CN112665508B - 基于数字信号处理的频域信号反射仪 - Google Patents

基于数字信号处理的频域信号反射仪 Download PDF

Info

Publication number
CN112665508B
CN112665508B CN202011442443.8A CN202011442443A CN112665508B CN 112665508 B CN112665508 B CN 112665508B CN 202011442443 A CN202011442443 A CN 202011442443A CN 112665508 B CN112665508 B CN 112665508B
Authority
CN
China
Prior art keywords
signal
digital
frequency
voltage
crystal oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011442443.8A
Other languages
English (en)
Other versions
CN112665508A (zh
Inventor
刘婷
李邦旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University of Technology
Original Assignee
Hubei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University of Technology filed Critical Hubei University of Technology
Priority to CN202011442443.8A priority Critical patent/CN112665508B/zh
Publication of CN112665508A publication Critical patent/CN112665508A/zh
Application granted granted Critical
Publication of CN112665508B publication Critical patent/CN112665508B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了基于数字信号处理的频域信号反射仪,属于信号反射仪技术领域,其包括信号反射仪,所述信号反射仪的正面设置有操作面板,所述信号反射仪内壁的顶部设置有数模转化芯片和压控晶体振荡器,所述压控晶体振荡器的右侧面与信号反射仪内壁的右侧面固定连接。本发明采用连续电磁波且使用相干接收,对接收信号采用数字快速傅里变换,得到电磁波在空间中传播路径上的反射信息,采用连续电磁波信号源,且使用相干检测,对回波信号有放大作用,因在相同的发送功率条件下,本发明具有更大的探测距离,由于采用了压控晶体振荡器部件,使得频率变化线性且具备较高的变化率,因此具有较高的空间分辨率,提高了目标距离测试的精度。

Description

基于数字信号处理的频域信号反射仪
技术领域
本发明属于信号反射仪技术领域,具体为基于数字信号处理的频域信号反射仪。
背景技术
信号反射仪利用光线在光纤中传输时的瑞利散射和菲涅尔反射所产生的背向散射而制成,被广泛应用于光缆线路的维护、施工之中,可进行光纤长度、光纤的传输衰减、接头衰减和故障定位等的测量。
传统的雷达技术是使用电磁波脉冲发射,然后探测电磁波回波来检测自由空间目标,这种方式对发射的脉冲功率要求高,且目标距离测试精度有限。
发明内容
(一)解决的技术问题
为了克服现有技术的上述缺陷,本发明提供了基于数字信号处理的频域信号反射仪,解决了传统的雷达技术是使用电磁波脉冲发射,然后探测电磁波回波来检测自由空间目标,这种方式对发射的脉冲功率要求高,且目标距离测试精度有限的问题。
(二)技术方案
为实现上述目的,本发明提供如下技术方案:基于数字信号处理的频域信号反射仪,包括信号反射仪,所述信号反射仪的正面设置有操作面板,所述信号反射仪内壁的顶部设置有数模转化芯片和压控晶体振荡器,所述压控晶体振荡器的右侧面与信号反射仪内壁的右侧面固定连接,所述信号反射仪内部的左侧设置有FPGA芯片,所述FPGA芯片的右侧设置有功率放大模块,所述功率放大模块的背面与信号反射仪内壁的正面固定连接,所述功率放大模块的右侧面通过相干接收模块与信号反射仪内壁的右侧面固定连接。
所述信号反射仪内壁底部的左右两侧分别设置有模数转化器和低通滤波器,所述信号反射仪的上表面与盒体的下表面固定连接,所述盒体的左右两侧面分别通过合页铰接有防护板,两个防护板的下表面分别设置有发射天线和接收天线,所述FPGA芯片的输出端与数模转化芯片信号连接,所述数模转化芯片的输出端与压控晶体振荡器的输入端信号连接。
所述压控晶体振荡器的输出端与功率放大模块的输入端信号连接,所述功率放大模块的输出端分别与发射天线和相干接收模块的输入端信号连接,所述相干接收模块的输入端与接收天线的输出端信号连接,所述相干接收模块的输出端通过低通滤波器与模数转化器的输入端信号连接,所述模数转化器的输出端与FPGA芯片的输入端信号连接。
作为本发明的进一步方案:所述信号反射仪的外壁套接有防护套,所述防护套的四角处均设置有防撞角,所述防护套的左右两侧面均设置有防滑垫。
作为本发明的进一步方案:所述信号反射仪内壁底部的右侧设置有散热网,所述防护板的上表面固定连接有把手。
作为本发明的进一步方案:基于数字信号处理的频域信号反射仪,包括以下信号发射步骤:
S1、首先由FPGA芯片操作数模转化芯片,使数模转化芯片输出电压随时间线性变化。
S2、其次信号传递至压控晶体振荡器,压控晶体振荡器的输入电压随时间线性变化,其输出信号频率也会随时间线性变化,信号经过功率放大模块放大后,一部分传递至发射天线,一部分传递至相干接收模块。
S3、功率放大模块的输出信号与接收天线的接收信号通过相干接收模块进行相干接收,其输出信号经过低通滤波电路后进行模数转换,然后再输入到FPGA芯片中。
S4、FPGA芯片内部实现数字快速傅里叶运算,得到相干信号的频率与幅度,从而得到电磁波在空间传播路径上的距离和反射率信息。
作为本发明的进一步方案:所述快速傅里叶运算中的幅值表示为Δf,压控晶体振荡器中振频率调谐量为Φ赫兹,频率调谐速度为u赫兹/秒,频率调谐时间为t秒,所述模数转化器采样率为fs-adc,数模转化芯片采样率为fs-dac,其光速为C0米/秒,当发射端距离为D的位置时,反射信号会在2*u/C0时间段内无信号,初始反射时间小于调谐时间的1/20,即t/20秒;同步地,拍频频率上限为Φ/20赫兹,在调谐时间t段内,至少保证有100个完整的拍频周期,因此拍频频率下限定义为100/t赫兹。
当距离发送端为D米的反射信号与本地信号之间存在时间延迟td秒,拍频频率Δf与距离D的关系式为:
Δf=td*u=(2*u/C0)*D
D=(0.5*C0/u)*Δf
一次测量的采样时间为t秒,采样数据经过快速傅里叶变换后,频率分辨率为1/t赫兹,即最小频率分辨率为:
Δfmin=1/t
对应的,最小距离分辨率Dmin为:
Dmin=(0.5*C0/u)*Δf=0.5*C0/(u*t)=0.5*C0
距离分辨率Dmin=1m,压控晶振频率调谐量Φ=150MHz。
测量距离为Dmax,初始反射时间段为2*Dmax/C0,整个调谐时间为初始反射时间段的20倍,即:
t=20*(2*Dmax/C0)=40*Dmax/C0
Dmax=10km,调谐时间为t=1.33毫秒,调谐频率为0.75KHz。
检测差频信号频率上、下限:
Δfhigh=Φ/20=7.5MHz
Δflow=100/t=75KHz
对应的测量距离为:100m~10km。
作为本发明的进一步方案:所述模数转化器的采样频率fs-adc≥2*Δfhigh=15MHz,实际选取模数转化器采样频率fs-adc=50MHz,位宽为16bit,为保证压控晶体振荡器压控端的信号平稳无台阶,数模转化芯片需要在调谐时间内尽量输出更多值,定义在调谐时间内,数模转化芯片输出值的数量为至少为100K个值,fs-dac=100K/1.33毫秒=75MHz,位宽为16bit。
(三)有益效果
与现有技术相比,本发明的有益效果在于:
1、本发明采用连续电磁波且使用相干接收,然后对接收信号采用数字快速傅里变换,得到电磁波在空间中传播路径上的反射信息,因采用连续电磁波信号源,积分功率更高,且使用相干检测,对回波信号有放大作用,因此在相同的发送功率条件下,本发明具有更大的探测距离,由于采用了压控晶体振荡器部件,使得频率变化线性且具备较高的变化率,因此具有较高的空间分辨率,提高了目标距离测试的精度。
2、本发明通过设置信号反射仪、防护套、防滑垫、防护板和盒体,在使用本装置时,因通过防护套、防滑垫和防撞角之间的相互配合,防止信号反射仪因掉落或意外撞击对其造成较大伤害,有效对信号反射仪进行防护,因发射天线和接收天线分别设置在防护板上,当无需使用发射天线和接收天线时,只需翻折两个防护板,使得发射天线和接收天线水平靠近信号反射仪的顶部,节省空间的同时可有效对发射天线和接收天线进行保护。
附图说明
图1为本发明正视的剖面结构示意图;
图2为本发明信号发射的流程框图;
图3为本发明发射信号的传播路径图;
图4为本发明信号反射强度示意图;
图中:1信号反射仪、2操作面板、3FPGA芯片、4数模转化芯片、5压控晶体振荡器、6功率放大模块、7相干接收模块、8低通滤波器、9模数转化器、10盒体、11防护板、12发射天线、13散热网、14防滑垫、15防护套、16防撞角、17把手、18接收天线。
具体实施方式
下面结合具体实施方式对本专利的技术方案作进一步详细地说明。
如图1-4所示,本发明提供一种技术方案:基于数字信号处理的频域信号反射仪,包括信号反射仪1,信号反射仪1的正面设置有操作面板2,信号反射仪1内壁的顶部设置有数模转化芯片4和压控晶体振荡器5,压控晶体振荡器5的右侧面与信号反射仪1内壁的右侧面固定连接,信号反射仪1内部的左侧设置有FPGA芯片3,FPGA芯片3的右侧设置有功率放大模块6,功率放大模块6的背面与信号反射仪1内壁的正面固定连接,功率放大模块6的右侧面通过相干接收模块7与信号反射仪1内壁的右侧面固定连接,通过防护套15、防滑垫14和防撞角16之间的相互配合,防止信号反射仪1因掉落或意外撞击对其造成较大伤害,有效对信号反射仪1进行防护,通过设置防护板11,当无需使用发射天线12和接收天线18时,只需翻折两个防护板11,使得发射天线12和接收天线18水平靠近信号反射仪1的顶部,节省空间的同时可有效对发射天线12和接收天线18进行保护,信号反射仪1的外壁套接有防护套15,防护套15的四角处均设置有防撞角16,防护套15的左右两侧面均设置有防滑垫14,信号反射仪1内壁底部的右侧设置有散热网13,防护板11的上表面固定连接有把手17。
信号反射仪1内壁底部的左右两侧分别设置有模数转化器9和低通滤波器8,信号反射仪1的上表面与盒体10的下表面固定连接,盒体10的左右两侧面分别通过合页铰接有防护板11,两个防护板11的下表面分别设置有发射天线12和接收天线18,FPGA芯片3的输出端与数模转化芯片4信号连接,数模转化芯片4的输出端与压控晶体振荡器5的输入端信号连接。
压控晶体振荡器5的输出端与功率放大模块6的输入端信号连接,功率放大模块6的输出端分别与发射天线12和相干接收模块7的输入端信号连接,相干接收模块7的输入端与接收天线18的输出端信号连接,相干接收模块7的输出端通过低通滤波器8与模数转化器9的输入端信号连接,模数转化器9的输出端与FPGA芯片3的输入端信号连接。
基于数字信号处理的频域信号反射仪,包括以下信号发射步骤:
S1、首先由FPGA芯片3操作数模转化芯片4,使数模转化芯片4输出电压随时间线性变化。
S2、其次信号传递至压控晶体振荡器5,压控晶体振荡器5的输入电压随时间线性变化,其输出信号频率也会随时间线性变化,信号经过功率放大模块6放大后,一部分传递至发射天线12,一部分传递至相干接收模块7。
S3、功率放大模块6的输出信号与接收天线18的接收信号通过相干接收模块7进行相干接收,其输出信号经过低通滤波电路后进行模数转换,然后再输入到FPGA芯片3中。
S4、FPGA芯片3内部实现数字快速傅里叶运算,得到相干信号的频率与幅度,从而得到电磁波在空间传播路径上的距离和反射率信息。
快速傅里叶运算中的幅值表示为Δf,压控晶体振荡器5中振频率调谐量为Φ赫兹,频率调谐速度为u赫兹/秒,频率调谐时间为t秒,模数转化器9采样率为fs-adc,数模转化芯片4采样率为fs-dac,其光速为C0米/秒,当发射端距离为D的位置时,反射信号会在2*u/C0时间段内无信号,初始反射时间小于调谐时间的1/20,即t/20秒;同步地,拍频频率上限为Φ/20赫兹,在调谐时间t段内,至少保证有100个完整的拍频周期,因此拍频频率下限定义为100/t赫兹。
当距离发送端为D米的反射信号与本地信号之间存在时间延迟td秒,拍频频率Δf与距离D的关系式为:
Δf=td*u=(2*u/C0)*D
D=(0.5*C0/u)*Δf
一次测量的采样时间为t秒,采样数据经过快速傅里叶变换后,频率分辨率为1/t赫兹,即最小频率分辨率为:
Δfmin=1/t
对应的,最小距离分辨率Dmin为:
Dmin=(0.5*C0/u)*Δf=0.5*C0/u*t)=0.5*C0
距离分辨率Dmin=1m,压控晶振频率调谐量Φ=150MHz。
测量距离为Dmax,初始反射时间段为2*Dmax/C0,整个调谐时间为初始反射时间段的20倍,即:
t=20*(2*Dmax/C0)=40*Dmax/C0
Dmax=10km,调谐时间为t=1.33毫秒,调谐频率为0.75KHz。
检测差频信号频率上、下限:
Δfhigh=Φ/20=7.5MHz
Δflow=100/t=75KHz
对应的测量距离为:100m~10km。
模数转化器9的采样频率fs-adc≥2*Δfhigh=15MHz,实际选取模数转化器9采样频率fs-adc=50MHz,位宽为16bit,为保证压控晶体振荡器5压控端的信号平稳无台阶,数模转化芯片4需要在调谐时间内尽量输出更多值,定义在调谐时间内,数模转化芯片4输出值的数量为至少为100K个值,fs-dac=100K/1.33毫秒=75MHz,位宽为16bit。
具体的,如图4所示,在不同位置的回波信号,相对于发射信号的频率差也不相同,由于回波信号是各个位置反射信号的叠加,因此回波信号包含了各种频率信号,每种频率代表了一个反射点,该频率上的Δf①、Δf②和Δf③的信号幅度表征了反射强度。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以通过具体情况理解上述术语在本发明中的具体含义。
上面对本专利的较佳实施方式作了详细说明,但是本专利并不限于上述实施方式,在本领域的普通技术人员所具备的知识范围内,还可以在不脱离本专利宗旨的前提下作出各种变化。

Claims (6)

1.基于数字信号处理的频域信号反射仪,包括信号反射仪(1),其特征在于:所述信号反射仪(1)的正面设置有操作面板(2),所述信号反射仪(1)内壁的顶部设置有数模转化芯片(4)和压控晶体振荡器(5),所述压控晶体振荡器(5)的右侧面与信号反射仪(1)内壁的右侧面固定连接,所述信号反射仪(1)内部的左侧设置有FPGA芯片(3),所述FPGA芯片(3)的右侧设置有功率放大模块(6),所述功率放大模块(6)的背面与信号反射仪(1)内壁的正面固定连接,所述功率放大模块(6)的右侧面通过相干接收模块(7)与信号反射仪(1)内壁的右侧面固定连接;
所述信号反射仪(1)内壁底部的左右两侧分别设置有模数转化器(9)和低通滤波器(8),所述信号反射仪(1)的上表面与盒体(10)的下表面固定连接,所述盒体(10)的左右两侧面分别通过合页铰接有防护板(11),两个防护板(11)的下表面分别设置有发射天线(12)和接收天线(18),所述FPGA芯片(3)的输出端与数模转化芯片(4)信号连接,所述数模转化芯片(4)的输出端与压控晶体振荡器(5)的输入端信号连接;
所述压控晶体振荡器(5)的输出端与功率放大模块(6)的输入端信号连接,所述功率放大模块(6)的输出端分别与发射天线(12)和相干接收模块(7)的输入端信号连接,所述相干接收模块(7)的输入端与接收天线(18)的输出端信号连接,所述相干接收模块(7)的输出端通过低通滤波器(8)与模数转化器(9)的输入端信号连接,所述模数转化器(9)的输出端与FPGA芯片(3)的输入端信号连接。
2.根据权利要求1所述的基于数字信号处理的频域信号反射仪,其特征在于:所述信号反射仪(1)的外壁套接有防护套(15),所述防护套(15)的四角处均设置有防撞角(16),所述防护套(15)的左右两侧面均设置有防滑垫(14)。
3.根据权利要求1所述的基于数字信号处理的频域信号反射仪,其特征在于:所述信号反射仪(1)内壁底部的右侧设置有散热网(13),所述防护板(11)的上表面固定连接有把手(17)。
4.根据权利要求1所述的基于数字信号处理的频域信号反射仪,其特征在于:包括以下信号发射步骤:
S1、首先由FPGA芯片(3)操作数模转化芯片(4),使数模转化芯片(4)输出电压随时间线性变化;
S2、其次信号传递至压控晶体振荡器(5),压控晶体振荡器(5)的输入电压随时间线性变化,其输出信号频率也会随时间线性变化,信号经过功率放大模块(6)放大后,一部分传递至发射天线(12),一部分传递至相干接收模块(7);
S3、功率放大模块(6)的输出信号与接收天线(18)的接收信号通过相干接收模块(7)进行相干接收,其输出信号经过低通滤波电路后进行模数转换,然后再输入到FPGA芯片(3)中;
S4、FPGA芯片(3)内部实现数字快速傅里叶运算,得到相干信号的频率与幅度,从而得到电磁波在空间传播路径上的距离和反射率信息。
5.根据权利要求4所述的基于数字信号处理的频域信号反射仪,其特征在于:所述快速傅里叶运算中的幅值表示为Δf,压控晶体振荡器(5)中振频率调谐量为Φ赫兹,频率调谐速度为u赫兹/秒,频率调谐时间为t秒,所述模数转化器(9)采样率为fs-adc,数模转化芯片(4)采样率为fs-dac,其光速为C0米/秒,当发射端距离为D的位置时,反射信号会在2*u/C0时间段内无信号,初始反射时间小于调谐时间的1/20,即t/20秒;同步地,拍频频率上限为Φ/20赫兹,在调谐时间t段内,至少保证有100个完整的拍频周期,因此拍频频率下限定义为100/t赫兹;
当距离发送端为D米的反射信号与本地信号之间存在时间延迟td秒,拍频频率Δf与距离D的关系式为:
Δf=td*u=(2*u/C0)*D
D=(0.5*C0/u)*Δf
一次测量的采样时间为t秒,采样数据经过快速傅里叶变换后,频率分辨率为1/t赫兹,即最小频率分辨率为:
Δfmin=1/t
对应的,最小距离分辨率Dmin为:
Dmin=(0.5*C0/u)*Δf=0.5*C0/(u*t)=0.5*C0
距离分辨率Dmin=1m,压控晶振频率调谐量Φ=150MHz;
测量距离为Dmax,初始反射时间段为2*Dmax/C0,整个调谐时间为初始反射时间段的20倍,即:
t=20*(2*Dmax/C0)=40*Dmax/C0
Dmax=10km,调谐时间为t=1.33毫秒,调谐频率为0.75KHz;
检测差频信号频率上、下限:
Δfhigh=Φ/20=7.5MHz
Δflow=100/t=75KHz
对应的测量距离为:100m~10km。
6.根据权利要求5所述的基于数字信号处理的频域信号反射仪,其特征在于:所述模数转化器(9)的采样频率fs-adc≥2*Δfhigh=15MHz,实际选取模数转化器(9)采样频率fs-adc=50MHz,位宽为16bit,为保证压控晶体振荡器(5)压控端的信号平稳无台阶,数模转化芯片(4)需要在调谐时间内尽量输出更多值,定义在调谐时间内,数模转化芯片(4)输出值的数量为至少为100K个值,fs-dac=100K/1.33毫秒=75MHz,位宽为16bit。
CN202011442443.8A 2020-12-08 2020-12-08 基于数字信号处理的频域信号反射仪 Active CN112665508B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011442443.8A CN112665508B (zh) 2020-12-08 2020-12-08 基于数字信号处理的频域信号反射仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011442443.8A CN112665508B (zh) 2020-12-08 2020-12-08 基于数字信号处理的频域信号反射仪

Publications (2)

Publication Number Publication Date
CN112665508A CN112665508A (zh) 2021-04-16
CN112665508B true CN112665508B (zh) 2022-05-27

Family

ID=75402197

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011442443.8A Active CN112665508B (zh) 2020-12-08 2020-12-08 基于数字信号处理的频域信号反射仪

Country Status (1)

Country Link
CN (1) CN112665508B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103248384A (zh) * 2013-05-20 2013-08-14 中国电子科技集团公司第四十一研究所 一种基于无线脉冲技术的天线测试方法与系统
CN103444020A (zh) * 2010-12-27 2013-12-11 奥克森技术有限公司 用于oct医学成像的具有受控锁模的激光扫频源
CN107450064A (zh) * 2016-05-30 2017-12-08 英飞凌科技股份有限公司 雷达系统和用于操作雷达系统的方法
EP3418698A1 (de) * 2017-06-21 2018-12-26 VEGA Grieshaber KG Füllstandreflektometer mit referenzreflexion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103444020A (zh) * 2010-12-27 2013-12-11 奥克森技术有限公司 用于oct医学成像的具有受控锁模的激光扫频源
CN103248384A (zh) * 2013-05-20 2013-08-14 中国电子科技集团公司第四十一研究所 一种基于无线脉冲技术的天线测试方法与系统
CN107450064A (zh) * 2016-05-30 2017-12-08 英飞凌科技股份有限公司 雷达系统和用于操作雷达系统的方法
EP3418698A1 (de) * 2017-06-21 2018-12-26 VEGA Grieshaber KG Füllstandreflektometer mit referenzreflexion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《频谱分析仪的数字中频设计方案》;曹联国;《现代雷达》;20130531;全文 *

Also Published As

Publication number Publication date
CN112665508A (zh) 2021-04-16

Similar Documents

Publication Publication Date Title
Marioli et al. Digital time-of-flight measurement for ultrasonic sensors
CA1332458C (en) Distance and level measuring system
CN103017866B (zh) 利用距离近似值的多频脉冲波雷达物位计量
US7515273B2 (en) Method for measuring the brillouin shift distribution along an optical fiber based on the optical demodulation of the signals, and relevant apparatus
ATE272219T1 (de) Tragbarer vektor-netzwerkanalysator mit zwei toren und frequenzüberwachungsmodus
EP3077777B1 (en) Multi-mode pulsed radar providing automatic transmit pulse signal control
CN101639379A (zh) 基于光纤偏振光时域反射传感的振动监测结构及方法
CA2270453A1 (en) Level measuring device operating with microwave
JP2006521536A5 (zh)
JP2006521536A (ja) 高精度の距離測定装置およびその方法
US5418758A (en) Distance measurement system
US20160153821A1 (en) Radar level gauging
CN104360234B (zh) 一种线性跳频非相干检测的无源互调异常点定位方法
CN112665508B (zh) 基于数字信号处理的频域信号反射仪
US20220128383A1 (en) OTDR measurement via wavelength/frequency sweeping in phase-sensitive DAS/DVS systems
JP2004294449A (ja) レーダー原理に基づいて電磁波によって距離測定するための距離測定機器
Sorin High-resolution optical fiber reflectometry techniques
Qiao et al. Linearity requirement for a linear frequency modulation lidar
Kramer et al. Electron density fluctuation in JET measured with multichannel reflectometry
CN207515900U (zh) 基于脉冲编码和边沿滤波法的光纤光栅振动测量系统
CN213455339U (zh) 一种测量光纤长度的装置
RU2019855C1 (ru) Параметрический эхоледомер
Jen et al. Recent advances in SAW laser probe
RU2037843C1 (ru) Радиолокатор малых дальностей
CN214174613U (zh) 基于微波频域干涉的绝对距离测量装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant