CN112662669A - Il21 gene knockout mouse model and construction method and application thereof - Google Patents

Il21 gene knockout mouse model and construction method and application thereof Download PDF

Info

Publication number
CN112662669A
CN112662669A CN202011540705.4A CN202011540705A CN112662669A CN 112662669 A CN112662669 A CN 112662669A CN 202011540705 A CN202011540705 A CN 202011540705A CN 112662669 A CN112662669 A CN 112662669A
Authority
CN
China
Prior art keywords
mouse
knockout
gene
generation
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011540705.4A
Other languages
Chinese (zh)
Inventor
史培良
樊皓月
辛闻婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Yaokang Biotechnology Co ltd
Original Assignee
Chengdu Yaokang Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Yaokang Biotechnology Co ltd filed Critical Chengdu Yaokang Biotechnology Co ltd
Priority to CN202011540705.4A priority Critical patent/CN112662669A/en
Publication of CN112662669A publication Critical patent/CN112662669A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention discloses an Il21 gene knockout mouse model and a construction method and application thereof, wherein the construction method comprises the following steps: s1, determining a knockout region of an Il21 gene based on a CRISPR/Cas9 technology, designing sgRNA1 and sgRNA2 of specific target sites according to the determined knockout region, wherein gene sequences of gRNA1 and gRNA2 are respectively shown as SEQ ID No.1 and SEQ ID No. 2; s2, microinjecting active gRNA1, gRNA2 and cas9 protein into mouse fertilized eggs, transplanting the fertilized eggs surviving after injection into a pseudopregnant female mouse, and obtaining an F0-generation mouse after the pregnant female mouse farves; s3, mating the F0 generation mouse obtained in the step S2 with a wild type mouse to obtain an F1 generation heterozygote; s4, inbreeding the F1 generation heterozygote obtained in the step S3 to obtain an F2 generation mouse which is an IL21 gene knockout mouse model. Based on CRISPR/Cas9 technology, the invention establishes a mouse animal model by designing reasonable heterologous target site gRNA1 and gRNA2 gene sequences and knocking out the exon3-exon5 region in ENSMUST00000029273.7 transcript of Il21 gene for the first time, and can be applied to related research after tumor healing.

Description

Il21 gene knockout mouse model and construction method and application thereof
Technical Field
The invention relates to the technical field of construction of gene knockout mouse models, in particular to an Il21 gene knockout mouse model and a construction method and application thereof.
Background
IL-21, interleukin-21 (IL-21), is a secreted protein secreted by activated CD4+ T cells and has a molecular structure similar to IL-15, belonging to the IL-15/IL-21 family, which binds to a complex receptor consisting of a proprietary receptor (IL21R) and the usual cytokine receptor chain (gamma (C)). IL-21 affects a variety of cell types including CD8+ memory T cells, NK cells, and CD4 memory T cell subsets. Its receptors are widely distributed on lymphohematopoietic cells. IL-21 promotes the anti-tumor activity of CD8+ t cells and NK cells by enhancing the antigen-specific response of immune cells, and acts by binding to the specific type I cytokine receptor IL-21R. It has been shown that IL-21 depletion results in CD8+ T cell dysfunction.
The existing research on the effect of IL-21 in the tumor healing process mainly uses a method for injecting exogenous IL-21 into tumor tissues, the method is limited by factors such as the type of a carrier of an injection, the source of the exogenous IL-21, related side effects and the like, and the research on the IL-21 in a knockout mouse can effectively avoid related adverse factors and reduce the cost.
The gene knockout animal model can be constructed by a gene targeting technology and a CRISPR/Cas9 technology. The gene targeting technology is a molecular biology technology established on the basis of ES cell and DNA homologous recombination and other technologies. The gene of a specific site of the ES cell is modified by utilizing a homologous recombination technology, and the ES cell after genetic modification is introduced into a recipient embryo by a microinjection or embryo fusion method. The genetically modified ES cells still maintain totipotency of differentiation and can develop into germ cells of chimeric animals, such that the modified genetic information is inherited by the germ line to obtain mice derived from ES cells. Therefore, gene editing can be performed on ES cells to obtain genetically modified mice.
The ES cell targeting technology obtains chimeric mice from the construction of homologous recombination vectors, targeting and positive clone screening of ES cells, and blastocyst injection of ES cells, which takes about 4-6 months. The CRISPR/Cas9 technology abandons the work, and the fertilized eggs of the mice after direct transplantation and injection are obtained for F0 generation, which only needs about 1 month, thus greatly saving the development period and the cost. On the other hand, genetically modified mice obtained by ES cell targeting technology have genetic background from the ES cells we have selected, whereas mature, gene-targeted ES cell lines generally have only a limited number of strain sources: the hybrid F1 lines of C57BL/6N, C57BL/6J, 129S3 and C57 and 129. If other backgrounds are needed, the strain needs to be obtained by backcrossing with wild-type mice of the target strain, and the number of backcrossing is more than 10 generations. The CRISPR/Cas9 technology breaks the restriction of mouse strains, and can realize genetic modification on different strains and even immunodeficient strains, such as: BALB/c, FVB, Nod-scid, etc.
At present, no case of successfully constructing an IL-21 gene knockout mouse model by adopting a CRISPR/Cas9 technology exists.
Disclosure of Invention
The invention aims to provide a construction method of an Il21 gene knockout mouse model, and the construction method not only can successfully construct the Il21 gene knockout mouse model, but also has the advantages of short period and no limitation of mouse strains. .
In addition, the invention also provides an Il21 gene knockout mouse model constructed by the construction method and application of the Il21 gene knockout mouse model.
The invention is realized by the following technical scheme:
a method for constructing an Il21 gene knockout mouse model comprises the following steps:
s1, determining a knockout region of an Il21 gene based on a CRISPR/Cas9 technology, designing sgRNA1 and sgRNA2 of specific target sites according to the determined knockout region, wherein gene sequences of gRNA1 and gRNA2 are respectively shown as SEQ ID No.1 and SEQ ID No. 2;
s2, microinjecting active gRNA1, gRNA2 and cas9 protein into mouse fertilized eggs, transplanting the fertilized eggs surviving after injection into a pseudopregnant female mouse, and obtaining an F0-generation mouse after the pregnant female mouse farves;
s3, mating the F0 generation mouse obtained in the step S2 with a wild type mouse to obtain an F1 generation heterozygote;
s4, inbreeding the F1 generation heterozygote obtained in the step S3 to obtain an F2 generation mouse which is an IL21 gene knockout mouse model.
The difficulty in constructing an Il21 gene knockout mouse model is the design of heterologous target site gRNA1 and gRNA2 and the gene determination of F0 generation mice.
Based on CRISPR/Cas9 technology, an Il21 gene knockout mouse model is successfully constructed by designing reasonable heterologous target site gRNA1 and gRNA2 gene sequences, and the method can be applied to related research after tumor healing; the construction method has the advantages of short period and no limitation of mouse strains.
Furthermore, the genotype of the F0 generation mouse is determined, and the heterozygote mouse is selected to be mated with the wild type mouse, so that the F1 generation heterozygote is obtained.
Further, the genotype determination process of F0 generation mice was as follows:
extracting genome DNA of F0 mouse, PCR amplifying and sequencing identifying to confirm genotype; the primers for PCR amplification comprise F1, R1, F2 and R2, wherein the gene sequences of F1, R1, F2 and R2 are respectively shown as SEQ ID NO.3, SEQ ID NO.4, SEQ ID NO.5 and SEQ ID NO. 6; the gene sequence of the sequencing primer is shown as SEQ ID NO. 7.
Another difficulty or key point in constructing the Il21 knockout mouse model is the gene determination of the F0 generation mouse and F1 generation heterozygote.
According to the invention, by reasonably designing a PCR amplification sequence and a sequencing sequence, genes of F0 generation mice and F1 generation heterozygotes can be successfully determined, and the success rate of constructing an Il21 gene knockout mouse model is further improved.
Further, the obtained F1 generation heterozygotes comprise 5 types, namely a knockout type 1, a knockout type 2, a knockout type 3, a knockout type 4 and a knockout type 5, wherein 6281 base pairs are deleted for the knockout type 1, 6282 base pairs are deleted for the knockout type 2, 6272 base pairs are deleted for the knockout type 3, 6283 base pairs are deleted for the knockout type 4, 6279 base pairs are deleted for the knockout type 5, and F1 generation heterozygotes of the knockout type 1 are inbred to obtain F2 generation mice.
Further, the type determination process of heterozygote of the F1 generation is as follows:
extracting genome DNA of F1 mouse, PCR amplifying and sequencing identifying to confirm genotype; the primers for PCR amplification comprise F1, R1, F2 and R2, the gene sequences of F1, R1, F2 and R2 are respectively shown as SEQ ID NO.3, SEQ ID NO.4, SEQ ID NO.5 and SEQ ID NO.6, and the gene sequence of the sequencing primer is shown as SEQ ID NO. 7.
Further, the knockout region determined in step S1 is exon3-exon5 of Il21-201(ENSMUST00000029273.7) transcript.
The Il21 gene knockout mouse model constructed by the construction method is adopted.
A cell with IL21 gene knocked out.
An Il21 gene knockout mouse model comprising a cell in which the Il21 gene is knocked out.
Application of an Il21 gene knockout mouse model in related researches after tumor healing.
Compared with the prior art, the invention has the following advantages and beneficial effects:
1. based on CRISPR/Cas9 technology, the invention establishes a mouse animal model by designing reasonable heterologous target site gRNA1 and gRNA2 gene sequences and knocking out the exon3-exon5 region in ENSMUST00000029273.7 transcript of Il21 gene for the first time, and can be applied to related research after tumor healing.
2. According to the invention, by reasonably designing a PCR amplification sequence and a sequencing sequence, genes of F0 generation mice and F1 generation heterozygotes can be successfully determined, and the success rate of constructing an Il21 gene knockout mouse model is further improved.
3. The construction method has the advantages of short period and no limitation of mouse strains.
Drawings
The accompanying drawings, which are included to provide a further understanding of the embodiments of the invention and are incorporated in and constitute a part of this application, illustrate embodiment(s) of the invention and together with the description serve to explain the principles of the invention. In the drawings:
FIG. 1 is a schematic diagram of the strategy for constructing specific target sites in example 1;
FIG. 2 is a graph showing the results of the identification of F0 mouse in example 1;
FIG. 3 is a graph showing the result of the identification of F1 mouse in example 1;
FIG. 4 is a graph of the sequencing peak of # 8 in the F1 mouse assay;
FIG. 5 is a graph showing the result of identification of F2 mouse;
FIG. 6 is a schematic diagram of an authentication strategy.
Detailed Description
In order to make the objects, technical solutions and advantages of the present invention more apparent, the present invention is further described in detail below with reference to examples and accompanying drawings, and the exemplary embodiments and descriptions thereof are only used for explaining the present invention and are not meant to limit the present invention.
Example 1:
a method for constructing an Il21 gene knockout mouse model comprises the following steps:
s1, RISPR/Cas9 technology, using exon3-exon5 of an Il21-201(ENSMUST00000029273.7) transcript as a knockout region according to Il21 gene information, wherein the knockout region comprises a 258bp coding sequence; determining specific target sites gRNA1 and gRNA2 to be knocked out of the IL10 gene of a C57BL/6J mouse according to the region, wherein the gene sequences of the gRNA1 and the gRNA2 are shown as SEQ ID No.1 and SEQ ID No.2 respectively or shown as Table 1;
TABLE 1 gRNA sequence information
sgRNA name gRNA sequence(5’*3’) PAM
sgRNA1 TGCCTATGTATGTGTCGTCC TGG
sgRNA2 TGGAGTGCCCACCTATCTGA TGG
S2, microinjecting active gRNA1, gRNA2 and cas9 proteins into mouse fertilized eggs, transplanting the fertilized eggs surviving after injection into a pseudopregnant female mouse, obtaining an F0-generation mouse after the pregnant female mouse is pregnant, extracting genomic DNA of the F0-generation mouse, and sequentially carrying out PCR amplification and sequencing identification to confirm the genotype; the primers for PCR amplification comprise F1, R1, F2 and R2, wherein the gene sequences of F1, R1, F2 and R2 are respectively shown as SEQ ID NO.3, SEQ ID NO.4, SEQ ID NO.5 and SEQ ID NO. 6; the gene sequence of the sequencing primer is shown as SEQ ID NO.7 or shown as Table 2, and the F0 mouse identification result is shown as figure 2:
TABLE 2 primer information
Figure BDA0002854488510000041
The PCR amplification reaction system is shown in Table 3:
TABLE 3 reaction System
Seg. reaction component Volume(μl)
1 2×Taq Master Mix,Dye Plus,(Vazyme P112-03) 12.5
2 ddH2O 9.5
3 Primer A(10pmol/μl) 1
4 Primer B(10pmol/μl) 1
5 Template(≈100ng/μl) 1
The PCR amplification reaction procedure is shown in table 4:
TABLE 4 reaction procedure
Figure BDA0002854488510000051
S3, mating the sexually mature positive F019 # mouse obtained in the step S2 with a wild type mouse to breed a first generation, wherein the gene sequence of the wild type C57BL/6J mouse is shown as SEQ ID No.8, the gene sequence of gRNAs is shown as SEQ ID No.9, the gene sequence of a region where a knockout coding region is located is shown as SEQ ID No.10, and the born F1 mouse cuts the tail and numbers of the toes in 5-7 days, extracts genome DNA for PCR identification and confirms the genotype; there were 5 types of heterozygote mice obtained at the F1 generation, which were: knock-out type 1, deletion of 6281 base pairs; knock-out type 2, deletion of 6282 base pairs; knock-out type 3, deletion 6272 base pairs; knock-out type 4, deletion of 6283 base pairs; knock-out type 5, deletion of 6279 base pairs; the identification method is the same as that of F0 mouse, and the genotype identification result of F1 is shown in figure 3;
according to the PCR strategy diagram, as shown in FIG. 1, through PCR and sequencing confirmation,
1#, 8 #: 6281bp, E3- -E5 complete deletion, KO positive
2 #: 6282bp, E3- -E5 complete deletion, KO positive
5 #: 6272bp, E3- -E5 complete deletion, KO positive
9 #: 6283bp, E3- -E5 complete deletion, KO positive
10 #: 6279bp, E3- -E5 complete deletion, KO positive;
according to the PCR strategy diagram, through PCR and sequencing confirmation,
the sequencing peak pattern of # 8 is shown in figure 4: sequencing double peaks, and recommending breeding;
s4, inbreeding the F1 generation heterozygous mouse which is obtained in the step S3 and lacks 6281 base pairs to obtain an F2 generation homozygous mouse, namely the model of the Il21 gene knockout mouse constructed in the embodiment.
The results of the identification are shown in FIG. 5: 33# and 39# are homozygous (ko/ko) mice.
FIG. 6 is a schematic diagram of an authentication strategy:
wild type: PCR reaction objects a single WT band; secondly, PCR reaction objects a single WT band (wild type: firstly, a WT band is obtained by PCR reaction and secondly, a WT band is obtained by PCR reaction).
Heterozygate: PCR reaction objects a WT band and a KO band; ② PCR reaction objects a WT band (heterozygote: firstly, PCR reaction obtains a WT and a KO band; and secondly, PCR reaction obtains a WT band).
Homozygote: (i) PCR reaction objects a single KO band; (S) PCR reaction with product (homozygote: a KO band is obtained by PCR reaction; and a band is absent by PCR reaction).
The above-mentioned embodiments are intended to illustrate the objects, technical solutions and advantages of the present invention in further detail, and it should be understood that the above-mentioned embodiments are merely exemplary embodiments of the present invention, and are not intended to limit the scope of the present invention, and any modifications, equivalent substitutions, improvements and the like made within the spirit and principle of the present invention should be included in the scope of the present invention.
Sequence listing
<110> Chengdu Yaokang Biotechnology Ltd
<120> Il21 gene knockout mouse model, and construction method and application thereof
<160> 10
<170> SIPOSequenceListing 1.0
<210> 1
<211> 20
<212> DNA
<213> 1 (Artificial sequence 1)
<400> 1
tgcctatgta tgtgtcgtcc 20
<210> 2
<211> 20
<212> DNA
<213> 2 (Artificial sequence 2)
<400> 2
tggagtgccc acctatctga 20
<210> 3
<211> 26
<212> DNA
<213> 3 (Artificial sequence 3)
<400> 3
gctgctactg ctcacaattt acagcc 26
<210> 4
<211> 25
<212> DNA
<213> 4 (Artificial sequence 4)
<400> 4
agatcctagt ggcctcgtct tagca 25
<210> 5
<211> 25
<212> DNA
<213> 5 (Artificial sequence 5)
<400> 5
gccaacttat gtgcaattca gggac 25
<210> 6
<211> 25
<212> DNA
<213> 6 (Artificial sequence 6)
<400> 6
aaggtctcac ccagataacc cagct 25
<210> 7
<211> 26
<212> DNA
<213> 7 (Artificial sequence 7)
<400> 7
gctgctactg ctcacaattt acagcc 26
<210> 8
<211> 6480
<212> DNA
<213> 8 (Artificial sequence 8)
<400> 8
gttcctaaac taaattctct gtcacagata gaaatgctgg gtctgctagc tcagtggtag 60
actgtttgcc tatgtatgtg tcgtcctgga ttctcttcaa tacctcccac acacttctac 120
agacacctgc aggcacgcac acacacacac acaaatgtac acatatataa acctgcacac 180
acataactca catacacatc aggttcacac acaaacacac atacaaacac acaaacaagc 240
acatacacac attcacattc aactccacaa ggcttgtacc cactgcttca acctcagagt 300
gacttcagca tagcaccagg caaagaaaat tatgaaaggt gagggctctg cttgtacctg 360
tgcggtagga aatggctcct ttttctccca gacagggaag ctgtccaaat ggaaaaaacc 420
ctgtcttttg ctgagtttaa gtggggatat gaccagacct aatggagccc ctaaaaaaat 480
tctcaacaca aatgtacaag cagaaactga gggctggaat gtcattttca acctttggaa 540
caatgttcat taacatatgc taattatctt taaggtcatt aacatatgct aattgtctct 600
cctttcaggg gcactgtgag catgcagctt ttgcctgttt tcagaaggcc aaactcaagc 660
catcaaaccc tggaaacaat aagacattca tcattgacct cgtggcccag ctcaggagga 720
ggctgcctgc caggagggga ggaaagaaac agaagcacat agctgtaaga ttgtcctctg 780
tcatctttct tgttcgcagt tatcactagc atggagcatt tagttattaa gataagtctt 840
acccgttagt tgtaacatac tatgcttcac acatccacac agctggagcg tctcccacct 900
tcttgcagag ttactccata caaggtctac tttgaaaagt ggtgtcacct ccaataagtc 960
tttactgtct gtctagaaac cctactagaa ctggccacca ctccctcggc agtatgttaa 1020
cagaagtttc tgggggtgaa gaagccatta ggaagagaat gtgttagacg ttacaagata 1080
ttttcccttt tgcccatgtg ctggccatag cttgtgtcat ctttatcggg gactagagct 1140
cagctttctg acaagaaaag agagcttaca ataccaagat caatctatta ctgtcccagg 1200
caaaagcaga gtcaatgatg aatttaaaag ggtgtacctt tttatggggc tgaaaaagtc 1260
caagttcctg tttctttggg accctgaatt ttcttgtata ttttctttgg ccaacttatg 1320
tgcaattcag ggactcaaga atcaactcat tcaaacatta atcagaacct gcagagagga 1380
cagaaaagaa gtttctctgt catattcatt ggttgtctgt ccttcaagaa atgccacatg 1440
gacaaaaatg aaatcataat tacattatga aaaggagtct tgtttcttct gattgcttgg 1500
ccaggttatt atgtgaaaat gtccctctga aactttcttc acaatgaaaa gaactgccta 1560
ggaaggtagt gtgtccctgt gaggtcagca ccaggaagct gaggcaggag gattgagact 1620
tccaggacag ctgggttatc tgggtgagac cttgttcagg aagctttgaa gaaggaagta 1680
ggggaggagg cagggaggga gagaaggaaa ggaaggaaag gaaggaaagg aaggaaagga 1740
aggaaaggaa ggaaaggaag gaaggaagga aggaaggaag gaacaaagga aggaaggaga 1800
aatggagggg gtggtggtga caaattgacc acagctatga aactcagaaa aacttacgaa 1860
atggtgctgt gtactgtaga cctggaaccc aactcttcta caccaagctc ctttgtgtag 1920
acatgaagaa agtgagaact gtaaagaggc caactttctc caggtttcac aaacagctgt 1980
gtcaggatga agaagaacat agatgccatg ctgcctccag atgttctcac cgtgatacca 2040
tgtgactgag cattaaaaag cagccagttg ttttggtatt ggaacaggaa tgagcataag 2100
actggaggag aaagggggga gggagactga tgaagaggga ggaaggtcag ccacattcga 2160
acatttggaa catttgctca gtacccctaa taatcaagtg aatggaagtt aaaagaggaa 2220
atcctgtctt gtaattgtgg aaacagtgcc caatagtggt aagactcgtc gaagcacaaa 2280
gaggaaacat gttttatgat atatagtcct tgaggtattt atccctttaa tctacttgat 2340
aagatctaga aatttgatat atatgaaaaa attatctgcc caggtgatct ctatagactt 2400
gtacataaaa gctagatacc acttctgtat ctaaaaatag taagtgctcc atctgtgcag 2460
ggtgggggtg ggtgggaggg ggagcgacag agcagccacc acaaatcctg ccctgaaagc 2520
atatctaaag cccaggaaac ccttgtaatt ggttaaaaac taacagcaaa cagcatataa 2580
caaccagggt aacaagaatg cagaggagga ggagggcgag gaagaggaag aggaagaaag 2640
gggacaaaaa acggatataa taatttaaac accaaaatat tcagagttgt ctctgaggat 2700
aaaatcacac gtggtttcca gaacaatttt acagaatttt cctaatgctt gttactgaat 2760
atgatttatg ttcacaagag aagaaatgaa ttttacataa gtattttatg aagtatgaag 2820
ttagttctta aaaaataatt tttaaagttt taaaattaat taattaatta attgattaat 2880
tttgatttac agaaatgccc ttcctgtgat tcgtatgaga aaaggacacc caaagaattc 2940
ctagaaagac taaaatggct ccttcaaaag gtatgcacct taaatgcatt tctttcactt 3000
ccatgttgtg tccgggtacc tcctgtgccc agtgactcat aggctctcgt tcccacagat 3060
gattcatcag catctctcct agaacacata ggacccgaag attcctgagg atccgagaag 3120
attcccgagg actgaggaga cgccggacac tatagacgct cacgaatgca ggagtacatc 3180
ttgcctcttg ggattgcaag tggagaagta cgatacgtta tgataagaac aactcagaaa 3240
agctataggt taagatcctt tcgcccatta actaagcaga cattgtggtt ccctgcacag 3300
actccatgct gtcaacatgg aaaatctcaa ctcaacaaga gcccagcttc ccgtgtcagg 3360
gatttctggt gcttctcaag ctgtggcttc atcttattgc ccaactgtga cattctttga 3420
ttggaagggg aaaactaaag cttttagcaa aaatacagct agggaatttg tcgatctgcg 3480
agagtaagac ctcttatgat cctaacggaa tgatgtaagc tggaaataat aagcataaga 3540
tgaaattgaa aattgaagtc tttattcttt aagaaaaact ttgtacttga aagcatgtct 3600
gaagagttta ctcattacca caaacatcta gcatattgat aactaacatc tttatactct 3660
acaagagagg ctttccagat aggtacagtt tttcttctct attaggtcta tcaaaattta 3720
acctattatg agggtcaccc ctggctttca ctgtttttct aaagaggcaa gggtgtagta 3780
agaagcaggc ttaagttgcc ttcctcccaa tgtcaagttc ctttataagc taatagttta 3840
atcttgtgaa gatggcaatg aaagcctgtg gaagtgcaaa cctcactatc ttctggagcc 3900
aagtagaatt ttcaagtttg tagctctcac ctcaagtggt tatgggtgtc ctgtgatgaa 3960
tctgctagct ccagcctcag tctcctctcc cacatccttt cctttctttc ctctttgaaa 4020
cttctaagaa aaagcaatcc aaacaagttc agcacttaag acacattgca tgcacacttt 4080
tgataagtta aatccaacca tctatttaaa atcaaaatca ggagatgagc caagagacca 4140
gaggttctgt tccagtttta aacagacttt tactgaacat cccaatcttt taaccacaga 4200
ggctaaattg agcaaatagt tttgccattt gatataattt ccaacagtat gtttcaatgt 4260
caagttaaaa agtctacaaa gctattttcc ctggagtggt atcatcgctt tgagaatttc 4320
ttatggttaa aatggatctg agatccaagc atggcctggg ggatggtttt gatctaagga 4380
aaaaggtgtc tgtacctcac agtgccttta aaacaagcag agatcccgtg taccgcccta 4440
agatagcaca gactagtgtt aactgattcc cagaaaagtg tcacaatcag aaccaacgca 4500
ttctcttaaa ctttaaaaat atgtattgca aagaacttgt gtaactgtaa atgtgtgact 4560
gttgatgaca ttatacacac atagcccacg taagtgtcca atggtgctag cattggttgc 4620
tgagtttgct gctcgaaagc tgaagcagag atgcagtcct tcacaaagca atgatggaca 4680
gagaggggag tctccatgtt ttattctttt gttgtttctg gctgtgtaac tgttgacttc 4740
ttgacattgt gatttttata tttaagacaa tgtatttatt ttggtgtgtt tattgttcta 4800
gccttttaaa tcactgacaa tttctaatca agaagtacaa ataattcaat gcagcacagg 4860
ctaagagctt gtatcgtttg gaaaagccag tgaaggcttc tccactagcc atgggaaagc 4920
tacgctttag agtaaactag acaaaattgc acagcagtct tgaacctctc tgtgctcaag 4980
actcagccag tcctttgaca ttattgttca ctgtgggtgg gaacacattg gacctgacac 5040
actgttgtgt gtccatgaag gttgccactg gtgtaagctt tttttggttt tcattctctt 5100
atctgtagaa caagaatgtg gggctttcct aagtctattc tgtattttat tctgaacttc 5160
gtatgtctga gttttaatgt tttgagtact cttacaggaa cacctgacca cacttttgag 5220
ttaaatttta tcccaagtgt gatatttagt tgttcaaaaa gggaagggat atacatacat 5280
acatacatac atacatacat atatatatat atatatacat atatatatat atatatatgt 5340
atatatatat atatatagag agagagagag agagagagag agaaagagag agaggttgtt 5400
gtaggtcata ggagttcaga ggaaatcagt tatggccgtt aatactgtag ctgaaagtgt 5460
tttctttgtg aataaattca tagcattatt gatctatgtt attgctctgt tttatttaca 5520
gtcacacctg agaatttagt tttaatatga atgatgtact ttataactta atgattattt 5580
attatgtatt tggttttgaa tgtttgtgtt catggcttct tatttaagac ctgatcatat 5640
taaatgctac ccagtcagaa caactgtctg ttgtgattct ctgaatgtcc ttaatgcaac 5700
caacctggta gaaaaggtgg gtgcataggt tttatatggc tacagcacag atgtttactt 5760
cttattgact gccactaaga tagaagtatc ccgtgttctt gctcaaagac cccactctct 5820
ttgcagacca ccctctgaat gcctggcagg cttgaagtgg ttgaaacttg cttgtctcac 5880
aagtgtgtcc catgtagact gcagttctgg gttcatgtcg ctctcatctg gccatctgtc 5940
tcttattctc aatgtttctt gtctgcgtct gtgggttacc aggctgtgct catcaaggac 6000
ttaggtatgt tccttgccaa tctctgctcc cctctcaggt gacctcagtg gggaggattc 6060
tcagtgggaa actcccagaa ccttgaccat ctccatgtga gcacttgtgt actttaccca 6120
ctgccactct catggtcaca gcccagactc tcacgcatgg aaacctgtca cctagctaga 6180
ccatcatatt cctactgcct ctgtaccaga agccgggcct ccacacttcc agacccctcg 6240
gcactcacct gctctggagg cctggccact gagtccctgg agcccggagc cacagtcaag 6300
caacacatag tgcctccacc tgctcgggaa cctgtctgtg gagtgcccac ctatctgatg 6360
gtctacttca tattcgaaca ttggttctgg ctgctcacct tggggagcat tttaaacacc 6420
ctccatagct actggagtca tttccctcct ctgacttcac cccatgggct gctaagacga 6480
<210> 9
<211> 40
<212> DNA
<213> 9 (Artificial sequence 9)
<400> 9
tgcctatgta tgtgtcgtcc tggagtgccc acctatctga 40
<210> 10
<211> 2758
<212> DNA
<213> 10 (Artificial sequence 10)
<400> 10
gggcactgtg agcatgcagc ttttgcctgt tttcagaagg ccaaactcaa gccatcaaac 60
cctggaaaca ataagacatt catcattgac ctcgtggccc agctcaggag gaggctgcct 120
gccaggaggg gaggaaagaa acagaagcac atagctatga ttcatcagca tctctcctag 180
aacacatagg acccgaagat tcctgaggat ccgagaagat tcccgaggac tgaggagacg 240
ccggacacta tagacgctca cgaatgcagg agtacatctt gcctcttggg attgcaagtg 300
gagaagtacg atacgttatg ataagaacaa ctcagaaaag ctataggtta agatcctttc 360
gcccattaac taagcagaca ttgtggttcc ctgcacagac tccatgctgt caacatggaa 420
aatctcaact caacaagagc ccagcttccc gtgtcaggga tttctggtgc ttctcaagct 480
gtggcttcat cttattgccc aactgtgaca ttctttgatt ggaaggggaa aactaaagct 540
tttagcaaaa atacagctag ggaatttgtc gatctgcgag agtaagacct cttatgatcc 600
taacggaatg atgtaagctg gaaataataa gcataagatg aaattgaaaa ttgaagtctt 660
tattctttaa gaaaaacttt gtacttgaaa gcatgtctga agagtttact cattaccaca 720
aacatctagc atattgataa ctaacatctt tatactctac aagagaggct ttccagatag 780
gtacagtttt tcttctctat taggtctatc aaaatttaac ctattatgag ggtcacccct 840
ggctttcact gtttttctaa agaggcaagg gtgtagtaag aagcaggctt aagttgcctt 900
cctcccaatg tcaagttcct ttataagcta atagtttaat cttgtgaaga tggcaatgaa 960
agcctgtgga agtgcaaacc tcactatctt ctggagccaa gtagaatttt caagtttgta 1020
gctctcacct caagtggtta tgggtgtcct gtgatgaatc tgctagctcc agcctcagtc 1080
tcctctccca catcctttcc tttctttcct ctttgaaact tctaagaaaa agcaatccaa 1140
acaagttcag cacttaagac acattgcatg cacacttttg ataagttaaa tccaaccatc 1200
tatttaaaat caaaatcagg agatgagcca agagaccaga ggttctgttc cagttttaaa 1260
cagactttta ctgaacatcc caatctttta accacagagg ctaaattgag caaatagttt 1320
tgccatttga tataatttcc aacagtatgt ttcaatgtca agttaaaaag tctacaaagc 1380
tattttccct ggagtggtat catcgctttg agaatttctt atggttaaaa tggatctgag 1440
atccaagcat ggcctggggg atggttttga tctaaggaaa aaggtgtctg tacctcacag 1500
tgcctttaaa acaagcagag atcccgtgta ccgccctaag atagcacaga ctagtgttaa 1560
ctgattccca gaaaagtgtc acaatcagaa ccaacgcatt ctcttaaact ttaaaaatat 1620
gtattgcaaa gaacttgtgt aactgtaaat gtgtgactgt tgatgacatt atacacacat 1680
agcccacgta agtgtccaat ggtgctagca ttggttgctg agtttgctgc tcgaaagctg 1740
aagcagagat gcagtccttc acaaagcaat gatggacaga gaggggagtc tccatgtttt 1800
attcttttgt tgtttctggc tgtgtaactg ttgacttctt gacattgtga tttttatatt 1860
taagacaatg tatttatttt ggtgtgttta ttgttctagc cttttaaatc actgacaatt 1920
tctaatcaag aagtacaaat aattcaatgc agcacaggct aagagcttgt atcgtttgga 1980
aaagccagtg aaggcttctc cactagccat gggaaagcta cgctttagag taaactagac 2040
aaaattgcac agcagtcttg aacctctctg tgctcaagac tcagccagtc ctttgacatt 2100
attgttcact gtgggtggga acacattgga cctgacacac tgttgtgtgt ccatgaaggt 2160
tgccactggt gtaagctttt tttggttttc attctcttat ctgtagaaca agaatgtggg 2220
gctttcctaa gtctattctg tattttattc tgaacttcgt atgtctgagt tttaatgttt 2280
tgagtactct tacaggaaca cctgaccaca cttttgagtt aaattttatc ccaagtgtga 2340
tatttagttg ttcaaaaagg gaagggatat acatacatac atacatacat acatacatat 2400
atatatatat atatacatat atatatatat atatatgtat atatatatat atatagagag 2460
agagagagag agagagagag aaagagagag aggttgttgt aggtcatagg agttcagagg 2520
aaatcagtta tggccgttaa tactgtagct gaaagtgttt tctttgtgaa taaattcata 2580
gcattattga tctatgttat tgctctgttt tatttacagt cacacctgag aatttagttt 2640
taatatgaat gatgtacttt ataacttaat gattatttat tatgtatttg gttttgaatg 2700
tttgtgttca tggcttctta tttaagacct gatcatatta aatgctaccc agtcagaa 2758

Claims (10)

1. A method for constructing an Il21 gene knockout mouse model is characterized by comprising the following steps:
s1, determining a knockout region of an Il21 gene based on a CRISPR/Cas9 technology, designing sgRNA1 and sgRNA2 of specific target sites according to the determined knockout region, wherein gene sequences of gRNA1 and gRNA2 are respectively shown as SEQ ID No.1 and SEQ ID No. 2;
s2, microinjecting active gRNA1, gRNA2 and cas9 protein into mouse fertilized eggs, transplanting the fertilized eggs surviving after injection into a pseudopregnant female mouse, and obtaining an F0-generation mouse after the pregnant female mouse farves;
s3, mating the F0 generation mouse obtained in the step S2 with a wild type mouse to obtain an F1 generation heterozygote;
s4, inbreeding the F1 generation heterozygote obtained in the step S3 to obtain an F2 generation mouse which is an IL21 gene knockout mouse model.
2. The method for constructing the Il21 gene knockout mouse model according to claim 1, wherein the genotype of F0 generation mouse is determined, and heterozygote mouse is selected to mate with wild type mouse to obtain F1 generation heterozygote.
3. The method for constructing an Il21 gene knockout mouse model according to claim 2, wherein the genotype of F0 generation mouse is determined as follows:
extracting genome DNA of F0 mouse, PCR amplifying and sequencing identifying to confirm genotype; the primers for PCR amplification comprise F1, R1, F2 and R2, wherein the gene sequences of F1, R1, F2 and R2 are respectively shown as SEQ ID NO.3, SEQ ID NO.4, SEQ ID NO.5 and SEQ ID NO. 6; the gene sequence of the sequencing primer is shown as SEQ ID NO. 7.
4. The method for constructing an Il21 gene knockout mouse model according to claim 2, wherein the obtained F1 generation heterozygotes comprise 5 types, which are a knockout type 1, a knockout type 2, a knockout type 3, a knockout type 4 and a knockout type 5, respectively, wherein the knockout type 1 lacks 6281 base pairs, the knockout type 2 lacks 6282 base pairs, the knockout type 3 lacks 6272 base pairs, the knockout type 4 lacks 6283 base pairs and the knockout type 5 lacks 6279 base pairs, and the F1 generation heterozygote of the knockout type 1 is inbred to obtain the F2 generation mouse.
5. The method for constructing an Il21 gene knockout mouse model according to claim 2, wherein the type determination process of the heterozygote of the F1 generation is as follows:
extracting genome DNA of F1 mouse, PCR amplifying and sequencing identifying to confirm genotype; the primers for PCR amplification comprise F1, R1, F2 and R2, the gene sequences of F1, R1, F2 and R2 are respectively shown as SEQ ID NO.3, SEQ ID NO.4, SEQ ID NO.5 and SEQ ID NO.6, and the gene sequence of the sequencing primer is shown as SEQ ID NO. 7.
6. The method for constructing an Il21 gene knockout mouse model according to any one of claims 1 to 5, wherein the knockout region determined in step S1 is exon3-exon5 of an Il21-201(ENSMUST00000029273.7) transcript.
7. The Il21 gene knockout mouse model constructed by the method for constructing the Il21 gene knockout mouse model according to any one of claims 1 to 6.
8. A cell with IL21 gene knocked out.
9. An Il21 gene knockout mouse model comprising a cell in which an Il21 gene is knocked out.
10. Use of the Il21 knockout mouse model of claim 8 or 9 in studies relating to tumor prognosis.
CN202011540705.4A 2020-12-23 2020-12-23 Il21 gene knockout mouse model and construction method and application thereof Pending CN112662669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011540705.4A CN112662669A (en) 2020-12-23 2020-12-23 Il21 gene knockout mouse model and construction method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011540705.4A CN112662669A (en) 2020-12-23 2020-12-23 Il21 gene knockout mouse model and construction method and application thereof

Publications (1)

Publication Number Publication Date
CN112662669A true CN112662669A (en) 2021-04-16

Family

ID=75409116

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011540705.4A Pending CN112662669A (en) 2020-12-23 2020-12-23 Il21 gene knockout mouse model and construction method and application thereof

Country Status (1)

Country Link
CN (1) CN112662669A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113736787A (en) * 2021-09-22 2021-12-03 赛业(苏州)生物科技有限公司 gRNA of targeted mouse Atp7b gene and method for constructing Wilson disease mouse model
CN113862266A (en) * 2021-09-18 2021-12-31 赛业(苏州)生物科技有限公司 gRNA of targeted mouse BBS5 gene and method for constructing Bardet-Biedl mouse model
CN113930427A (en) * 2021-09-22 2022-01-14 赛业(苏州)生物科技有限公司 gRNA of targeted mouse CD274 gene and method for constructing EAE disease mouse model
CN114214360A (en) * 2021-12-27 2022-03-22 西安英创生物技术有限公司 Congenital myasthenia gravis mouse model, and construction method and application thereof
CN114958907A (en) * 2021-12-31 2022-08-30 河南省人民医院 Method for constructing Bcl6 gene super enhancer knockout animal model based on CRISPR/Cas9 technology and application
CN116030884A (en) * 2022-09-08 2023-04-28 杭州美赛生物医药科技有限公司 Tumor immune target determination method based on segmentation labeling

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107475300A (en) * 2017-09-18 2017-12-15 上海市同济医院 The construction method of Ifit3 eKO1 knock out mice animal models and application
WO2018219093A1 (en) * 2017-05-27 2018-12-06 南京农业大学 Method for constructing glrx1 gene knock-out animal model based on crispr/cas9

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018219093A1 (en) * 2017-05-27 2018-12-06 南京农业大学 Method for constructing glrx1 gene knock-out animal model based on crispr/cas9
CN107475300A (en) * 2017-09-18 2017-12-15 上海市同济医院 The construction method of Ifit3 eKO1 knock out mice animal models and application

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YI JS等: "A vital role for Il-21 in the control of a chronic viral infection", SCIENCE, vol. 324, no. 5934, pages 1572 - 1576 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113862266A (en) * 2021-09-18 2021-12-31 赛业(苏州)生物科技有限公司 gRNA of targeted mouse BBS5 gene and method for constructing Bardet-Biedl mouse model
CN113736787A (en) * 2021-09-22 2021-12-03 赛业(苏州)生物科技有限公司 gRNA of targeted mouse Atp7b gene and method for constructing Wilson disease mouse model
CN113930427A (en) * 2021-09-22 2022-01-14 赛业(苏州)生物科技有限公司 gRNA of targeted mouse CD274 gene and method for constructing EAE disease mouse model
CN114214360A (en) * 2021-12-27 2022-03-22 西安英创生物技术有限公司 Congenital myasthenia gravis mouse model, and construction method and application thereof
CN114958907A (en) * 2021-12-31 2022-08-30 河南省人民医院 Method for constructing Bcl6 gene super enhancer knockout animal model based on CRISPR/Cas9 technology and application
CN116030884A (en) * 2022-09-08 2023-04-28 杭州美赛生物医药科技有限公司 Tumor immune target determination method based on segmentation labeling
CN116030884B (en) * 2022-09-08 2023-08-22 杭州美赛生物医药科技有限公司 Tumor immune target determination method based on segmentation labeling

Similar Documents

Publication Publication Date Title
CN112662669A (en) Il21 gene knockout mouse model and construction method and application thereof
JP6888213B2 (en) Simple and highly efficient method for producing genetically modified non-human mammals
CN107858373B (en) Construction method of endothelial cell conditional knockout CCR5 gene mouse model
CN107815466B (en) Preparation method and application of humanized gene modified animal model
CN109072218A (en) Gene modification non-human creature, egg cell, fertilized eggs and target gene method of modifying
CN110551759B (en) Composition and method for improving recombination efficiency of transgenic cells
US6891031B2 (en) Coordinate cytokine regulatory sequences
CN107760715A (en) A kind of precisely efficient transgene carrier and its construction method and application
CN111549072B (en) VISTA gene humanized animal cell, animal model construction method and application
Wilmut et al. Genetic manipulation of mammals and its application in reproductive biology
JP6958917B2 (en) How to make gene knock-in cells
CN112553254A (en) IL10 gene knockout mouse model and construction method and application thereof
Boyd et al. Molecular biology of transgenic animals
CN109929875B (en) Construction method and application of LAG3 gene humanized animal model
Goto et al. Hypomorphic phenotype of Foxn1 gene-modified rats by CRISPR/Cas9 system
EP1264889B1 (en) Chicken leukemia inhibitory factor (LIF) and the gene thereof
CN113699152A (en) Construction method and application of SLC35E2B gene knockout mouse animal model
CN113817734A (en) Hectd4 gene knockout zebra fish epilepsy model and construction method and application thereof
CN113604473B (en) Construction method and application of mouse model capable of inducing natural killer cell defects
CN114480497B (en) Construction and application method of ep400 gene knockout zebra fish heart failure model
CN112626122B (en) hKDR humanized mouse model and establishing method and application thereof
CN110592122B (en) Zebra fish naalad2 gene promoter and application thereof
CN105440111B (en) Pair of transcription activator-like effector nucleases (CTFs), coding sequences and application thereof
CN109694885B (en) Method for preparing PI3K gamma whole-body knockout mode mouse based on CRISPR/Cas9 technology, application thereof and kit
CN113957070A (en) Chd2 gene knockout zebra fish epilepsy model and construction method and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination