CN112653336A - 一种基于双重分区的静止变频系统初始导通方法 - Google Patents

一种基于双重分区的静止变频系统初始导通方法 Download PDF

Info

Publication number
CN112653336A
CN112653336A CN202011541004.2A CN202011541004A CN112653336A CN 112653336 A CN112653336 A CN 112653336A CN 202011541004 A CN202011541004 A CN 202011541004A CN 112653336 A CN112653336 A CN 112653336A
Authority
CN
China
Prior art keywords
sector
conducted
rotor
area
magnetomotive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011541004.2A
Other languages
English (en)
Inventor
季振东
梁超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN202011541004.2A priority Critical patent/CN112653336A/zh
Publication of CN112653336A publication Critical patent/CN112653336A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/443Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M5/45Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M5/451Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of output voltage or frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/1555Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with control circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/505Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/515Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/525Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of output waveform or frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • H02P9/26Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices
    • H02P9/30Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2103/00Controlling arrangements characterised by the type of generator
    • H02P2103/20Controlling arrangements characterised by the type of generator of the synchronous type

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

本发明公开了一种基于双重分区的静止变频系统初始导通方法,属于同步发电机启动和并网技术领域,本发明在转子位置相邻扇区的交界处区域,当转子处于在两个扇区的交界处区域,同时导通产生正向较大电磁转矩对应的两组开关组合;当转子不处于在两个扇区的交界处区域,只导通产生正向较大电磁转矩对应的一组开关。本发明保证转子在任何位置都受到正向驱动转矩,提供足够的电磁转矩。

Description

一种基于双重分区的静止变频系统初始导通方法
技术领域
本发明涉及基于双重分区的静止变频系统初始导通方法,属于同步发电机启动和并网技术领域。
背景技术
变频起动相比于其他起动方式有很多优势,如发电机异步起动时,会从电网中吸取大量的无功功率,并且起动转矩较小,产生较大的冲击电流,而变频起动输入较小的电流就能使发电机运行于各种转速。当发电机处于低速阶段,同步电发机机端反电动势幅值较小不能为逆变电路晶闸管提供反向电压,不能使用自然换相法,工业上普遍采用脉冲换向法实现逆变电路换向。
发明内容
针对现有技术的不足,本发明提供了一种基于双重分区的静止变频系统初始导通方法,解决了怎么样使得静止在任何位置的发电机转子受到正向的驱动转矩最大的问题。
本发明为解决其技术问题采用如下技术方案:
本发明所述的一种基于双重分区的静止变频系统初始导通方法,该方法包括以下步骤:
1,当转子处于在两个扇区的交界处区域,同时导通产生正向较大电磁转矩对应的两组开关组合;
2,当转子不处于在两个扇区的交界处区域,只导通产生正向较大电磁转矩对应的一组开关组合;
所述静止变频系统主电路包括降压变压器、整流电路、电流型逆变电路、升压变压器和同步发电机,所述整流电路前接降压变压器,电流型逆变电路,所述电流型逆变电路前接整流电路,后接升压变压器,所述升压变压器前接电流型逆变电路,后接同步发电机,所述电流型逆变电路一对开关管导通时,有6种情况:T'1,T'2导通;T'2,T'3导通;T'3,T'4导通;T'4,T'5导通;T'5,T'6导通;T'6,T'1导通。
进一步,在所述步骤1中,包括如下开关组合:
当转子处于扇区6和扇区1交界处的区域,同时导通T'5,T'6和T'6,T'1两个开关组合;
当转子处于扇区1和扇区2交界处的区域,同时导通T'6,T'1和T'1,T'2两个开关组合;
当转子处于扇区2和扇区3交界处的区域,同时导通T'1,T'2和T'2,T'3两个开关组合;
当转子处于扇区3和扇区4交界处的区域,同时导通T'2,T'3和T'3,T'4两个开关组合;
当转子处于扇区4和扇区5交界处的区域,同时导通T'3,T'4和T'4,T'5两个开关组合;
当转子处于扇区5和扇区6交界处的区域,同时导通T'4,T'5和T'5,T'6两个开关组合。
进一步,在所述步骤2中,包括如下开关组合:
当转子处于扇区1的中间区域,应该导通T'6,T'1;
当转子处于扇区2的中间区域,应该导通T'1,T'2;
当转子处于扇区3的中间区域,应该导通T'2,T'3;
当转子处于扇区4的中间区域,应该导通T'3,T'4;
当转子处于扇区5的中间区域,应该导通T'4,T'5;
当转子处于扇区6的中间区域,应该导通T'5,T'6。
进一步,所述扇区1由T'4,T'5导通时产生的定子磁动势相量和T'5,T'6导通产生的定子磁动势相量之间的区域;扇区2由T'5,T'6导通时产生的定子磁动势相量和T'6,T'1导通时产生的定子磁动势相量之间的区域;扇区3由T'6,T'1导通时产生的定子磁动势相量和T'1,T'2导通时产生的定子磁动势相量之间的区域;扇区4由T'1,T'2导通时产生的定子磁动势相量和T'2,T'3导通时产生的定子磁动势相量之间的区域;扇区5由T'2,T'3导通时产生的定子磁动势相量和T'3,T'4导通时产生的定子磁动势相量之间的区域;扇区6由T'3,T'4导通时产生的定子磁动势相量和T'4,T'5导通时产生的定子磁动势相量之间的区域。
进一步,所述扇区6和扇区1交界处的区域边界由两个限制因素确定:在扇区6中的边界根据导通T'5,T'6和同时导通T'5,T'6和T'6,T'1两个开关组合时初始起动转矩相同来确定;在扇区1中的边界根据转子位置检测的误差来确定,边界与扇区6和扇区1的边界的夹角为转子位置检测的最大误差角度,其他交界处的区域边界的确定方法与扇区6和扇区1交界处的区域边界确定方法相同。
与现有技术相比,本发明具有的有益效果是:
本发明使静止在任何位置的发电机转子受到正向的驱动转矩最大,保证发电机初始正向转动且平稳加速。
附图说明
图1是本发明静止变频系统原理图;
图2是本发明旋转磁动势向量图;
图3是本发明脉冲换相阶段回路电流示意图;
图4是本发明转子位置双重分区示意图;
图5是本发明两种初始导通方案的初始转矩比较图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施案例对本发明进行深入地详细说明。应当理解,此处所描述的具体实施案例仅仅用以解释本发明,并不用于限定发明。
如图1-5所示,本发明所述的一种基于双重分区的静止变频系统初始导通方法,该方法包括以下步骤:
1,当转子处于在两个扇区的交界处区域,同时导通产生正向较大电磁转矩对应的两组开关组合;
2,当转子不处于在两个扇区的交界处区域,只导通产生正向较大电磁转矩对应的一组开关组合;
对输出电流产生的旋转磁动势重新分区,划分为传统分区两个扇区的接壤区域和去掉接壤区域的中间区域,如图4所示,所述静止变频系统主电路包括降压变压器、整流电路、电流型逆变电路、升压变压器和同步发电机,所述整流电路前接降压变压器,电流型逆变电路,所述电流型逆变电路前接整流电路,后接升压变压器,所述升压变压器前接电流型逆变电路,后接同步发电机,所述电流型逆变电路一对开关管导通时,有6种情况:T'1,T'2导通;T'2,T'3导通;T'3,T'4导通;T'4,T'5导通;T'5,T'6导通;T'6,T'1导通,静止变频器的原理图如图1所示,静止变频器利用晶闸管换流装置将工频交流电转换成频率连续可调的变频交流电,将该变频电流输出到同步电机定子绕组,形成定子旋转磁场,同时在转子上施加励磁电流,形成转子磁场,旋转的定子磁场与转子磁场相互作用,牵引转子转动,即可实现机组的启动。在一个工作周期T,电流型逆变电路有6种开关组合,忽略转速的变化,每个开关组合导通时间为1/6T,在这种工作模式下,电流型逆变电路输出电流产生旋转磁动势,旋转磁动势向量图如图2所示。旋转磁动势的频率和幅值与输出电流的频率和幅值相关,旋转的定子磁场与转子磁场相互作用,牵引转子转动,即可实现同步发电机的变频起动。
当转子停在图2分区的起始区域,由于检测的误差,可能判别为转子处于上一分区的末尾区域,当转子停在分区的末尾区域,在以上两种情况下由于低速阶段采用脉冲换相方式,同步发电机会在t2时间段内失去加速转矩,导通同步发电机无法起动。
进一步,在所述步骤1中,包括如下开关组合:
当转子处于扇区6和扇区1交界处的区域,同时导通T'5,T'6和T'6,T'1两个开关组合;
当转子处于扇区1和扇区2交界处的区域,同时导通T'6,T'1和T'1,T'2两个开关组合;
当转子处于扇区2和扇区3交界处的区域,同时导通T'1,T'2和T'2,T'3两个开关组合;
当转子处于扇区3和扇区4交界处的区域,同时导通T'2,T'3和T'3,T'4两个开关组合;
当转子处于扇区4和扇区5交界处的区域,同时导通T'3,T'4和T'4,T'5两个开关组合;
当转子处于扇区5和扇区6交界处的区域,同时导通T'4,T'5和T'5,T'6两个开关组合。
两个磁动势产生的合成磁动势和励磁磁动势作用产生的初始电磁转矩相较于传统初始导通方案更大,该导通策略产生的初始转矩为:
Figure BDA0002854865850000041
静止变频器输出电磁功率为:
Figure BDA0002854865850000042
进一步,在所述步骤2中,包括如下开关组合:
当转子处于扇区1的中间区域,应该导通T'6,T'1;
当转子处于扇区2的中间区域,应该导通T'1,T'2;
当转子处于扇区3的中间区域,应该导通T'2,T'3;
当转子处于扇区4的中间区域,应该导通T'3,T'4;
当转子处于扇区5的中间区域,应该导通T'4,T'5;
当转子处于扇区6的中间区域,应该导通T'5,T'6。
进一步,所述扇区1由T'4,T'5导通时产生的定子磁动势相量和T'5,T'6导通产生的定子磁动势相量之间的区域;扇区2由T'5,T'6导通时产生的定子磁动势相量和T'6,T'1导通时产生的定子磁动势相量之间的区域;扇区3由T'6,T'1导通时产生的定子磁动势相量和T'1,T'2导通时产生的定子磁动势相量之间的区域;扇区4由T'1,T'2导通时产生的定子磁动势相量和T'2,T'3导通时产生的定子磁动势相量之间的区域;扇区5由T'2,T'3导通时产生的定子磁动势相量和T'3,T'4导通时产生的定子磁动势相量之间的区域;扇区6由T'3,T'4导通时产生的定子磁动势相量和T'4,T'5导通时产生的定子磁动势相量之间的区域。
进一步,所述扇区6和扇区1交界处的区域边界由两个限制因素确定:在扇区6中的边界根据导通T'5,T'6和同时导通T'5,T'6和T'6,T'1两个开关组合时初始起动转矩相同来确定;在扇区1中的边界根据转子位置检测的误差来确定,边界与扇区6和扇区1的边界的夹角为转子位置检测的最大误差角度。其他交界处的区域边界的确定方法与扇区6和扇区1交界处的区域边界确定方法相同。
一台实际的同步发电机机组参数,如表1所示,
表1同步发电机机组参数
Figure BDA0002854865850000051
直流电抗器的电感值为40mH,输入三相电压相电压8kV,励磁电流在低速阶段恒定1000A,直流电流的参考值为900A。静止变频系统主电路由降压变压器、整流电路、电流型逆变电路、升压变压器和同步发电机组成。整流电路前接降压变压器,后接电流型逆变电路;电流型逆变电路前接整流电路,后接升压变压器;升压变压器前接电流型逆变电路,后接同步发电机。
以停机位置为自变量,初始转矩为因变量,两种初始导通方案的初始转矩比较如图5所示,由两种初始导通方案的初始转矩比较结果可以看出,初始转矩的变化以60°为周期,以停机位置0°~60°为例,当转子的停机位置处于0°~45°,传统的导通初始导通方案和基于双重分区的初始导通方案的导通方式相同,因此初始转矩相同,且随着角度的增加,初始转矩逐渐减小;当转子的停机位置47°~59°,基于双重分区的初始导通方案的初始转矩比传统导通方案大,且随着角度的增加,初始转矩逐渐增大,说明本发明提出的改进的导通方式能够提高静止变频器的初始转矩,有利于发电机提高起动成功率。考虑到转子初始位置检测误差一般小于1°,对于本发明的静止变频系统,基于双重分区的初始导通策略应为系统转子初始位置检测到的θ0为-8°~0°时,采用改进的导通方式,当检测到的θ0为-59°~-9°,采用传统的导通方式。

Claims (5)

1.一种基于双重分区的静止变频系统初始导通方法,其特征在于,该方法包括以下步骤:
1.当转子处于在两个扇区的交界处区域,同时导通产生正向较大电磁转矩对应的两组开关组合;
2.当转子不处于在两个扇区的交界处区域,只导通产生正向较大电磁转矩对应的一组开关组合;
所述静止变频系统主电路包括降压变压器、整流电路、电流型逆变电路、升压变压器和同步发电机,所述整流电路前接降压变压器,电流型逆变电路,所述电流型逆变电路前接整流电路,后接升压变压器,所述升压变压器前接电流型逆变电路,后接同步发电机,所述电流型逆变电路一对开关管导通时,有6种情况:T'1,T'2导通;T'2,T'3导通;T'3,T'4导通;T'4,T'5导通;T'5,T'6导通;T'6,T'1导通。
2.根据权利要求1所述的基于双重分区的静止变频系统初始导通方法,其特征在于,在所述步骤1中,包括如下开关组合:
当转子处于扇区6和扇区1交界处的区域,同时导通T'5,T'6和T'6,T'1两个开关组合;
当转子处于扇区1和扇区2交界处的区域,同时导通T'6,T'1和T'1,T'2两个开关组合;
当转子处于扇区2和扇区3交界处的区域,同时导通T'1,T'2和T'2,T'3两个开关组合;
当转子处于扇区3和扇区4交界处的区域,同时导通T'2,T'3和T'3,T'4两个开关组合;
当转子处于扇区4和扇区5交界处的区域,同时导通T'3,T'4和T'4,T'5两个开关组合;
当转子处于扇区5和扇区6交界处的区域,同时导通T'4,T'5和T'5,T'6两个开关组合。
3.根据权利要求1所述的基于双重分区的静止变频系统初始导通方法,其特征在于,在所述步骤2中,包括如下开关组合:
当转子处于扇区1的中间区域,应该导通T'6,T'1;
当转子处于扇区2的中间区域,应该导通T'1,T'2;
当转子处于扇区3的中间区域,应该导通T'2,T'3;
当转子处于扇区4的中间区域,应该导通T'3,T'4;
当转子处于扇区5的中间区域,应该导通T'4,T'5;
当转子处于扇区6的中间区域,应该导通T'5,T'6。
4.根据权利要求2所述的基于双重分区的静止变频系统初始导通方法,其特征在于,所述扇区1由T'4,T'5导通时产生的定子磁动势相量和T'5,T'6导通产生的定子磁动势相量之间的区域;扇区2由T'5,T'6导通时产生的定子磁动势相量和T'6,T'1导通时产生的定子磁动势相量之间的区域;扇区3由T'6,T'1导通时产生的定子磁动势相量和T'1,T'2导通时产生的定子磁动势相量之间的区域;扇区4由T'1,T'2导通时产生的定子磁动势相量和T'2,T'3导通时产生的定子磁动势相量之间的区域;扇区5由T'2,T'3导通时产生的定子磁动势相量和T'3,T'4导通时产生的定子磁动势相量之间的区域;扇区6由T'3,T'4导通时产生的定子磁动势相量和T'4,T'5导通时产生的定子磁动势相量之间的区域。
5.根据权利要求1所述的基于双重分区的静止变频系统初始导通方法,其特征在于,所述扇区6和扇区1交界处的区域边界由两个限制因素确定:在扇区6中的边界根据导通T'5,T'6和同时导通T'5,T'6和T'6,T'1两个开关组合时初始起动转矩相同来确定;在扇区1中的边界根据转子位置检测的误差来确定,边界与扇区6和扇区1的边界的夹角为转子位置检测的最大误差角度,其他交界处的区域边界的确定方法与扇区6和扇区1交界处的区域边界确定方法相同。
CN202011541004.2A 2020-12-23 2020-12-23 一种基于双重分区的静止变频系统初始导通方法 Pending CN112653336A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011541004.2A CN112653336A (zh) 2020-12-23 2020-12-23 一种基于双重分区的静止变频系统初始导通方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011541004.2A CN112653336A (zh) 2020-12-23 2020-12-23 一种基于双重分区的静止变频系统初始导通方法

Publications (1)

Publication Number Publication Date
CN112653336A true CN112653336A (zh) 2021-04-13

Family

ID=75359982

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011541004.2A Pending CN112653336A (zh) 2020-12-23 2020-12-23 一种基于双重分区的静止变频系统初始导通方法

Country Status (1)

Country Link
CN (1) CN112653336A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140035501A1 (en) * 2011-04-28 2014-02-06 Shindengen Electric Manufacturing Co., Ltd. Brushless motor control device and brushless motor control method
CN104348385A (zh) * 2014-10-20 2015-02-11 南京航空航天大学 一种双凸极电机无位置起动方法
CN104716878A (zh) * 2015-03-16 2015-06-17 南京航空航天大学 三相双凸极无刷直流电机的控制方法和驱动系统
CN105680741A (zh) * 2016-03-23 2016-06-15 哈尔滨理工大学 一种抽水蓄能电机静止变频器起动转子初始位置确定方法
CN106208863A (zh) * 2016-08-05 2016-12-07 哈尔滨理工大学 基于换相区空间电压矢量的开关磁阻电机直接转矩控制系统及方法
US10320323B1 (en) * 2018-03-28 2019-06-11 Infineon Technologies Austria Ag Pulse width modulation (PWM) scheme for single shunt motor control

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140035501A1 (en) * 2011-04-28 2014-02-06 Shindengen Electric Manufacturing Co., Ltd. Brushless motor control device and brushless motor control method
CN104348385A (zh) * 2014-10-20 2015-02-11 南京航空航天大学 一种双凸极电机无位置起动方法
CN104716878A (zh) * 2015-03-16 2015-06-17 南京航空航天大学 三相双凸极无刷直流电机的控制方法和驱动系统
CN105680741A (zh) * 2016-03-23 2016-06-15 哈尔滨理工大学 一种抽水蓄能电机静止变频器起动转子初始位置确定方法
CN106208863A (zh) * 2016-08-05 2016-12-07 哈尔滨理工大学 基于换相区空间电压矢量的开关磁阻电机直接转矩控制系统及方法
US10320323B1 (en) * 2018-03-28 2019-06-11 Infineon Technologies Austria Ag Pulse width modulation (PWM) scheme for single shunt motor control

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
舒杨: ""SFC装置在燃机启动过程中的Simulink可视化仿真"", 《中国优秀博硕士学位论文全文数据库(硕士) 工程科技II辑》 *

Similar Documents

Publication Publication Date Title
CN107979321B (zh) 复用励磁绕组的电励磁双凸极电机驱动充电一体化系统
CN109787532B (zh) 一种三相变结构逆变器及其控制方法
Wei et al. The control strategy of open-winding permanent magnet starter-generator with inverter-rectifier topology
Dong et al. Multivector-based model predictive current control with zero-sequence current suppression for three-phase series-end winding permanent magnet synchronous motor drives
Kusumi et al. Simple control technique to eliminate source current ripple and torque ripple of switched reluctance motors for electric vehicle propulsion
Bian et al. The peak current control of permanent magnet brushless DC machine with asymmetric dual-three phases
Zhang et al. Analysis and suppression of torque ripple for doubly salient electro-magnetic motor
CN112653336A (zh) 一种基于双重分区的静止变频系统初始导通方法
Shahbazi et al. A new converter based On DITC for improving Torque ripple and power factor in SRM drives
Ćalasan et al. Characteristics of switched reluctance motor operating in continuous and discontinuous conduction mode
Viet et al. An Investigation on Twelve Sectors Direct Torque Control for Induction Motors fed by Matrix Converter
Kim et al. Efficiency improvement by changeover of phase windings of multiphase permanent magnet synchronous motor with outer-rotor type
CN108233794B (zh) 负载换流逆变器驱动电励磁同步电机的快速停车方法
Wanthong et al. Effect of the excitation conditions on the power generation efficiency of a switched reluctance generator
CN111211629A (zh) 一种异形转子极双凸极无刷直流励磁电机和发电机
Lin et al. Research on high-speed operation of hybrid-inverter fed open winding permanent magnet synchronous motor
Wang et al. Research on High-speed Permanent Magnet Synchronous Motor Drive Based on PAM Method
CN104333277A (zh) 永磁同步牵引电机的起动方法及相关设备
Abhiseka et al. Implementation of Magnetizing-Freewheeling Control Strategy to Increase SRM Regenerative Braking Performance in a Low-Speed Operation
WO2022172505A1 (ja) 電動機駆動装置
CN112653365B (zh) 三级式无刷同步电机起动过程交直流励磁平滑切换方法
US11888424B1 (en) Methods for improving rate of rise of torque in electric machines with stator current biasing
US20240120860A1 (en) Methods for improving rate of rise of torque in electric machines
Chen et al. Three-Phase Six-State Control for Controlled Rectification in Generator Systems With Non-Sinusoidal EMF
CN110995089B (zh) 一种多相永磁容错电机驱动系统的智能控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210413

RJ01 Rejection of invention patent application after publication