle opposite to a contour of 60° or less. The invention adopts an adaptive dynamic cubic exponential smoothing model, that is, an adaptive algorithm is added on the basis of the traditional cubic exponential smoothing prediction model for optimization. The adaptive triple exponential smoothing method does not substitute all the points into the direct prediction like the traditional triple exponential smoothing method, but according to the existing data point set, starting from the first period of data, only some of the points are intercepted for triple exponential smoothing ; After calculating the forecast data of this period, move forward one step to calculate, and each time you move, the data of the first period will be removed and added to the measured data of the next period. At the same time, it traverses the value space of the smoothing coefficient α, performs fixed-step calculation, and obtains a series of forecast points. All forecast points are compared with the current measured points. According to the principle of minimizing the sum of squares of errors, the forecast point with the smallest error is obtained. , and the smoothing coefficient value that predicts this point is the real-time best smoothing prediction value. After the training of the previous historical data, the change trend curve of the smoothing coefficient α can be fitted. When forecasting outside the point set, due to the lack of comparison of the measured values, it is necessary to calculate the later smoothing coefficient value according to the fitting curve equation of α. Directly use this smoothing coefficient to participate in the calculation and prediction of data points outside the measured data point set. The invention increases the center angle corresponding to the contour data point set based on the method of the adaptive cubic exponential smoothing prediction model, thereby improving the evaluation accuracy of the curvature radius parameter of the non-complete small arc.
如图1、图2所示,本发明的方法具体包括以下步骤:As shown in Figure 1 and Figure 2, the method of the present invention specifically comprises the following steps:
步骤1)、确定预先建立的三次指数平滑预测模型的第一个最佳平滑系数α1;Step 1), determine the first optimal smoothing coefficient α 1 of the pre-established triple exponential smoothing prediction model;
具体为:利用现有实测小圆弧轮廓数据横坐标点集X和纵坐标点集Y,X=[x1,x2,x3,……],Y=[y1,y2,y3,……],实测样本点个数为n,并将序数视为时间序列的期数;假定每次预测固定采用k期(k<n)数据,从第1期数据开始,第一次计算将第1期数据到第k期数据进行三次指数平滑预测,向右移动计算。平滑系数α在取值空间[0,1]内遍历搜索,设置每次计算的步长,得到若干组k+1期预测值,将k+1期预测值与第k+1期实测数据比较,根据误差平方和最小化原则,确定最佳平滑系数α1;Specifically: using the existing measured small arc outline data abscissa point set X and ordinate point set Y, X=[x 1 , x 2 , x 3 ,...], Y=[y 1 , y 2 , y 3 ,...], the number of measured sample points is n, and the ordinal number is regarded as the number of periods of the time series; it is assumed that k periods (k<n) data are fixed for each forecast, starting from the first period of data, the first The calculation performs three exponential smoothing predictions on the data from the first period to the kth period, and shifts the calculation to the right. The smoothing coefficient α is traversed and searched in the value space [0,1], the step size of each calculation is set, and several groups of k+1 period predicted values are obtained, and the k+1 period predicted value is compared with the k+1 period measured data , according to the principle of minimizing the sum of squares of errors, determine the optimal smoothing coefficient α 1 ;
步骤2)、进一步确定其余n-k个最佳平滑系数;Step 2), further determine the remaining n-k optimal smoothing coefficients;
具体为:去掉第1期数据,采用第2期至第k+1期实测数据,重复步骤1),得到第二个最佳平滑系数α2,以此类推,最后得到第n-k个最佳平滑系数αn-k,总共得到n-k个最佳平滑系数。Specifically: remove the data of the first period, use the measured data from the second period to the k+1 period, repeat step 1), obtain the second best smoothing coefficient α 2 , and so on, and finally obtain the nkth best smoothing coefficient coefficients α nk , a total of nk optimal smoothing coefficients are obtained.
步骤3)、将n-k个最佳平滑系数拟合出平滑系数α的变化趋势曲线,根据拟合公式获取数据点集外预测期数的平滑系数;Step 3), fitting n-k best smoothing coefficients to the variation trend curve of smoothing coefficient α, and obtaining the smoothing coefficient of the predicted period number outside the data point set according to the fitting formula;
在点集外预测时,由于缺少实测值的比较,此时则需要根据平滑系数α的变化趋势曲线及拟合公式计算后期平滑系数值。In the prediction outside the point set, due to the lack of comparison of the measured values, it is necessary to calculate the later smoothing coefficient value according to the change trend curve of the smoothing coefficient α and the fitting formula.
具体为:将α1到αn-k拟合,得到拟合曲线与拟合公式,计算得到αn-k+1,αn-k+2,……,αn-k+m;其中,m为数据点集外预测的期数。Specifically: fitting α 1 to α nk to obtain a fitting curve and a fitting formula, and calculating to obtain α n-k+1 , α n-k+2 , ..., α n-k+m ; where m The number of periods forecasted for outside the set of data points.
步骤4)、利用数据点集外预测期数的平滑系数计算预测实测数据点集外的数据点;Step 4), utilize the smoothing coefficient of prediction period number outside the data point set to calculate and predict the data point outside the measured data point set;
具体为:当计算移动至采用第n-k期到第n期实测圆弧数据点集计算第n+1期预测点时,将拟合后得到的平滑系数αn-k+1代入三次指数平滑预测模型,每次预测后均将预测点并入上一轮计算的数据点集中,并剔除最早一期的数据点,将得到的新数据点集用于下一轮计算,保持每次用于预测的点的个数恒为k,以此类推,使用第n+m-k-1期到n+m-1期数据,代入αn-k+m进行三次指数平滑计算出第n+m期预测值。Specifically: when the calculation moves to the calculation of the forecast point of the n+1 period using the measured arc data point set from the nkth period to the nth period, the smoothing coefficient α n-k+1 obtained after fitting is substituted into the three-time exponential smoothing prediction Model, after each prediction, the prediction points are merged into the data point set of the previous round of calculation, and the data points of the earliest period are eliminated, and the new data point set obtained is used for the next round of calculation, and is kept for each prediction. The number of points is always k, and so on, using the data from the n+mk-1 period to the n+m-1 period, and substituting α n-k+m for triple exponential smoothing to calculate the predicted value of the n+mth period .
步骤5)、判断是否达到预先设定的预测期数,若达到则将数据点集逆序,即第1期数据变为第n期,第n期变为第1期,重复步骤1)~步骤4)。若未达到预测期数则返回步骤1)重复执行。Step 5), determine whether the preset number of predicted periods is reached, and if so, reverse the order of the data point set, that is, the first period of data becomes the nth period, and the nth period becomes the first period, repeating steps 1) to steps 4). If the number of predicted periods is not reached, return to step 1) and repeat the execution.
步骤6)、将原实测数据点集与所有预测数据点合并形成新数据点集,将该新数据点集利用评价方法进行曲率参数评价,提高了非完整小圆弧评价精度;其中评价方法可以采用现有技术中的成熟评价方法,在此不再赘述。Step 6), merge the original measured data point set and all predicted data points to form a new data point set, and use the evaluation method to evaluate the curvature parameter of the new data point set, which improves the evaluation accuracy of the incomplete small arc; wherein the evaluation method can be A mature evaluation method in the prior art is adopted, which will not be repeated here.
上述各步骤中,已知现有实测小圆弧轮廓数据横坐标点集X和纵坐标点集Y,则三次指数平滑预测模型为:In the above steps, it is known that the abscissa point set X and the ordinate point set Y of the existing measured small arc outline data, then the triple exponential smoothing prediction model is:
其中,和为第m期预测点的横纵坐标值,t为原实测数据的期数,m为预测的步数,at1,bt1,ct1和at2,bt2,ct2分别为x方向和y方向预测模型参数。in, and is the abscissa and ordinate value of the prediction point of the mth period, t is the period of the original measured data, m is the number of prediction steps, a t1 , b t1 , c t1 and a t2 , b t2 , c t2 are the x-direction and y-direction prediction model parameters.
其中,采用三次指数平滑预测模型进行预测的方法为:Among them, the prediction method using the triple exponential smoothing prediction model is:
设定平滑系数α值及平滑初始值对X进行三次平滑(Y同理):Set smoothing coefficient α value and smoothing initial value Smooth X three times (same for Y):
则x方向模型参数at1,bt1,ct1的求取公式如下:Then the formulas for obtaining the model parameters a t1 , b t1 , and c t1 in the x-direction are as follows:
y方向预测模型参数at2,bt2,ct2同理;The y-direction prediction model parameters a t2 , b t2 , and c t2 are the same;
将at1,bt1,ct1和at2,bt2,ct2代入公式(1)中则可求出第1期的预测点,将所求预测点并入点集,再次进行三次指数平滑预测,设定好预测的步数m即可得到m期预测值。将三次指数平滑预测的预测点与实测点合并,对新数据点集进行评价的效果图如图3所示。Substitute a t1 , b t1 , c t1 and a t2 , b t2 , c t2 into formula (1) to obtain the forecast point of the first period, merge the obtained forecast point into the point set, and perform three times exponential smoothing again Prediction, set the number of predicted steps m to get the predicted value of m period. Figure 3 shows the effect of evaluating the new data point set by merging the predicted points predicted by triple exponential smoothing with the measured points.
对图3中采用三次指数平滑预测的结果进行分析,可观察到虽然前几期数据预测的准确度很高,但预测不到3期后便产生了较明显的偏移,如图4所示。分析出产生偏离的原因是由于选取的平滑系数α主观性太强,灵敏性太弱,仅适用于一次预测,对样本环境波动的适应能力差导致误差逐渐累积。针对此问题本发明在传统三次指数平滑法添加自适应算法进行优化,如步骤1)至步骤6),进而解决了平滑系数的寻优问题。By analyzing the results of three exponential smoothing predictions in Figure 3, it can be observed that although the accuracy of the data forecast in the first few periods is very high, there will be a more obvious shift after less than 3 periods of prediction, as shown in Figure 4 . It is analyzed that the reason for the deviation is that the selected smoothing coefficient α is too subjective and too weak in sensitivity. Aiming at this problem, the present invention adds an adaptive algorithm to the traditional cubic exponential smoothing method for optimization, such as steps 1) to 6), thereby solving the optimization problem of the smoothing coefficient.
本发明还提供一种提高非完整小圆弧评价精度的系统,其包括:第一确定模块、第二确定模块、拟合模块、点集外数据点获取模块、判断模块和评价模块;The present invention also provides a system for improving the evaluation accuracy of an incomplete small arc, which includes: a first determination module, a second determination module, a fitting module, a data point acquisition module outside the point set, a judgment module and an evaluation module;
第一确定模块,确定预先建立的三次指数平滑预测模型的第一个最佳平滑系数α1;a first determination module, which determines the first optimal smoothing coefficient α 1 of the pre-established triple exponential smoothing prediction model;
第二确定模块,进一步确定其余n-k个最佳平滑系数;n为实测样本点个数,k为时间序列的期数,k<n;The second determination module further determines the remaining n-k optimal smoothing coefficients; n is the number of measured sample points, k is the number of periods of the time series, and k<n;
拟合模块,将n-k个最佳平滑系数拟合出平滑系数α的变化趋势曲线,根据拟合公式获取数据点集外预测期数的平滑系数;The fitting module fits the n-k best smoothing coefficients to the variation trend curve of the smoothing coefficient α, and obtains the smoothing coefficients of the predicted periods outside the data point set according to the fitting formula;
点集外数据点获取模块,利用数据点集外预测期数的平滑系数计算预测实测数据点集外的数据点;The data point acquisition module outside the point set uses the smoothing coefficient of the forecast period outside the data point set to calculate and predict the data points outside the measured data point set;
判断模块,判断是否达到预先设定的预测期数,达到则将数据点集逆序,重复执行第一确定模块、第二确定模块、拟合模块和点集外数据点获取模块;a judging module, for judging whether a preset number of prediction periods is reached, and if it is reached, the data point set is reversed, and the first determining module, the second determining module, the fitting module and the data point acquiring module outside the point set are repeatedly executed;
评价模块,将实测数据点集与预测数据点集合并形成新数据点集,将该新数据点集利用评价方法进行曲率参数评价,提高了非完整小圆弧评价精度。The evaluation module combines the measured data point set and the predicted data point set to form a new data point set, and uses the evaluation method to evaluate the curvature parameters of the new data point set, which improves the evaluation accuracy of the incomplete small arc.
上述实施例中,在第一确定模块中,第一个最佳平滑系数α1确定方法为:利用现有实测小圆弧轮廓数据横坐标点集和纵坐标点集,实测样本点个数为n,并将序数视为时间序列的期数;假定每次预测固定采用k期数据;从第1期数据开始,第一次计算将第1期数据到第k期数据进行三次指数平滑预测,向右移动计算;平滑系数α在取值空间[0,1]内遍历搜索,设置每次计算的步长,得到若干组k+1期预测值,将k+1期预测值与第k+1期实测数据比较,根据误差平方和最小化原则,确定最佳平滑系数α1。In the above-mentioned embodiment, in the first determination module, the determination method of the first optimal smoothing coefficient α1 is: using the existing measured small circular arc outline data abscissa point set and ordinate point set, the number of measured sample points is: n, and the ordinal number is regarded as the number of periods of the time series; it is assumed that k periods of data are fixed for each forecast; starting from the first period of data, the first calculation will perform three exponential smoothing forecasts from the first period of data to the kth period of data, Move to the right and calculate; the smoothing coefficient α traverses the search in the value space [0,1], sets the step size of each calculation, and obtains several groups of k+1 period predicted values. Comparing the measured data in
本发明还提供一种存储一个或多个程序的计算机可读存储介质,一个或多个程序包括指令,指令当由计算设备执行时,使得计算设备执行上述方法中的任一方法。The present invention also provides a computer-readable storage medium storing one or more programs, the one or more programs comprising instructions that, when executed by a computing device, cause the computing device to perform any of the above methods.
本发明还提供一种计算设备,其包括:一个或多个处理器、存储器及一个或多个程序,其中一个或多个程序存储在存储器中并被配置为一个或多个处理器执行,一个或多个程序包括用于执行上述方法中的任一方法的指令。The present invention also provides a computing device comprising: one or more processors, a memory, and one or more programs, wherein the one or more programs are stored in the memory and configured to be executed by the one or more processors, a The or more programs include instructions for performing any of the above-described methods.
实施例:Example:
在本实施例中,对不同圆弧数据预测前后评价结果比较。In this embodiment, the evaluation results before and after prediction of different arc data are compared.
采用九组理论半径分别为0.05mm,1mm,25mm,轮廓对应中心角梯度分别为15°,30°和45°的数据点集,点集的轮廓度误差均在理论半径值的2.6%左右,点集个数均为50个。利用自适应三次指数平滑法进行数据的双向预测再用最小二乘法评价曲率半径,与直接使用最小二乘法进行比较,分析两种情况下的曲率半径评价精度的变化情况。Nine sets of data points with theoretical radii of 0.05mm, 1mm and 25mm, and the gradients of the corresponding central angles of the contours are respectively 15°, 30° and 45°. The number of point sets is 50. The adaptive cubic exponential smoothing method is used to perform bidirectional prediction of the data, and then the least squares method is used to evaluate the curvature radius. Compared with the direct use of the least squares method, the change of the evaluation accuracy of the curvature radius in the two cases is analyzed.
此法的原理即是利用前期数据来分析出平滑系数的变化趋势,再通过此趋势调整后期平滑系数,利用得到的平滑系数进行实测轮廓数据点集外的数据点预测。在前期每一次迭代遍历搜索最佳平滑系数的过程中,将步长设定为0.001,α的取值空间为0~1,为提高迭代速度,减少不必要的计算,可根据实际情况缩小α的取值范围;固定每次用于预测的样本点个数k值为20,因此在整个移动迭代过程中由50个实测点集数据可得到30个α值,观察α值的变化趋势,通过对之拟合得到变化曲线及变化公式,利用变化公式即可求取后期用于点集外数据预测的平滑系数,利用得到的α值,继续进行固定样本数移动计算就能到准确的轮廓点集外预测点。平滑系数α的变化趋势及拟合如图5所示。The principle of this method is to use the previous data to analyze the change trend of the smoothing coefficient, and then adjust the later smoothing coefficient through this trend, and use the obtained smoothing coefficient to predict the data points outside the measured contour data point set. In the process of searching for the best smooth coefficient in each iterative traversal in the early stage, the step size is set to 0.001, and the value space of α is 0 to 1. In order to improve the iteration speed and reduce unnecessary calculations, α can be reduced according to the actual situation The value range of ; the k value of the number of sample points used for prediction each time is fixed at 20, so 30 α values can be obtained from the 50 measured point set data in the entire moving iteration process, and the change trend of the α value can be observed. Fit it to obtain the change curve and the change formula, and use the change formula to obtain the smooth coefficient used for the prediction of the data outside the point set in the later stage, and use the obtained α value to continue to carry out the fixed number of samples to move the calculation to get the accurate contour point. Out-of-set prediction points. The changing trend and fitting of the smoothing coefficient α are shown in Figure 5.
在平滑系数拟合的过程中,使用matlab的polyfit函数对其进行拟合,不同拟合次数后期的α变化趋势具有一定差异性。经多组数据综合分析,在二次拟合、三次拟合和四次拟合中,选择三次拟合具有更高的拟合优度。In the process of smooth coefficient fitting, the polyfit function of matlab is used to fit it, and the variation trend of α in the later period of different fitting times has a certain difference. After comprehensive analysis of multiple sets of data, among quadratic fitting, cubic fitting and quartic fitting, choosing cubic fitting has higher goodness of fit.
如图6所示,使用同一组数据预测,对比图4中单独使用三次指数平滑的预测结果,添加自适应优化后预测的误差明显减小,大大延缓了误差累积的速度,使后期预测点相对于理想圆的偏移量减小了许多,预测的角度增大,曲率半径的评价精度得到一定程度的提高。As shown in Figure 6, using the same set of data for prediction, compared with the prediction results of using triple exponential smoothing alone in Figure 4, the prediction error after adding adaptive optimization is significantly reduced, which greatly slows down the speed of error accumulation and makes the later prediction points relatively The offset from the ideal circle is reduced a lot, the predicted angle is increased, and the evaluation accuracy of the radius of curvature is improved to a certain extent.
经过以上数据的评价分析,验证了本发明的自适应三次指数平滑预测方法应用在非完整小圆弧曲率半径参数评价上的可行性,此法对评价精度具有提升效果,确定对提升效果影响最佳的预测角度;使用同组数据不同评价方法下的评价结果比对分析,验证了该法运用的普适性。After the evaluation and analysis of the above data, the feasibility of applying the self-adaptive cubic exponential smoothing prediction method of the present invention to the evaluation of the curvature radius parameters of non-complete small arcs is verified. This method has the effect of improving the evaluation accuracy. The comparison and analysis of the evaluation results under different evaluation methods of the same group of data verifies the universality of the application of the method.
综上,本发明针对计量学中小圆弧完整性差导致曲率半径参数评价精度低的问题,利用仿真分析了小圆弧轮廓所对中心角对评价过程的影响趋势,根据仿真分析的结果,本发明基于自适应三次指数平滑预测模型的方法来增大轮廓数据点集所对中心角,进而提高曲率半径参数评价的精度。本发明在三次指数平滑法的基础上添加自适应优化算法,解决了预测过程中最佳平滑系数难以确定的问题,优化了传统预测模型及各参数选取标准,提升了预测点的精度。实验结果表明,针对60°以下的非完整小圆弧轮廓数据点集,利用此法将轮廓所对中心角扩大5°左右对后期评价过程最佳;并且可作为一种前期数据处理方法,结合不同评价方法使用,对曲率半径参数的评价精度均有不同程度的提升。To sum up, the present invention aims at the problem of low evaluation accuracy of curvature radius parameters caused by poor integrity of small circular arcs in metrology, and uses simulation to analyze the influence trend of the center angle of the small circular arc profile on the evaluation process. According to the results of the simulation analysis, the present invention The method based on the adaptive cubic exponential smoothing prediction model increases the central angle of the contour data point set, thereby improving the evaluation accuracy of the curvature radius parameter. The invention adds an adaptive optimization algorithm on the basis of the triple exponential smoothing method, solves the problem that the optimal smoothing coefficient is difficult to determine in the prediction process, optimizes the traditional prediction model and the selection criteria of each parameter, and improves the accuracy of prediction points. The experimental results show that for the incomplete small arc contour data point set below 60°, using this method to expand the center angle of the contour by about 5° is the best for the later evaluation process; and it can be used as a preliminary data processing method. Different evaluation methods are used to improve the evaluation accuracy of the radius of curvature parameter to different degrees.
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。As will be appreciated by those skilled in the art, the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present application is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block in the flowchart illustrations and/or block diagrams, and combinations of flows and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing device to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing device produce Means for implementing the functions specified in a flow or flow of a flowchart and/or a block or blocks of a block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions The apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded on a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process such that The instructions provide steps for implementing the functions specified in the flow or blocks of the flowcharts and/or the block or blocks of the block diagrams.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110010711.7A CN112668125B (en) | 2021-01-06 | 2021-01-06 | Method, system, medium and equipment for improving evaluation precision of incomplete small circular arc |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110010711.7A CN112668125B (en) | 2021-01-06 | 2021-01-06 | Method, system, medium and equipment for improving evaluation precision of incomplete small circular arc |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112668125A true CN112668125A (en) | 2021-04-16 |
CN112668125B CN112668125B (en) | 2023-07-04 |
Family
ID=75413112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110010711.7A Active CN112668125B (en) | 2021-01-06 | 2021-01-06 | Method, system, medium and equipment for improving evaluation precision of incomplete small circular arc |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112668125B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115223365A (en) * | 2022-07-15 | 2022-10-21 | 北京市智慧交通发展中心(北京市机动车调控管理事务中心) | Road network speed prediction and anomaly identification method based on damping Holt model |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004334328A (en) * | 2003-04-30 | 2004-11-25 | Nri & Ncc Co Ltd | Product demand forecasting system and product demand forecasting system for New Year holidays |
CN101425158A (en) * | 2008-12-04 | 2009-05-06 | 清华大学 | Short term load prediction method based on information |
US20120303411A1 (en) * | 2011-05-25 | 2012-11-29 | International Business Machines Corporation | Demand modeling and prediction in a retail category |
CN103559563A (en) * | 2013-11-20 | 2014-02-05 | 国家电网公司 | Method for predicting wind speed of wind power plant at short term |
CN103617548A (en) * | 2013-12-06 | 2014-03-05 | 李敬泉 | Medium and long term demand forecasting method for tendency and periodicity commodities |
CN103809521A (en) * | 2012-11-14 | 2014-05-21 | 中国科学院沈阳计算技术研究所有限公司 | Spline curve interpolation method based on secant method |
CN105761489A (en) * | 2016-04-13 | 2016-07-13 | 南京邮电大学 | Cubic exponential smoothing optimal method of traffic flow prediction |
US20160336154A1 (en) * | 2015-05-12 | 2016-11-17 | Hitachi High-Technologies Corporation | Plasma processing apparatus, data processing apparatus and data processing method |
CN107239849A (en) * | 2017-04-17 | 2017-10-10 | 西安电子科技大学 | One kind is based on improved exponential smoothing gray model Methods of electric load forecasting |
CN107527118A (en) * | 2017-08-31 | 2017-12-29 | 佛山科学技术学院 | A kind of self-adapted tolerance exponential smoothing forecasting procedure |
CN107942139A (en) * | 2017-12-28 | 2018-04-20 | 哈尔滨工业大学 | A kind of novel electric power harmonic parameters synchronous sampling by software method |
CN108038040A (en) * | 2017-12-08 | 2018-05-15 | 上海市信息网络有限公司 | Computer cluster performance indicator detection method, electronic equipment and storage medium |
CN109116716A (en) * | 2018-08-27 | 2019-01-01 | 中国人民解放军空军工程大学 | Based on the clock deviation forecasting procedure for improving exponential smoothing |
-
2021
- 2021-01-06 CN CN202110010711.7A patent/CN112668125B/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004334328A (en) * | 2003-04-30 | 2004-11-25 | Nri & Ncc Co Ltd | Product demand forecasting system and product demand forecasting system for New Year holidays |
CN101425158A (en) * | 2008-12-04 | 2009-05-06 | 清华大学 | Short term load prediction method based on information |
US20120303411A1 (en) * | 2011-05-25 | 2012-11-29 | International Business Machines Corporation | Demand modeling and prediction in a retail category |
CN103809521A (en) * | 2012-11-14 | 2014-05-21 | 中国科学院沈阳计算技术研究所有限公司 | Spline curve interpolation method based on secant method |
CN103559563A (en) * | 2013-11-20 | 2014-02-05 | 国家电网公司 | Method for predicting wind speed of wind power plant at short term |
CN103617548A (en) * | 2013-12-06 | 2014-03-05 | 李敬泉 | Medium and long term demand forecasting method for tendency and periodicity commodities |
US20160336154A1 (en) * | 2015-05-12 | 2016-11-17 | Hitachi High-Technologies Corporation | Plasma processing apparatus, data processing apparatus and data processing method |
CN105761489A (en) * | 2016-04-13 | 2016-07-13 | 南京邮电大学 | Cubic exponential smoothing optimal method of traffic flow prediction |
CN107239849A (en) * | 2017-04-17 | 2017-10-10 | 西安电子科技大学 | One kind is based on improved exponential smoothing gray model Methods of electric load forecasting |
CN107527118A (en) * | 2017-08-31 | 2017-12-29 | 佛山科学技术学院 | A kind of self-adapted tolerance exponential smoothing forecasting procedure |
CN108038040A (en) * | 2017-12-08 | 2018-05-15 | 上海市信息网络有限公司 | Computer cluster performance indicator detection method, electronic equipment and storage medium |
CN107942139A (en) * | 2017-12-28 | 2018-04-20 | 哈尔滨工业大学 | A kind of novel electric power harmonic parameters synchronous sampling by software method |
CN109116716A (en) * | 2018-08-27 | 2019-01-01 | 中国人民解放军空军工程大学 | Based on the clock deviation forecasting procedure for improving exponential smoothing |
Non-Patent Citations (5)
Title |
---|
LIJIE YAN ET AL.: "The predicted load balancing algorithm based on the dynamic exponential smoothing", 《OPEN PHYSICS》 * |
TONG NIU ET AL.: "An improved prediction model combining inverse exponential smoothing and Markov chain", 《MATHEMATICAL PROBLEMS IN ENGINEERING》 * |
史永等: "一种实用的短期负荷组合预测方法", 《现代电力》 * |
杨济瑞等: "改进的三次指数平滑法及其在车联网中的应用", 《计算机技术与发展》 * |
沈海迪等: "基于指数平滑法的动态预测机制", 《计算机技术与发展》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115223365A (en) * | 2022-07-15 | 2022-10-21 | 北京市智慧交通发展中心(北京市机动车调控管理事务中心) | Road network speed prediction and anomaly identification method based on damping Holt model |
CN115223365B (en) * | 2022-07-15 | 2023-09-29 | 北京市智慧交通发展中心(北京市机动车调控管理事务中心) | Road network speed prediction and anomaly identification method based on damping Holt model |
Also Published As
Publication number | Publication date |
---|---|
CN112668125B (en) | 2023-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114545863B (en) | Trajectory smoothing method for numerical control machining based on B spline curve fitting | |
CN104809333B (en) | Capacity prediction methods and system based on Kalman filter | |
CN114492198B (en) | A cutting force prediction method based on improved PSO algorithm assisted SVM algorithm | |
CN101653921A (en) | Error compensation method of numerical control grinding contour of camshaft | |
CN112486101B (en) | NURBS curve self-adaptive look-ahead interpolation method | |
JP2011096077A (en) | Method and device for generating tool path | |
CN114818201A (en) | A mechanism and data-driven method for predicting surface quality of engine cylinder head milling | |
CN112149714A (en) | Method for determining energy efficiency characteristic index reference value of coal-electric unit based on data mining | |
CN113239461B (en) | Deformation control method for asymmetric structure complex thin-wall part | |
CN103488561B (en) | A kNN fault detection method for online upgrading master sample model | |
CN108581635A (en) | A kind of milling cutter side edge cutting edge abrasion three-dimensional detection device and method | |
CN109885900A (en) | A Turning Parameter Optimization Method Based on Grayscale Analysis | |
CN111046532A (en) | Coherent cluster recognition method based on elbow criterion | |
CN112668125A (en) | Method, system, medium and device for improving evaluation precision of incomplete small arc | |
CN113276130A (en) | Free-form surface spraying path planning method and system based on point cloud slice | |
CN110908337B (en) | Method for predicting inverse control point of NURBS | |
CN114488941A (en) | Trace fairing method and medium for micro line segments and machine tool numerical control equipment | |
CN118762788A (en) | A prediction method for multi-stage machining errors of thin-walled blades | |
CN110109415A (en) | A kind of more grid cutter shaft optimization methods based on Density Clustering | |
CN109491321B (en) | A Contour Error Estimation Method Based on H-type Precision Motion Platform | |
CN118629160A (en) | A landslide early warning method based on adaptive local regression | |
Yan et al. | THREE-AXIS TOOL-PATH B-SPLINE FITTING BASED ON PREPROCESSING, LEAST SQUARE APPROXIMATION AND ENERGY MINIMIZATION AND ITS QUALITY EVALUATION. | |
CN109648397A (en) | Broaching tool life-span prediction method based on cutter tooth margin width and broaching load dependency | |
CN110426755B (en) | Ground temperature data quality control method based on improved reverse distance weighting | |
CN119556639B (en) | Intelligent control method and system of numerical control machine tool for machining aviation titanium alloy structural part |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |