CN112665447B - 一种温度除垢控制方法 - Google Patents

一种温度除垢控制方法 Download PDF

Info

Publication number
CN112665447B
CN112665447B CN201910976427.8A CN201910976427A CN112665447B CN 112665447 B CN112665447 B CN 112665447B CN 201910976427 A CN201910976427 A CN 201910976427A CN 112665447 B CN112665447 B CN 112665447B
Authority
CN
China
Prior art keywords
tube
temperature
heating
data
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910976427.8A
Other languages
English (en)
Other versions
CN112665447A (zh
Inventor
张磊
田强
陈晓东
陈文佼
张冠敏
修蓬岳
周乃香
余显晟
魏民
王进
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Weifang Power Supply Co of State Grid Shandong Electric Power Co Ltd
Original Assignee
Shandong University
Weifang Power Supply Co of State Grid Shandong Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University, Weifang Power Supply Co of State Grid Shandong Electric Power Co Ltd filed Critical Shandong University
Priority to CN201910976427.8A priority Critical patent/CN112665447B/zh
Publication of CN112665447A publication Critical patent/CN112665447A/zh
Application granted granted Critical
Publication of CN112665447B publication Critical patent/CN112665447B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明提供了一种温度除垢控制方法,在除垢过程中,控制器根据时间顺序提取温度数据,通过相邻的时间段的温度数据的比较,获取其温度差或者温度差变化的累计,低于阈值时,控制器控制电加热器停止加热或者继续加热;如果在前时间段的温度为T1,相邻的在后的时间段温度为T2,如果T1=T2,则根据下面情况判断加热本发明通过根据温度差或者温度差变化的累计来判断流体的稳定状态,使得结果更加准确,不会因为运行时间问题导致的老化而产生的误差增加问题。

Description

一种温度除垢控制方法
技术领域
本发明涉及一种管壳式换热器,尤其涉及一种间歇式振动除垢的管壳式换热器。
背景技术
管壳式换热器被广泛应用于化工、石油、制冷、核能和动力等工业,由于世界性的能源危机,为了降低能耗,工业生产中对换热器的需求量也越来越多,对换热器的质量要求也越来越高。近几十年来,虽然紧凑式换热器(板式、板翅式、压焊板式换热器等)、热管式换热器、直接接触式换热器等得到了迅速的发展,但由于管壳式换热器具有高度的可靠性和广泛的适应性,其仍占据产量和用量的统治地位,据相关统计,目前工业装置中管壳式换热器的用量仍占全部换热器用量的70%左右。
管壳式换热器结垢后,采取常规的蒸汽清扫、反冲洗等方式对换热器进行清洗,生产实践证明,效果不是很好。只能将换热器的封头拆卸下来,采用物理清理的方式,但采取该种方式进行清洗,操作复杂、耗时长,人力、物力投资较大,对连续化的工业生产带来极大的困难。
利用流体诱导传热元件振动实现强化换热是被动强化换热的一种形式,可将换热器内对流体振动诱导的严格防止转变为对振动的有效利用,使传动元件在低流速下的对流换热系数大幅度的提高,并利用振动抑制传热元件表面污垢,减低污垢热阻,实现复合强化传热。
在应用中发现,持续性的加热会导致内部流体形成稳定性,即流体不在流动或者流动性很少,或者流量稳定,导致换热管振动性能大大减弱,从而影响换热管的除垢以及加热的效率。
目前的管壳式换热器,包括双集管,一个集管蒸发,一个集管冷凝,从而形成振动除垢式热管。从而提高了热管的换热效率,减少结垢。但是上述的热管的换热均匀度不够,仅仅在一侧进行冷凝,而且换热量也少,因此需要进行改进,开发一种新式结构的热管系统。因此需要对上述换热器进行改进。对此,我们开发了一种新的能够产生周期性或者参数大小振动的管壳式换热器,并且已经进行了专利申请。
但是,在实践中发现,通过固定性周期性变化或者参数大小来调整管束的振动,会出现滞后性以及周期会出现过长或者过短的情况。因此本发明对前面的申请进行了改进,对振动进行智能型控制,从而使得内部的流体能够实现的频繁性的振动,从而实现很好的除垢以及加热效果。
发明内容
本发明针对现有技术中管壳式换热器的不足,提供一种新式结构的电加热管壳式换热器。该管壳式换热器能够实现换热管的频繁性的振动,提高了加热效率,从而实现很好的除垢以及加热效果。
为实现上述目的,本发明采用如下技术方案:
一种温度除垢控制方法,换热器包括壳体,所述壳体两端分别设置管板,所述壳体内设置换热部件,所述换热部件包括中心管、左侧管、右侧管和管组,所述管组包括左管组和右管组,左管组与左侧管和中心管相连通,右管组与右侧管和中心管相连通,从而使得中心管、左侧管、右侧管和管组形成加热流体封闭循环,电加热器设置在中心管内,所述方法如下:
换热部件内部设置温度检测元件,用于检测换热部件内部的温度,所述温度检测元件与控制器进行数据连接,
所述换热器包括除垢过程,在除垢过程中,控制器根据时间顺序提取温度数据,通过相邻的时间段的温度数据的比较,获取其温度差或者温度差变化的累计,低于阈值时,控制器控制电加热器停止加热或者继续加热;
如果在前时间段的温度为T1,相邻的在后的时间段温度为T2,如果T1=T2,则根据下面情况判断加热:
如果T1大于第一数据的温度,则低于阈值时,控制器控制电加热器停止加热;其中第一数据大于相变流体发生相变后的温度;优选第一数据是相变流体充分相变的温度;
如果T1小于等于第二数据的温度,则低于阈值时,控制器控制电加热器继续加热,其中第二数据小于等于相变流体没有发生相变的温度。
所述的第一数据是充分加热状态的温度数据,第二数据是没有加热或者加热刚开始的温度数据。通过上述的温度大小的判断,也是来确定目前的电加热器是处于加热状态还是非加热状态,从而根据不同情况决定电加热器的运行状态。
作为优选,所述管组为多个,每个管组包括圆弧形的多根环形管,相邻环形管的端部连通,使多根环形管形成串联结构,并且使得环形管的端部形成环形管自由端;中心管包括第一管口和第二管口,第一管口连接左管组的入口,第二管口连接右管组的入口,左管组的出口连接左侧管,右管组的出口连接右侧管;所述第一出口和第二出口设置在中心管相对的两侧。
本发明具有如下优点:
1、本发明通过温度感知元件检测的前后时间温度差或者累计温度差,能够通过温度差来判断内部的流体的蒸发基本达到了饱和,内部流体的体积也基本变化不大,此种情况下,内部流体相对稳定,此时的管束振动性变差,因此需要进行调整,使其进行振动,从而停止加热。使得流体进行体积变小从而实现振动。当温度差升高到一定程度时,此时内部流体又开始进入稳定状态,此时需要加热使得流体重新蒸发膨胀,因此需要进行启动电加热器进行加热。
2、本发明提出了一种新式结构的振动管束管壳式换热器,通过在有限的空间设置更多的管组,增加管束的振动范围,从而强化传热,增强除垢。
3、本发明通过长度方向上的管组管径以及间距分布的设置,可以进一步提高加热效率。
4、本发明通过大量的实验和数值模拟,优化了管壳式换热器的参数的最佳关系,从而实现最优的加热效率。
5、本发明设计了一种新式结构的多换热部件三角形的布局图,并对布局的结构参数进行了优化,通过上述布局可以进一步提高加热效率。
附图说明:
图1是壳体结构示意图。
图2为本发明换热部件的俯视图。
图3为本发明换热部件的主视图。
图4是本发明换热部件另一个实施例的主视图。
图5是本发明换热部件的尺寸结构示意图。
图6是本发明换热部件在圆形截面加热器中的布局示意图。
图7是本发明根据数据的参数差进行控制的结构示意图。
图中:1、管组,左管组11、右管组12、21、左侧管,22,右侧管,3、自由端,4、自由端,5、自由端,6、自由端,7、环形管,8、中心管,9、电加热器,10第一管口,13第二管口,左回流管14,右回流管15,前管板16,支座17,支座18,后管板19,壳体20,24、壳程入口接管,25、壳程出口接管,换热部件23
具体实施方式
一种管壳式换热器,如图1所示,所述管壳式换热器包括有壳体20、换热部件23、壳程入口接管21和壳程出口接管22;所述换热部件23设置在壳体20中,换热部件固定连接在前管板16、后管板19上;所述的壳程入口接管24和壳程出口接管25均设置在壳体20上;流体从壳程入口接管24进入,经过换热部件进行换热,从壳程出口接管25出去。
作为优选,加热部件沿着水平方向延伸。换热器水平方向布置。
图2展示了换热部件23的俯视图,如图2所示,所述换热部件包括中心管8、左侧管21、右侧管22和管组1,所述管组1包括左管组11和右管组12,左管组11与左侧管21和中心管8相连通,右管组12与右侧管22和中心管8相连通,从而使得中心管8、左侧管21、右侧管22和管组1形成加热流体封闭循环,中心管8内填充相变流体,电加热器9设置在中心管8内,每个管组1包括圆弧形的多根环形管7,相邻环形管7的端部连通,使多根环形管7形成串联结构,并且使得环形管7的端部形成环形管自由端3-6;中心管包括第一管口10和第二管口13,第一管口10连接左管组11的入口,第二管口13连接右管组12的入口,左管组11的出口连接左侧管21,右管组12的出口连接右侧管22;所述第一管口10和第二管口13设置在在中心管8相对的两侧。左管组和右管组沿着中心管的轴心所在的面镜像对称。
所述中心管8、左侧管21、右侧管22的两端的端部设置在前后管板16、19的开孔中,用于固定。
作为优选,所述左侧管21与中心管8之间设置左回流管14,所述右侧管22与中心管8之间设置右回流管14。作为优选,所述回流管设置在中心管的端部。优选中心管的两端部。
所述流体在中心管8进行加热蒸发,沿着环形管束向左右两个集管21、22流动,流体受热后会产生体积膨胀,从而形成蒸汽,而蒸汽的体积远远大于水,因此形成的蒸汽会在盘管内进行快速冲击式的流动。因为体积膨胀以及蒸汽的流动,能够诱导环形管自由端产生振动,换热管自由端在振动的过程中将该振动传递至周围换热流体,流体也会相互之间产生扰动,从而使得周围的换热流体形成扰流,破坏边界层,从而实现强化传热的目的。流体在左右侧管冷凝放热后又通过回流管回流到中心管。
本发明通过对现有技术进行改进,将冷凝集管和管组分别设置为左右分布的两个,使得左右两侧分布的管组都能进行振动换热除垢,从而扩大换热振动的区域,越能够使的振动更加均匀,换热效果更加均匀,增加换热面积,强化换热和除垢效果。
作为优选,所述左管组的环形管是以左侧管的轴线为圆心分布,所述右管组的环形管是以右侧管的轴线为圆心分布。通过将左右侧管设置为圆心,可以更好的保证环形管的分布,使得振动和加热均匀。
作为优选,所述管组为多个。
作为优选,右管组(包括右侧管)的位置是左管组(包括左侧管)沿着中心管的轴线旋镜像对称。通过如此设置,能够使得换热的环形管分布更加合理均匀,提高换热效果。
作为优选,所述集管8、21、22沿着长度方向上设置。
作为优选,左管组21和右管组22在长度方向上错列分布,如图3所示。通过错列分布,能够使得在不同长度上进行振动换热和除垢,使得振动更加均匀,强化换热和除垢效果。
作为优选,沿着中心管8的长度方向,所述管组2(例如同一侧(左侧或者右侧))设置为多个,沿着壳程内流体流动方向,管组2(例如同一侧(左侧或者右侧))的管径不断变大。
作为优选,沿着壳程内流体流动方向,管组(例如同一侧(左侧或者右侧))的环形管管径不断变大的幅度不断的增加。
通过换热管的管径幅度增加,可以保证壳程流体出口位置充分进行换热,形成类似逆流的换热效果,而且进一步强化传热效果,使得整体振动效果均匀,换热效果增加,进一步提高换热效果以及除垢效果。通过实验发现,采取此种结构设计可以取得更好的换热效果以及除垢效果。
作为优选,沿着中心管8的长度方向,所述同一侧(左侧或者右侧)管组设置为多个,沿着壳程内流体流动方向,同一侧(左侧或者右侧)相邻管组的间距不断变小。
作为优选,沿着壳程内流体流动方向,同一侧(左侧或者右侧)管组之间的间距不断变小的幅度不断的增加。
通过换热管的间距幅度增加,可以保证壳程流体出口位置充分进行换热,形成类似逆流的换热效果,而且进一步强化传热效果,使得整体振动效果均匀,换热效果增加,进一步提高换热效果以及除垢效果。通过实验发现,采取此种结构设计可以取得更好的换热效果以及除垢效果。
在试验中发现,左侧管21、右侧管22、中心管8的管径、距离以及环形管的管径可以对换热效率以及均匀性产生影响。如果集管之间距离过大,则换热效率太差,环形管之间的距离太小,则环形管分布太密,也会影响换热效率,集管以及换热管的管径大小影响容纳的液体或者蒸汽的体积,则对于自由端的振动会产生影响,从而影响换热。因此左侧管21、右侧管22、中心管8的管径、距离以及环形管的管径具有一定的关系。
本发明是通过多个不同尺寸的热管的数值模拟以及试验数据总结出的最佳的尺寸关系。从换热效果中的换热量最大出发,计算了近200种形式。所述的尺寸关系如下:
中心管8的中心与左侧管21的中心之间的距离等于中心管8的中心与右侧管21的中心之间的距离,为L,左侧管21的管径、中心管8的管径、右侧管22的半径为R,环形管中最内侧环形管的轴线的半径为R1,最外侧环形管的轴线的半径为R2,则满足如下要求:
R1/R2=a*Ln(R/L)+b;其中a,b是参数,Ln是对数函数,其中0.6212<a<0.6216,1.300<b<1.301;作为优选,a=0.6214,b=1.3005。
作为优选,35<R<61mm;114<L<190mm;69<R1<121mm,119<R2<201mm。
作为优选,管组的环形管的数量为3-5根,优选为3或4根。
作为优选,0.55<R1/R2<0.62;0.3<R/L<0.33。
作为优选,0.583<R1/R2<0.615;0.315<R/L<0.332。
作为优选,环形管的半径优选为10-40mm;优选为15-35mm,进一步优选为20-30mm。
作为优选,左侧管21、右侧管22、中心管8的圆心在一条直线上。
作为优选,自由端3、4的端部之间以左侧管的中心轴线为圆心的弧度为95-130角度,优选120角度。同理自由端5、6和自由端3、4的弧度相同。通过上述优选的夹角的设计,使得自由端的振动达到最佳,从而使得加热效率达到最优。
作为优选,所述的换热部件可以作为浸没式换热组件,浸没在流体中加热流体,例如可以作为空气散热器加热组件,也可以作为换热器加热组件。
电加热器加热功率优选为1000-2000W,进一步优选为1500W。
作为优选,所述箱体是圆形截面,设置多个电加热装置,其中一个设置在圆形截面圆心的中心电加热装置和其它的形成围绕圆形截面圆心分布的电加热装置。
作为优选,管组1的管束是弹性管束。
通过将管组1的管束设置弹性管束,可以进一步提高换热系数。
进一步优选,所述电加热器是电加热棒。
所述管组1为多个,多个管组1为并联结构。
如图6所示的换热器具有圆形截面的壳体,所述的多个换热部件设置在圆形壳体内。作为一个优选,所述的换热部件在壳体内设置三个,所述的换热部件的中心管的中心位于圆形截面的内接正三角形,中心管的中心的连线形成正三角形,上部为一个换热部件,下部为两个换热部件,所述换热部件的左侧管、右侧管以及中心管的中心形成的连线为平行结构。通过如此设置,能够使得可以使得加热器内流体充分达到震动和换热目的,提高换热效果。
通过数值模拟以及实验得知,所述的换热部件的尺寸以及圆形截面的直径对于换热效果具有很大的影响,换热部件尺寸过大会导致相邻的间距太小,中间形成的空间太大,中间加热效果不好,加热不均匀,同理,换热部件尺寸过小会导致相邻的间距太大,导致整体加热效果不好。因此本发明通过大量的数值模拟和实验研究得到了在最佳的尺寸关系。
左侧管和右侧管的中心之间的距离为L1,内接正三角形的边长为L2,环形管中最内侧环形管的轴线的半径为R1,最外侧环形管的轴线的半径为R2,则满足如下要求:
10*(L1/L2)=d*(10*R1/R2)-e*(10*R1/R2)2-f;其中d,e,f是参数,
44.102<d<44.110,3.715<e<3.782,127.385<f<127.395;
进一步优选,d=44.107,e=3.718,f=127.39;
其中优选720<L2<1130mm。优选0.58<R1/R2<0.62。
进一步优选0.30<L1/L2<0.4。
作为优选,左侧管21、右侧管22、中心管8的圆心在一条直线上。
通过上述的三个换热部件结构优化的布局,能够使得整体换热效果达到最佳的换热效果。
研究以及实践中发现,持续性的稳定性的热源会导致内部换热部件的流体形成稳定性,即流体不在流动或者流动性很少,或者流量稳定,导致管组1振动性能大大减弱,从而影响管组1的除垢以及加热的效率。因此需要对上述热管进行如下改进。
在本发明人的在先申请中,提出了一种根据参数大小控制的加热方式,通过根据参数大小控制的加热方式来不断的促进换热管的振动,从而提高加热效率和除垢效果。但是,通过固定性参数大小来调整管束的振动,会出现滞后性以及周期会出现过长或者过短的情况。因此本发明对前面的申请进行了改进,对振动进行智能型控制,从而使得内部的流体能够实现的频繁性的振动,从而实现很好的除垢以及加热效果。
本发明针对在先研究的技术中的不足,提供一种新式的智能控制振动的电加热换热器。该换热器能够提高了加热效率,从而实现很好的除垢以及加热效果。
作为优选,在除垢过程采取上述方式进行换热。
一、基于压力自主调节振动
作为优选,换热部件内部设置压力检测元件,用于检测换热部件内部的压力,控制器根据时间顺序提取压力数据,通过相邻的时间段的压力数据的比较,获取其压力差或者压力差变化的累计,低于阈值时,控制器控制电加热器停止加热或者继续加热。
通过压力感知元件检测的前后时间段压力差或者累计压力差,能够通过压力差来判断内部的流体的蒸发基本达到了饱和,内部流体的体积也基本变化不大,此种情况下,内部流体相对稳定,此时的管束振动性变差,因此需要进行调整,使其进行振动,从而停止加热。使得流体进行体积变小从而实现振动。当压力差降低到一定程度时,此时内部流体又开始进入稳定状态,此时需要加热使得流体重新蒸发膨胀,因此需要进行启动电加热器进行加热。
通过根据压力差或者压力差变化的累计来判断流体的稳定状态,使得结果更加准确,不会因为运行时间问题导致的老化而产生的误差增加问题。
作为优选,如果在前时间段的压力为P1,相邻的在后时间段的压力为P2,如果P1<P2,则低于阈值时,控制器控制电加热器停止加热;如果P1>P2,则低于阈值时,控制器控制电加热器进行加热。
通过先后的压力大小判断,来确定目前的电加热器是处于加热状态还是非加热状态,从而根据不同情况决定电加热器的运行状态。
作为优选,如果在前时间段的压力为P1,相邻的在后时间段的压力为P2,如果P1=P2,则根据下面情况判断加热:
如果P1大于第一数据的压力,则低于阈值时,控制器控制电加热器停止加热;其中第一数据大于相变流体发生相变后的压力;优选第一数据是相变流体充分相变的压力;
如果P1小于等于第二数据的压力,则低于阈值时,控制器控制电加热器继续加热,其中第二数据小于等于相变流体没有发生相变的压力。
所述的第一数据是充分加热状态的压力数据,第二数据是没有加热或者加热刚开始的压力数据。通过上述的压力大小的判断,也是来确定目前的电加热器是处于加热状态还是非加热状态,从而根据不同情况决定电加热器的运行状态。
作为优选,压力检测元件设置在中心管8和/或者左侧管21和/或右侧管22内。
作为优选,压力检测元件设置在中心管8和左侧管21和右侧管22内。此时可以选择三个管箱的压力平均值作为调节数据。
作为优选,压力检测元件设置在自由端。通过设置在自由端,能够感知自由端的压力变化,从而实现更好的控制和调节。
作为优选,压力感知元件设置在自由端。通过设置在自由端,能够感知自由端的压力变化,从而实现更好的控制和调节。
作为优选,所述压力感知元件为n个,依次计算当前时间段压力Pi与前一时间段压力Qi-1的差Di=Pi-Qi-1,并对n个压力差Di进行算术累计求和
Figure GDA0002288368810000091
当Y的值低于设定阈值时,控制器控制电加热器停止加热或者继续加热。
作为优选,Y>0,则低于阈值时,控制器控制电加热器停止加热;如果Y<0,则低于阈值时,控制器控制电加热器进行加热。
通过先后的压力大小判断,来确定目前的电加热器是处于加热状态还是非加热状态,从而根据不同情况决定电加热器的运行状态。
作为优选,如果Y=0,则根据下面情况判断加热:
如果Pi的算术平均数大于第一数据的压力,则低于阈值时,控制器控制电加热器停止加热;其中第一数据大于相变流体发生相变后的压力;优选是相变流体充分相变的压力;
如果Pi的算术平均数小于第二数据的压力,则低于阈值时,控制器控制电加热器继续加热,其中第二数据小于等于相变流体没有发生相变的压力。
所述的第一数据是充分加热状态的压力数据,第二数据是没有加热或者加热刚开始的压力数据。通过上述的压力大小的判断,也是来确定目前的电加热器是处于加热状态还是非加热状态,从而根据不同情况决定电加热器的运行状态。
作为优选,测量压力的时间段周期是1-10分钟,优选3-6分钟,进一步优选是4分钟。
作为优选,阈值是100-1000pa,优选是500pa。
作为优选,压力值可以是时间段周期内的平均压力值。也可以使时间段内的某一时刻的压力。例如优选都是时间段结束时的压力。
作为优选,压力检测元件设置在自由端。通过设置在自由端,能够感知自由端的压力变化,从而实现更好的控制和调节。
二、基于温度自主调节振动
作为优选,换热部件内部设置温度检测元件,用于检测换热部件内部的温度,所述温度检测元件与控制器进行数据连接,控制器根据时间顺序提取液位数据,通过相邻的时间段的温度数据的比较,获取其温度差或者温度差变化的累计,低于阈值时,控制器控制电加热器停止加热或者继续加热。
通过温度感知元件检测的前后时间温度差或者累计温度差,能够通过温度差来判断内部的流体的蒸发基本达到了饱和,内部流体的体积也基本变化不大,此种情况下,内部流体相对稳定,此时的管束振动性变差,因此需要进行调整,使其进行振动,从而停止加热。使得流体进行体积变小从而实现振动。当温度差升高到一定程度时,此时内部流体又开始进入稳定状态,此时需要加热使得流体重新蒸发膨胀,因此需要进行启动电加热器进行加热。
通过根据温度差或者温度差变化的累计来判断流体的稳定状态,使得结果更加准确,不会因为运行时间问题导致的老化而产生的误差增加问题。
作为优选,如果在前时间段的温度为T1,相邻的在后时间段的温度为T2,如果T1<T2,则低于阈值时,控制器控制电加热器停止加热;如果T1>T2,则低于阈值时,控制器控制电加热器进行加热。
通过先后的温度大小判断,来确定目前的电加热器是处于加热状态还是非加热状态,从而根据不同情况决定电加热器的运行状态。
作为优选,如果在前时间段的温度为T1,相邻的在后的时间段温度为T2,如果T1=T2,则根据下面情况判断加热:
如果T1大于第一数据的温度,则低于阈值时,控制器控制电加热器停止加热;其中第一数据大于相变流体发生相变后的温度;优选第一数据是相变流体充分相变的温度;
如果T1小于等于第二数据的温度,则低于阈值时,控制器控制电加热器继续加热,其中第二数据小于等于相变流体没有发生相变的温度。
所述的第一数据是充分加热状态的温度数据,第二数据是没有加热或者加热刚开始的温度数据。通过上述的温度大小的判断,也是来确定目前的电加热器是处于加热状态还是非加热状态,从而根据不同情况决定电加热器的运行状态。
作为优选,温度感知元件设置在第一管箱和/或者第二管箱内的上端。
作为优选,温度感知元件设置在第一管箱和第二管箱内的上端。
作为优选,温度感知元件设置在自由端。通过设置在自由端,能够感知自由端的温度变化,从而实现更好的控制和调节。
作为优选,所述温度感知元件为n个,依次计算当前时间段温度Ti与前一时间段温度Qi-1的差Di=Ti-Qi-1,并对n个温度差Di进行算术累计求和
Figure GDA0002288368810000111
当Y的值低于设定阈值时,控制器控制电加热器停止加热或者继续加热。
作为优选,Y>0,则低于阈值时,控制器控制电加热器停止加热;如果Y<0,则低于阈值时,控制器控制电加热器进行加热。
通过先后的温度大小判断,来确定目前的电加热器是处于加热状态还是非加热状态,从而根据不同情况决定电加热器的运行状态。
作为优选,如果Y=0,则根据下面情况判断加热:
如果Ti的算术平均数大于第一数据的温度,则低于阈值时,控制器控制电加热器停止加热;其中第一数据大于相变流体发生相变后的温度;优选是相变流体充分相变的温度;
如果Ti的算术平均数小于第二数据的温度,则低于阈值时,控制器控制电加热器继续加热,其中第二数据小于等于相变流体没有发生相变的温度。
所述的第一数据是充分加热状态的温度数据,第二数据是没有加热或者加热刚开始的温度数据。通过上述的温度大小的判断,也是来确定目前的电加热器是处于加热状态还是非加热状态,从而根据不同情况决定电加热器的运行状态。
作为优选,测量温度的时间段周期是1-10分钟,优选3-6分钟,进一步优选是4分钟。
作为优选,阈值是1-10摄氏度,优选是4摄氏度。
作为优选,温度值可以是时间段周期内的平均温度值。也可以使时间段内的某一时刻的温度。例如优选都是时间段结束时的温度。
作为优选,温度检测元件设置在置在中心管8和/或者左侧管21和/或右侧管22内的上端。
作为优选,温度检测元件设置在中心管8和左侧管21和右侧管22的上端。
作为优选,温度检测元件设置在自由端。通过设置在自由端,能够感知自由端的温度变化,从而实现更好的控制和调节。
三、基于液位自主调节振动
作为优选,中心管8内部设置液位检测元件,用于检测下管箱内的流体的液位,所述液位检测元件与控制器进行数据连接,控制器根据时间顺序提取液位数据,通过相邻的时间段的液位数据的比较,获取其液位差或者液位差变化的累计,低于阈值时,控制器控制电加热器停止加热或者继续加热。
通过液位感知元件检测的前后时间液位差或者累计液位差,能够通过液位差来判断内部的流体的蒸发基本达到了饱和,内部流体的体积也基本变化不大,此种情况下,内部流体相对稳定,此时的管束振动性变差,因此需要进行调整,使其进行振动,从而停止加热。使得流体进行体积变小从而实现振动。当液位差升高到一定程度时,此时内部流体又开始进入稳定状态,此时需要加热使得流体重新蒸发膨胀,因此需要进行启动电加热器进行加热。
通过根据液位差或者液位差变化的累计来判断流体的稳定状态,使得结果更加准确,不会因为运行时间问题导致的老化而产生的误差增加问题。
作为优选,如果在前时间段的液位为L1,相邻的在后时间段的液位为L2,如果L1>L2,则低于阈值时,控制器控制电加热器停止加热;如果L1<L2,则低于阈值时,控制器控制电加热器进行加热。
通过先后的液位大小判断,来确定目前的电加热器是处于加热状态还是非加热状态,从而根据不同情况决定电加热器的运行状态。
作为优选,如果在前时间段的液位为L1,相邻的在后时间段的液位为L2,如果L1=L2,则根据下面情况判断加热:
如果L1小于第一数据的液位或者L1是0,则低于阈值时,控制器控制电加热器停止加热;其中第一数据大于相变流体发生相变后的液位;优选第一数据是相变流体充分相变的液位;
如果L1大于等于第二数据的液位,则低于阈值时,控制器控制电加热器继续加热,其中第二数据小于等于相变流体没有发生相变的液位。
所述的第一数据是充分加热状态的液位数据,包括干涸的液位,第二数据是没有加热或者加热刚开始的液位数据。通过上述的液位大小的判断,也是来确定目前的电加热器是处于加热状态还是非加热状态,从而根据不同情况决定电加热器的运行状态。
作为优选,所述液位感知元件为n个,依次计算当前时间段液位Li与前一时间段液位Qi-1的差Di=Li-Qi-1,并对n个液位差Di进行算术累计求和
Figure GDA0002288368810000131
当Y的值低于设定阈值时,控制器控制电加热器停止加热或者继续加热。
作为优选,Y>0,则低于阈值时,控制器控制电加热器停止加热;如果Y<0,则低于阈值时,控制器控制电加热器进行加热。
通过先后的液位大小判断,来确定目前的电加热器是处于加热状态还是非加热状态,从而根据不同情况决定电加热器的运行状态。
作为优选,如果Y=0,则根据下面情况判断加热:
如果Li的算术平均数小于第一数据的液位或者是0,则低于阈值时,控制器控制电加热器停止加热;其中第一数据大于相变流体发生相变后的液位;优选是相变流体充分相变的液位;
如果Li的算术平均数大于第二数据的液位,则低于阈值时,控制器控制电加热器继续加热,其中第二数据小于等于相变流体没有发生相变的液位。
所述的第一数据是充分加热状态的液位数据,包括干涸的液位,第二数据是没有加热或者加热刚开始的液位数据。通过上述的液位大小的判断,也是来确定目前的电加热器是处于加热状态还是非加热状态,从而根据不同情况决定电加热器的运行状态。
作为优选,测量也为的时间段周期是1-10分钟,优选3-6分钟,进一步优选是4分钟。
作为优选,阈值是1-10mm,优选是4mm。
作为优选,水位值可以是时间段周期内的平均水位值。也可以使时间段内的某一时刻的水位置。例如优选都是时间段结束时的水位。
四、基于速度自主调节振动
作为优选,管束自由端内部设置速度检测元件,用于检测管束自由端内的流体的流速,所述速度检测元件与控制器进行数据连接,控制器根据时间顺序提取速度数据,通过相邻的时间段的速度数据的比较,获取其速度差或者速度差变化的累计,低于阈值时,控制器控制电加热器停止加热或者继续加热。
通过速度感知元件检测的前后时间速度差或者累计速度差,能够通过速度差来判断内部的流体的蒸发基本达到了饱和,内部流体的体积也基本变化不大,此种情况下,内部流体相对稳定,此时的管束振动性变差,因此需要进行调整,使其进行振动,从而停止加热。使得流体进行体积变小从而实现振动。当速度差降低到一定程度时,此时内部流体又开始进入稳定状态,此时需要加热使得流体重新蒸发膨胀,因此需要进行启动电加热器进行加热。
通过根据速度差或者速度差变化的累计来判断流体的稳定状态,使得结果更加准确,不会因为运行时间问题导致的老化而产生的误差增加问题。
作为优选,如果在前时间段的速度为V1,相邻的在后时间段的速度为V2,如果V1<V2,则低于阈值时,控制器控制电加热器停止加热;如果V1>V2,则低于阈值时,控制器控制电加热器进行加热。
通过先后的速度大小判断,来确定目前的电加热器是处于加热状态还是非加热状态,从而根据不同情况决定电加热器的运行状态。
作为优选,如果在前时间段的速度为V1,相邻的在后时间段的速度为V2,如果V1=V2,则根据下面情况判断加热:
如果V1大于第一数据的速度,则低于阈值时,控制器控制电加热器停止加热;其中第一数据大于相变流体发生相变后的速度;优选第一数据是相变流体充分相变的速度;
如果V1小于等于第二数据的速度,则低于阈值时,控制器控制电加热器继续加热,其中第二数据小于等于相变流体没有发生相变的速度。
所述的第一数据是充分加热状态的速度数据,第二数据是没有加热或者加热刚开始的速度数据。通过上述的速度大小的判断,也是来确定目前的电加热器是处于加热状态还是非加热状态,从而根据不同情况决定电加热器的运行状态。
作为优选,所述速度感知元件为n个,依次计算当前时间段速度Vi与前一时间速度Qi-1的差Di=Vi-Qi-1,并对n个速度差Di进行算术累计求和
Figure GDA0002288368810000151
当Y的值低于设定阈值时,控制器控制电加热器停止加热或者继续加热。
作为优选,Y>0,则低于阈值时,控制器控制电加热器停止加热;如果Y<0,则低于阈值时,控制器控制电加热器进行加热。
通过先后的速度大小判断,来确定目前的电加热器是处于加热状态还是非加热状态,从而根据不同情况决定电加热器的运行状态。
作为优选,如果Y=0,则根据下面情况判断加热:
如果Vi的算术平均数大于第一数据的速度,则低于阈值时,控制器控制电加热器停止加热;其中第一数据大于相变流体发生相变后的速度;优选是相变流体充分相变的速度;
如果Vi的算术平均数小于第二数据的速度,则低于阈值时,控制器控制电加热器继续加热,其中第二数据小于等于相变流体没有发生相变的速度。
所述的第一数据是充分加热状态的速度数据,第二数据是没有加热或者加热刚开始的速度数据。通过上述的速度大小的判断,也是来确定目前的电加热器是处于加热状态还是非加热状态,从而根据不同情况决定电加热器的运行状态。
作为优选,测量速度的时间段周期是1-10分钟,优选3-6分钟,进一步优选是4分钟。
作为优选,阈值是1-3m/s,优选是2m/s。
作为优选,速度值可以是时间段周期内的平均压力值。也可以使时间段内的某一时刻的速度。例如优选都是时间段结束时的速度。
作为优选,换热器包括除垢过程,在除垢过程采取上述方式进行换热。
虽然本发明已以较佳实施例披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (1)

1.一种温度除垢控制方法,换热器包括壳体,所述壳体两端分别设置管板,所述壳体内设置换热部件,所述换热部件包括中心管、左侧管、右侧管和管组,所述管组包括左管组和右管组,所述管组为多个,每个管组包括圆弧形的多根环形管,相邻环形管的端部连通,使多根环形管形成串联结构,并且使得环形管的端部形成环形管自由端;中心管包括第一管口和第二管口,第一管口连接左管组的入口,第二管口连接右管组的入口,左管组的出口连接左侧管,右管组的出口连接右侧管;所述第一管口和第二管口设置在中心管相对的两侧;左管组与左侧管和中心管相连通,右管组与右侧管和中心管相连通,从而使得中心管、左侧管、右侧管和管组形成加热流体封闭循环,电加热器设置在中心管内,左管组和右管组沿着中心管的轴心所在的面镜像对称;所述方法如下:
换热部件内部设置温度检测元件,用于检测换热部件内部的温度,所述温度检测元件与控制器进行数据连接,
所述换热器包括除垢过程,在除垢过程中,控制器根据时间顺序提取温度数据,通过相邻的时间段的温度数据的比较,获取其温度差或者温度差变化的累计,低于阈值时,控制器控制电加热器停止加热或者继续加热;
如果在前时间段的温度为T1,相邻的在后的时间段温度为T2,如果T1=T2,则根据下面情况判断加热:
如果T1大于第一数据的温度,则低于阈值时,控制器控制电加热器停止加热;其中第一数据大于加热流体发生相变后的温度;
如果T1小于等于第二数据的温度,则低于阈值时,控制器控制电加热器继续加热,其中第二数据小于等于加热流体没有发生相变的温度;
所述的第一数据是充分加热状态的温度数据,第二数据是没有加热或者加热刚开始的温度数据;
通过上述的温度大小的判断,也是来确定目前的电加热器是处于加热状态还是非加热状态,从而根据不同情况决定电加热器的运行状态。
CN201910976427.8A 2019-10-15 2019-10-15 一种温度除垢控制方法 Active CN112665447B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910976427.8A CN112665447B (zh) 2019-10-15 2019-10-15 一种温度除垢控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910976427.8A CN112665447B (zh) 2019-10-15 2019-10-15 一种温度除垢控制方法

Publications (2)

Publication Number Publication Date
CN112665447A CN112665447A (zh) 2021-04-16
CN112665447B true CN112665447B (zh) 2022-04-22

Family

ID=75399887

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910976427.8A Active CN112665447B (zh) 2019-10-15 2019-10-15 一种温度除垢控制方法

Country Status (1)

Country Link
CN (1) CN112665447B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4284134A (en) * 1978-09-05 1981-08-18 General Atomic Company Helically coiled tube heat exchanger
JP2012229860A (ja) * 2011-04-26 2012-11-22 Tokyo Gas Chemicals Co Ltd 結合型液化天然ガス気化器
CN106546110A (zh) * 2017-01-09 2017-03-29 苏州热立方新能源有限公司 一种带有立体气腔的抗冻型换热器
CN107664450A (zh) * 2016-07-29 2018-02-06 赵炜 一种电热盘管热管
CN107869847A (zh) * 2016-09-27 2018-04-03 上海双开燃气用具有限公司 一种热交换器结构
CN108800990A (zh) * 2016-08-20 2018-11-13 中北大学 一种左右管箱自动控制加热功率的换热管组件
CN109883248A (zh) * 2019-03-11 2019-06-14 山东大学 一种脉动管束换热组件及其熔融盐蓄热罐

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9103603B2 (en) * 2009-10-28 2015-08-11 Tai-Her Yang Thermal conductive cylinder installed with U-type core piping and loop piping

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4284134A (en) * 1978-09-05 1981-08-18 General Atomic Company Helically coiled tube heat exchanger
JP2012229860A (ja) * 2011-04-26 2012-11-22 Tokyo Gas Chemicals Co Ltd 結合型液化天然ガス気化器
CN107664450A (zh) * 2016-07-29 2018-02-06 赵炜 一种电热盘管热管
CN108800990A (zh) * 2016-08-20 2018-11-13 中北大学 一种左右管箱自动控制加热功率的换热管组件
CN107869847A (zh) * 2016-09-27 2018-04-03 上海双开燃气用具有限公司 一种热交换器结构
CN106546110A (zh) * 2017-01-09 2017-03-29 苏州热立方新能源有限公司 一种带有立体气腔的抗冻型换热器
CN109883248A (zh) * 2019-03-11 2019-06-14 山东大学 一种脉动管束换热组件及其熔融盐蓄热罐

Also Published As

Publication number Publication date
CN112665447A (zh) 2021-04-16

Similar Documents

Publication Publication Date Title
CN111412773A (zh) 一种温度差控制三阀门换热器的方法
CN111412766A (zh) 一种流速差控制三阀门换热器的方法
CN112665447B (zh) 一种温度除垢控制方法
CN112665425B (zh) 一种多管箱水位差控制的管壳式换热器
CN112665448B (zh) 一种换热器流速振动控制方法
CN112665426B (zh) 一种多箱体压力差控制的管壳式换热器
CN112964098B (zh) 一种根据速度差切换热源的环路热管换热器
CN112964100B (zh) 一种根据温度差切换热源的环路热管换热器
CN113137875B (zh) 一种根据压力差进行加热的环路热管换热器
CN113137876B (zh) 一种切换热源加热气体的环路热管换热器
CN113203308B (zh) 一种远程速度差三热源管壳式换热器
CN113340133B (zh) 一种远程压力差热管换热器
CN112665414B (zh) 一种根据速度切换热源的三热源管壳式换热器
CN112648862B (zh) 一种根据温度切换热源的三热源管壳式换热器
CN112797823B (zh) 一种根据压力进行加热的气体换热器
CN112797821B (zh) 一种切换热源加热气体的管壳式换热器
CN112082410B (zh) 一种上下错列布置的喷淋式管壳式换热器
CN113720179B (zh) 一种酒店流控管壳式换热器
CN112113442B (zh) 一种上下间隔错布的喷气式管壳式换热器
CN113405378A (zh) 一种喷淋式管壳式换热器
CN113405379A (zh) 一种流体均匀分配的喷淋式管壳式换热器
CN113686178A (zh) 一种恒控的管壳式换热器
CN112503972A (zh) 一种三管箱云端水位监控换热器方法
CN112304133A (zh) 一种镜像对称的水位差控制振动环路热管
CN113551542A (zh) 一种喷气式管壳式换热器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant