CN112659190B - 一种工业机器人安全防护系统 - Google Patents

一种工业机器人安全防护系统 Download PDF

Info

Publication number
CN112659190B
CN112659190B CN202011496203.6A CN202011496203A CN112659190B CN 112659190 B CN112659190 B CN 112659190B CN 202011496203 A CN202011496203 A CN 202011496203A CN 112659190 B CN112659190 B CN 112659190B
Authority
CN
China
Prior art keywords
resistor
capacitor
comparator
industrial robot
generating device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011496203.6A
Other languages
English (en)
Other versions
CN112659190A (zh
Inventor
吴晗
宋凤娇
吴宇桐
吴宇辰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Menak Electric Co ltd
Original Assignee
Tianjin Menak Electric Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Menak Electric Co ltd filed Critical Tianjin Menak Electric Co ltd
Priority to CN202011496203.6A priority Critical patent/CN112659190B/zh
Publication of CN112659190A publication Critical patent/CN112659190A/zh
Application granted granted Critical
Publication of CN112659190B publication Critical patent/CN112659190B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Manipulator (AREA)

Abstract

本发明提供一种工业机器人安全防护系统,其包括图像传感器、图像处理器、光感测装置、气体浓度感测器、信号处理器、第一比较器、第二比较器、第三比较器、中央控制装置、气体发生装置以及工业机器人控制器,其主要采用喷射带有颜色的气体的方法对工业机器人前方障碍进行判断,使用图像传感器、图像处理器以及第一比较器对气体撞击到障碍物而发生散溅进行判断,还使用光感测装置、气体浓度感测器对气体撞击到障碍物而发生散溅进行判断,设计了相应的检测电路,大大提高了检测精度。

Description

一种工业机器人安全防护系统
技术领域
本发明涉及工业机器人领域,尤其涉及一种工业机器人安全防护系统。
背景技术
工业机器人是广泛用于工业领域的多关节机械手或多自由度的机器装置,具有一定的自动性,可依靠自身的动力能源和控制能力实现各种工业加工制造功能。工业机器人被广泛应用于电子、物流、化工等各个工业领域之中。
从机械结构来看,工业机器人总体上分为串联机器人和并联机器人。串联机器人的特点是一个轴的运动会改变另一个轴的坐标原点,而并联机器人一个轴运动则不会改变另一个轴的坐标原点。早期的工业机器人都是采用串联机构。并联机构定义为动平台和定平台通过至少两个独立的运动链相连接,机构具有两个或两个以上自由度,且以并联方式驱动的一种闭环机构。并联机构有两个构成部分,分别是手腕和手臂。手臂活动区域对活动空间有很大的影响,而手腕是工具和主体的连接部分。与串联机器人相比较,并联机器人具有刚度大、结构稳定、承载能力大、微动精度高、运动负荷小的优点。在位置求解上,串联机器人的正解容易,但反解十分困难;而并联机器人则相反,其正解困难,反解却非常容易。
驱动系统是向机械结构系统提供动力的装置。根据动力源不同,驱动系统的传动方式分为液压式、气压式、电气式和机械式4种。早期的工业机器人采用液压驱动。由于液压系统存在泄露、噪声和低速不稳定等问题,并且功率单元笨重和昂贵,目前只有大型重载机器人、并联加工机器人和一些特殊应用场合使用液压驱动的工业机器人。气压驱动具有速度快、系统结构简单、维修方便、价格低等优点。但是气压装置的工作压强低,不易精确定位,一般仅用于工业机器人末端执行器的驱动。气动手抓、旋转气缸和气动吸盘作为末端执行器可用于中、小负荷的工件抓取和装配。电力驱动是目前使用最多的一种驱动方式,其特点是电源取用方便,响应快,驱动力大,信号检测、传递、处理方便,并可以采用多种灵活的控制方式。
控制系统的任务是根据机器人的作业指令以及从传感器反馈回来的信号,支配机器人的执行机构去完成规定的运动和功能。如果机器人不具备信息反馈特征,则为开环控制系统;具备信息反馈特征,则为闭环控制系统。根据控制原理可分为程序控制系统、适应性控制系统和人工智能控制系统。根据控制运动的形式可分为点位控制和连续轨迹控制。
相比于传统的工业设备,工业机器人有众多的优势,比如机器人具有易用性、智能化水平高、生产效率及安全性高、易于管理且经济效益显著等特点,使得它们可以在高危环境下进行作业,但是,在现有技术中工业机器人容易在作业过程中因碰撞而损坏,对此,现有技术中往往采用激光测距的方式进行障碍物的识别,但是激光测距的测试点较小,若要形成面的计算则需要设置多个激光测距,或者使用图像识别的方式,但图像识别往往需要图像处理,其处理速度较慢。
发明内容
因此,为了克服上述问题,本发明提供一种工业机器人安全防护系统包括图像传感器、图像处理器、光感测装置、气体浓度感测器、信号处理器、第一比较器、第二比较器、第三比较器、中央控制装置、气体发生装置以及工业机器人控制器。
其中,所述图像传感器、所述图像处理器、所述第一比较器依次连接,所述光感测装置与所述第二比较器连接,所述气体浓度感测器、所述信号处理器、所述第三比较器依次连接,所述第一比较器、所述第二比较器以及所述第三比较器均与所述中央控制装置连接,所述中央控制装置与所述气体发生装置连接,所述中央控制装置与所述工业机器人控制器连接。
所述图像传感器设置于所述工业机器人的前端,所述图像传感器实时采集所述工业机器人前端的图像信息,所述光感测装置设置于所述工业机器人的前端,所述光感测装置实时采集所述工业机器人前端的光强度信号,所述气体浓度感测器设置于所述工业机器人的前端,所述气体浓度感测器实时采集所述工业机器人前端的气体浓度信号;所述气体发生装置设置于所述工业机器人的前端,在所述工业机器人行进时喷射带有颜色的氧气气体,喷射气体为柱状形喷出,所述图像传感器将所述气体发生装置喷射后第一采样点的图像和喷射后第二采样点的图像均传输至所述图像处理器,所述图像处理器将接收到的两个图像划分为若干个相同区域,并计算每个区域的灰度值,所述图像处理器将所述气体发生装置喷射后第一采样点的图像的若干个区域的灰度值和所述气体发生装置喷射后的第二采样点的图像的若干个区域的灰度值传输至所述第一比较器,所述第一比较器将两幅图像对应区域的灰度值进行比较,若述气体发生装置喷射后第二采样点的图像的若干个区域的灰度值中大于所述气体发生装置喷射后的第一采样点的图像的若干个区域的灰度值的区域个数大于第一预设阈值,则所述第一比较器发出第一预警信号;同时,所述光感测装置将所述气体发生装置喷射后第一采样点的光强度信号和喷射后的第二采样点的光强度信号均传输至所述第二比较器,若所述气体发生装置喷射后的第一采样点的光强度信号和喷射后第二采样点的光强度信号的差的绝对值大于第二预设阈值,则所述第二比较器发出第二预警信号;同时,所述气体浓度感测器将所述气体发生装置喷射后第一采样点的氧气浓度信号和喷射后的第二采样点的氧气浓度信号均传输至所述第三比较器,若所述气体发生装置喷射后第一采样点的氧气浓度信号和喷射后的第二采样点的氧气浓度信号的差的绝对值大于第三预设阈值,则所述第三比较器发出第三预警信号;所述中央控制装置若接收到第一预警信号、第二预警信号以及第三预警信号,则所述中央控制装置通过所述工业机器人控制器控制所述工业机器人停止作业。
具体地,所述气体发生装置内包括一气压存储装置,所述气压存储装置用于在所述气体发生装置接收到气体喷射指令后将所述气体发生装置内待喷射气体以柱状喷射出。
具体地,光感测装置包括第一场效应管T1、第二场效应管T2、第三场效应管T3以及光二极管D。
其中,所述光二极管D用于感测光信号,所述光二极管D的正极接地,所述光二极管D的阴极与所述第一场效应管T1的源极连接,所述光二极管D的阴极与所述第二场效应管T2的栅极连接,所述第一场效应管T1的栅极与所述第一场效应管T1的漏极连接,所述第一场效应管T1的漏极与电源Vdd连接,所述第二场效应管T2的漏极也与电源Vdd连接,所述第二场效应管T2的源极与所述第三场效应管T3的漏极连接,所述第三场效应管T3的栅极与电源Vrow连接,所述第三场效应管T3的源极与所述第二比较器连接。
具体地,所述信号处理器包括第一电阻、第二电阻、第三电阻、第四电阻、第五电阻、第六电阻、第七电阻、第八电阻、第一电容、第二电容、第三电容、第四电容、第一集成运放以及第二集成运放。
其中,所述气体浓度感测器的输出端与所述第一电容的第一端连接,所述第一电容的第二端与所述第二电容的第一端连接,所述第一电容的第二端还与所述第一电阻的第一端连接,所述第一电阻的第二端与所述第一集成运放的输出端连接,所述第二电容的第二端与所述第一集成运放的同相输入端连接,所述第二电阻的第一端接地,所述第二电阻的第二端与所述第二电容的第二端连接,所述第三电阻的第一端接地,所述第三电阻的第二端与所述第一集成运放的反相输入端连接,所述第四电阻的第一端与所述第三电阻的第二端连接,所述第四电阻的第二端与所述第一集成运放的输出端连接;所述第一集成运放的输出端与所述所述第三电容的第一端连接,所述第三电容的第二端与所述第四电容的第一端连接,所述第三电容的第二端还与所述第五电阻的第一端连接,所述第五电阻的第二端与所述第二集成运放的输出端连接,所述第四电容的第二端与所述第二集成运放的同相输入端连接,所述第六电阻的第一端接地,所述第六电阻的第二端与所述第四电容的第二端连接,所述第七电阻的第一端接地,所述第七电阻的第二端与所述第二集成运放的反相输入端连接,所述第八电阻的第一端与所述第七电阻的第二端连接,所述第八电阻的第二端与所述第二集成运放的输出端连接,所述第二集成运放的输出端与所述第三比较器的输入端连接;
其中,所述第一电容、所述第二电容、所述第三电容、所述第四电容的电容值相等。
与现有技术相比,本发明具有如下的有益效果:
本发明提供的工业机器人安全防护系统包括图像传感器、图像处理器、光感测装置、气体浓度感测器、信号处理器、第一比较器、第二比较器、第三比较器、中央控制装置、气体发生装置以及工业机器人控制器,其主要采用喷射带有颜色的气体的方法对工业机器人前方障碍进行判断,使用图像传感器、图像处理器以及第一比较器对气体撞击到障碍物而发生散溅进行判断,在此无需对采集的图像进行图像清晰度处理,只需要将在喷射气体后的两个采样点的图像进行区域划分,然后对比对应区域的灰度值即能知晓气体是否撞击到障碍物而发生散溅,大大提高了检测的效率,还使用光感测装置、气体浓度感测器对气体撞击到障碍物而发生散溅进行判断,设计了相应的检测电路,大大提高了检测精度。
因此,本发明提供的工业机器人安全防护系统能够实现对工业机器人运行前方的障碍物进行有效判断,相较于现有技术中使用激光测距的方法,具有测试范围更光的优势,对于图像采集的方法,无需对图像中障碍物进行识别,具有测试效率更高的优势。
附图说明
图1为本发明的工业机器人安全防护系统的示意图;
图2为本发明的光感测装置的示意图;
图3为本发明的信号处理器的示意图。
具体实施方式
下面结合附图和实施例对本发明提供的工业机器人安全防护系统进行详细说明。
如图1所示,本发明提供的工业机器人安全防护系统包括图像传感器、图像处理器、光感测装置、气体浓度感测器、信号处理器、第一比较器、第二比较器、第三比较器、中央控制装置、气体发生装置以及工业机器人控制器。
其中,所述图像传感器、所述图像处理器、所述第一比较器依次连接,所述光感测装置与所述第二比较器连接,所述气体浓度感测器、所述信号处理器、所述第三比较器依次连接,所述第一比较器、所述第二比较器以及所述第三比较器均与所述中央控制装置连接,所述中央控制装置与所述气体发生装置连接,所述中央控制装置与所述工业机器人控制器连接。
所述图像传感器设置于所述工业机器人的前端,所述图像传感器实时采集所述工业机器人前端的图像信息,所述光感测装置设置于所述工业机器人的前端,所述光感测装置实时采集所述工业机器人前端的光强度信号,所述气体浓度感测器设置于所述工业机器人的前端,所述气体浓度感测器实时采集所述工业机器人前端的气体浓度信号;所述气体发生装置设置于所述工业机器人的前端,在所述工业机器人行进时喷射带有颜色的氧气气体,喷射气体为柱状形喷出,所述图像传感器将所述气体发生装置喷射后第一采样点的图像和喷射后第二采样点的图像均传输至所述图像处理器,所述图像处理器将接收到的两个图像划分为若干个相同区域,并计算每个区域的灰度值,所述图像处理器将所述气体发生装置喷射后第一采样点的图像的若干个区域的灰度值和所述气体发生装置喷射后的第二采样点的图像的若干个区域的灰度值传输至所述第一比较器,所述第一比较器将两幅图像对应区域的灰度值进行比较,若述气体发生装置喷射后第二采样点的图像的若干个区域的灰度值中大于所述气体发生装置喷射后的第一采样点的图像的若干个区域的灰度值的区域个数大于第一预设阈值,则所述第一比较器发出第一预警信号;同时,所述光感测装置将所述气体发生装置喷射后第一采样点的光强度信号和喷射后的第二采样点的光强度信号均传输至所述第二比较器,若所述气体发生装置喷射后的第一采样点的光强度信号和喷射后第二采样点的光强度信号的差的绝对值大于第二预设阈值,则所述第二比较器发出第二预警信号;同时,所述气体浓度感测器将所述气体发生装置喷射后第一采样点的氧气浓度信号和喷射后的第二采样点的氧气浓度信号均传输至所述第三比较器,若所述气体发生装置喷射后第一采样点的氧气浓度信号和喷射后的第二采样点的氧气浓度信号的差的绝对值大于第三预设阈值,则所述第三比较器发出第三预警信号;所述中央控制装置若接收到第一预警信号、第二预警信号以及第三预警信号,则所述中央控制装置通过所述工业机器人控制器控制所述工业机器人停止作业。
上述实施方式中,本发明提供的工业机器人安全防护系统包括图像传感器、图像处理器、光感测装置、气体浓度感测器、信号处理器、第一比较器、第二比较器、第三比较器、中央控制装置、气体发生装置以及工业机器人控制器,其主要采用喷射带有颜色的气体的方法对工业机器人前方障碍进行判断。
更进一步地,本发明提供的工业机器人安全防护系统使用图像传感器、图像处理器以及第一比较器对气体撞击到障碍物而发生散溅进行判断,在此无需对采集的图像进行图像清晰度处理,只需要将在喷射气体后的两个采样点的图像进行区域划分,然后对比对应区域的灰度值即能知晓气体是否撞击到障碍物而发生散溅,大大提高了检测的效率。
更进一步地,本发明提供的工业机器人安全防护系统还使用光感测装置、气体浓度感测器对气体撞击到障碍物而发生散溅进行判断,设计了相应的检测电路,大大提高了检测精度。
因此,本发明提供的工业机器人安全防护系统能够实现对工业机器人运行前方的障碍物进行有效判断,相较于现有技术中使用激光测距的方法,具有测试范围更光的优势,对于图像采集的方法,无需对图像中障碍物进行识别,具有测试效率更高的优势。
进一步地,所述气体发生装置内包括一气压存储装置,所述气压存储装置用于在所述气体发生装置接收到气体喷射指令后将所述气体发生装置内待喷射气体以柱状喷射出。
如图2所示,光感测装置包括第一场效应管T1、第二场效应管T2、第三场效应管T3以及光二极管D。
其中,所述光二极管D用于感测光信号,所述光二极管D的正极接地,所述光二极管D的阴极与所述第一场效应管T1的源极连接,所述光二极管D的阴极与所述第二场效应管T2的栅极连接,所述第一场效应管T1的栅极与所述第一场效应管T1的漏极连接,所述第一场效应管T1的漏极与电源Vdd连接,所述第二场效应管T2的漏极也与电源Vdd连接,所述第二场效应管T2的源极与所述第三场效应管T3的漏极连接,所述第三场效应管T3的栅极与电源Vrow连接,所述第三场效应管T3的源极与所述第二比较器连接。
上述实施方式中,第一场效应管T1、第二场效应管T2、第三场效应管T3均为NMOS晶体管。
进一步地,上述光感测装置主要由NMOS晶体管T1、T2、T3以及光二极管D所组成,光感测装置是利用NMOS晶体管T1的漏极直接接到电压Vdd,此时NMOS晶体管T1的漏极与源极之间的电压差与NMOS晶体管T1的栅极的电流形成对数关系,因此使得输出电压Vout与光二极管D接收的光强度也形成对数关系。
进一步地,本发明提供的光感测装置具有很高的动态范围,即对光信号的感测灵敏。
如图3所示,所述信号处理器包括第一电阻、第二电阻、第三电阻、第四电阻、第五电阻、第六电阻、第七电阻、第八电阻、第一电容、第二电容、第三电容、第四电容、第一集成运放以及第二集成运放。
其中,所述气体浓度感测器的输出端与所述第一电容的第一端连接,所述第一电容的第二端与所述第二电容的第一端连接,所述第一电容的第二端还与所述第一电阻的第一端连接,所述第一电阻的第二端与所述第一集成运放的输出端连接,所述第二电容的第二端与所述第一集成运放的同相输入端连接,所述第二电阻的第一端接地,所述第二电阻的第二端与所述第二电容的第二端连接,所述第三电阻的第一端接地,所述第三电阻的第二端与所述第一集成运放的反相输入端连接,所述第四电阻的第一端与所述第三电阻的第二端连接,所述第四电阻的第二端与所述第一集成运放的输出端连接;所述第一集成运放的输出端与所述所述第三电容的第一端连接,所述第三电容的第二端与所述第四电容的第一端连接,所述第三电容的第二端还与所述第五电阻的第一端连接,所述第五电阻的第二端与所述第二集成运放的输出端连接,所述第四电容的第二端与所述第二集成运放的同相输入端连接,所述第六电阻的第一端接地,所述第六电阻的第二端与所述第四电容的第二端连接,所述第七电阻的第一端接地,所述第七电阻的第二端与所述第二集成运放的反相输入端连接,所述第八电阻的第一端与所述第七电阻的第二端连接,所述第八电阻的第二端与所述第二集成运放的输出端连接,所述第二集成运放的输出端与所述第三比较器的输入端连接。
其中,所述第一电容、所述第二电容、所述第三电容、所述第四电容的电容值相等。
上述实施方式中,所述第一电容、所述第二电容、所述第三电容、所述第四电容的电容值均为0.001μF,所述第一电阻的阻值为200kΩ,所述第二电阻的阻值为130kΩ,所述第三电阻的阻值为200kΩ,所述第四电阻的阻值为430kΩ,所述第五电阻的阻值为240kΩ,所述第六电阻的阻值为100kΩ,所述第七电阻的阻值为200kΩ,所述第八电阻的阻值为430kΩ。
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (4)

1.一种工业机器人安全防护系统,其特征在于,所述工业机器人安全防护系统包括图像传感器、图像处理器、光感测装置、气体浓度感测器、信号处理器、第一比较器、第二比较器、第三比较器、中央控制装置、气体发生装置以及工业机器人控制器;
其中,所述图像传感器、所述图像处理器、所述第一比较器依次连接,所述光感测装置与所述第二比较器连接,所述气体浓度感测器、所述信号处理器、所述第三比较器依次连接,所述第一比较器、所述第二比较器以及所述第三比较器均与所述中央控制装置连接,所述中央控制装置与所述气体发生装置连接,所述中央控制装置与所述工业机器人控制器连接;
所述图像传感器设置于所述工业机器人的前端,所述图像传感器实时采集所述工业机器人前端的图像信息,所述光感测装置设置于所述工业机器人的前端,所述光感测装置实时采集所述工业机器人前端的光强度信号,所述气体浓度感测器设置于所述工业机器人的前端,所述气体浓度感测器实时采集所述工业机器人前端的气体浓度信号;所述气体发生装置设置于所述工业机器人的前端,在所述工业机器人行进时喷射带有颜色的氧气气体,喷射气体为柱状形喷出,所述图像传感器将所述气体发生装置喷射后第一采样点的图像和喷射后第二采样点的图像均传输至所述图像处理器,所述图像处理器将接收到的两个图像划分为若干个相同区域,并计算每个区域的灰度值,所述图像处理器将所述气体发生装置喷射后第一采样点的图像的若干个区域的灰度值和所述气体发生装置喷射后的第二采样点的图像的若干个区域的灰度值传输至所述第一比较器,所述第一比较器将两幅图像对应区域的灰度值进行比较,若述气体发生装置喷射后第二采样点的图像的若干个区域的灰度值中大于所述气体发生装置喷射后的第一采样点的图像的若干个区域的灰度值的区域个数大于第一预设阈值,则所述第一比较器发出第一预警信号;同时,所述光感测装置将所述气体发生装置喷射后第一采样点的光强度信号和喷射后的第二采样点的光强度信号均传输至所述第二比较器,若所述气体发生装置喷射后的第一采样点的光强度信号和喷射后第二采样点的光强度信号的差的绝对值大于第二预设阈值,则所述第二比较器发出第二预警信号;同时,所述气体浓度感测器将所述气体发生装置喷射后第一采样点的氧气浓度信号和喷射后的第二采样点的氧气浓度信号均传输至所述第三比较器,若所述气体发生装置喷射后第一采样点的氧气浓度信号和喷射后的第二采样点的氧气浓度信号的差的绝对值大于第三预设阈值,则所述第三比较器发出第三预警信号;所述中央控制装置若接收到第一预警信号、第二预警信号以及第三预警信号,则所述中央控制装置通过所述工业机器人控制器控制所述工业机器人停止作业。
2.根据权利要求1所述的工业机器人安全防护系统,其特征在于,所述气体发生装置内包括一气压存储装置,所述气压存储装置用于在所述气体发生装置接收到气体喷射指令后将所述气体发生装置内待喷射气体以柱状喷射出。
3.根据权利要求1所述的工业机器人安全防护系统,其特征在于,光感测装置包括第一场效应管T1、第二场效应管T2、第三场效应管T3以及光二极管D;
其中,所述光二极管D用于感测光信号,所述光二极管D的正极接地,所述光二极管D的阴极与所述第一场效应管T1的源极连接,所述光二极管D的阴极与所述第二场效应管T2的栅极连接,所述第一场效应管T1的栅极与所述第一场效应管T1的漏极连接,所述第一场效应管T1的漏极与电源Vdd连接,所述第二场效应管T2的漏极也与电源Vdd连接,所述第二场效应管T2的源极与所述第三场效应管T3的漏极连接,所述第三场效应管T3的栅极与电源Vrow连接,所述第三场效应管T3的源极与所述第二比较器连接。
4.根据权利要求1所述的工业机器人安全防护系统,其特征在于,所述信号处理器包括第一电阻、第二电阻、第三电阻、第四电阻、第五电阻、第六电阻、第七电阻、第八电阻、第一电容、第二电容、第三电容、第四电容、第一集成运放以及第二集成运放;
其中,所述气体浓度感测器的输出端与所述第一电容的第一端连接,所述第一电容的第二端与所述第二电容的第一端连接,所述第一电容的第二端还与所述第一电阻的第一端连接,所述第一电阻的第二端与所述第一集成运放的输出端连接,所述第二电容的第二端与所述第一集成运放的同相输入端连接,所述第二电阻的第一端接地,所述第二电阻的第二端与所述第二电容的第二端连接,所述第三电阻的第一端接地,所述第三电阻的第二端与所述第一集成运放的反相输入端连接,所述第四电阻的第一端与所述第三电阻的第二端连接,所述第四电阻的第二端与所述第一集成运放的输出端连接;所述第一集成运放的输出端与所述第三电容的第一端连接,所述第三电容的第二端与所述第四电容的第一端连接,所述第三电容的第二端还与所述第五电阻的第一端连接,所述第五电阻的第二端与所述第二集成运放的输出端连接,所述第四电容的第二端与所述第二集成运放的同相输入端连接,所述第六电阻的第一端接地,所述第六电阻的第二端与所述第四电容的第二端连接,所述第七电阻的第一端接地,所述第七电阻的第二端与所述第二集成运放的反相输入端连接,所述第八电阻的第一端与所述第七电阻的第二端连接,所述第八电阻的第二端与所述第二集成运放的输出端连接,所述第二集成运放的输出端与所述第三比较器的输入端连接;
其中,所述第一电容、所述第二电容、所述第三电容、所述第四电容的电容值相等。
CN202011496203.6A 2020-12-17 2020-12-17 一种工业机器人安全防护系统 Active CN112659190B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011496203.6A CN112659190B (zh) 2020-12-17 2020-12-17 一种工业机器人安全防护系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011496203.6A CN112659190B (zh) 2020-12-17 2020-12-17 一种工业机器人安全防护系统

Publications (2)

Publication Number Publication Date
CN112659190A CN112659190A (zh) 2021-04-16
CN112659190B true CN112659190B (zh) 2022-08-26

Family

ID=75404884

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011496203.6A Active CN112659190B (zh) 2020-12-17 2020-12-17 一种工业机器人安全防护系统

Country Status (1)

Country Link
CN (1) CN112659190B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11188684A (ja) * 1997-12-25 1999-07-13 Tokico Ltd 工業用ロボット
CN101073006A (zh) * 2004-12-07 2007-11-14 霍尼韦尔分析股份公司 气体检测方法和系统
CN102679899A (zh) * 2012-05-11 2012-09-19 北京理工大学 用于界面高温变形测量的微尺度散斑制作方法
CN103252789A (zh) * 2013-05-03 2013-08-21 唐国民 基于双目式红外传感器件的装配机器人定位装置
CN206961294U (zh) * 2017-07-03 2018-02-02 淮阴工学院 可燃性气体检测报警安全控制器
KR20180025724A (ko) * 2016-09-01 2018-03-09 엘지전자 주식회사 이동 로봇 및 그 제어방법
WO2018195569A1 (de) * 2017-04-24 2018-11-01 Blue Danube Robotics Gmbh Erkennung einer kollision eines handhabungsgeräts mit einem hindernis
CN109214993A (zh) * 2018-08-10 2019-01-15 重庆大数据研究院有限公司 一种雾霾天气智能车视觉增强方法
CN109849534A (zh) * 2018-12-29 2019-06-07 厦门汉印电子技术有限公司 一种照片打印机、打印方法、装置和存储介质

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11188684A (ja) * 1997-12-25 1999-07-13 Tokico Ltd 工業用ロボット
CN101073006A (zh) * 2004-12-07 2007-11-14 霍尼韦尔分析股份公司 气体检测方法和系统
CN102679899A (zh) * 2012-05-11 2012-09-19 北京理工大学 用于界面高温变形测量的微尺度散斑制作方法
CN103252789A (zh) * 2013-05-03 2013-08-21 唐国民 基于双目式红外传感器件的装配机器人定位装置
KR20180025724A (ko) * 2016-09-01 2018-03-09 엘지전자 주식회사 이동 로봇 및 그 제어방법
WO2018195569A1 (de) * 2017-04-24 2018-11-01 Blue Danube Robotics Gmbh Erkennung einer kollision eines handhabungsgeräts mit einem hindernis
CN206961294U (zh) * 2017-07-03 2018-02-02 淮阴工学院 可燃性气体检测报警安全控制器
CN109214993A (zh) * 2018-08-10 2019-01-15 重庆大数据研究院有限公司 一种雾霾天气智能车视觉增强方法
CN109849534A (zh) * 2018-12-29 2019-06-07 厦门汉印电子技术有限公司 一种照片打印机、打印方法、装置和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于小波的实时烟雾检测;帅师等;《计算机应用研究》;20070310(第03期);第309-311页 *

Also Published As

Publication number Publication date
CN112659190A (zh) 2021-04-16

Similar Documents

Publication Publication Date Title
Smys et al. Robot assisted sensing control and manufacture in automobile industry
US10933536B2 (en) Sprung worm gripper for a robotic device
US12070859B2 (en) Robot base position planning
CN108748152B (zh) 一种机器人示教方法及系统
Kumar et al. Speed and separation monitoring using on-robot time-of-flight laser-ranging sensor arrays
CN111872936B (zh) 一种基于神经网络的机器人碰撞检测系统及方法
Gai et al. 6-DOF robotic obstacle avoidance path planning based on artificial potential field method
Weitschat et al. Safe and efficient human-robot collaboration part I: Estimation of human arm motions
Şahin et al. Design and application of PLC controlled robotic arm choosing objects according to their color
Yang et al. Planning in time-configuration space for efficient pick-and-place in non-static environments with temporal constraints
CN112659190B (zh) 一种工业机器人安全防护系统
Poeppel et al. Robust distance estimation of capacitive proximity sensors in hri using neural networks
CN213259495U (zh) 一种确保速度和动量边界限制的工业机器人
Ha et al. Special issue on recent advances in field and service robotics: handling harsh environments and cooperation
Kontz et al. Evaluation of a teleoperated haptic forklift
Seraji et al. Sensor‐based collision avoidance: Theory and experiments
CN114620160A (zh) 基于多级电动缸并联式腿足结构的电动四足机器人
Schlotzhauer et al. Safety of industrial applications with sensitive mobile manipulators–hazards and related safety measures
Deuerlein et al. Improved design flexibility of open robot cells through tool-center-point monitoring
Himmelsbach et al. Built-In 360 Degree Separation Monitoring for Grippers on Robotic Manipulators in Human-Robot Collaboration
Feng et al. Research on motion control and trajectory planning algorithm of mobile manipulator based on deep learning
CN218534563U (zh) 一种自动化生产线装配用工业机器人
Chen et al. Event-based planning and control for active collision avoidance in human-robot collaboration
CN215395227U (zh) 一种工业机器人用智能控制系统
Li Dynamic stability analysis and control for the mobile manipulator

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant