CN112646284A - 一种高强度高分子碳纤维复合建筑模板的制备方法及其应用 - Google Patents

一种高强度高分子碳纤维复合建筑模板的制备方法及其应用 Download PDF

Info

Publication number
CN112646284A
CN112646284A CN202011345156.5A CN202011345156A CN112646284A CN 112646284 A CN112646284 A CN 112646284A CN 202011345156 A CN202011345156 A CN 202011345156A CN 112646284 A CN112646284 A CN 112646284A
Authority
CN
China
Prior art keywords
carbon fiber
fiber reinforced
reinforced resin
resin prepreg
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011345156.5A
Other languages
English (en)
Inventor
何建厂
唐国兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou Liuxi Plastics Co ltd
Original Assignee
Yangzhou Liuxi Plastics Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou Liuxi Plastics Co ltd filed Critical Yangzhou Liuxi Plastics Co ltd
Priority to CN202011345156.5A priority Critical patent/CN112646284A/zh
Publication of CN112646284A publication Critical patent/CN112646284A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2327/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2469/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/06Pretreated ingredients and ingredients covered by the main groups C08K3/00 - C08K7/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

本发明公开了一种高强度高分子碳纤维复合建筑模板的制备方法,首先分别进行碳纤维增强树脂预浸料层以及玻璃纤维增强树脂预浸料层的制备,并进行一定角度的交错叠放,形成网状的交错结构,有效增强整体的复合材料的强度和韧性。且使用的树脂采用热塑性树脂为主料,并添加了强度较高的聚碳酸酯树脂,耐冲击性能好,折射率高,加工性能好,不需要添加剂就具有UL94V‑0级阻燃性能;用作建筑模板中时具有更好的阻燃性能。增强剂选择多壁纳米管以及改性纳米复合材料,对建筑模板的强度、弹性、韧度,抗冲击性能都具有一定的促进作用。

Description

一种高强度高分子碳纤维复合建筑模板的制备方法及其应用
技术领域
本发明涉碳纤维复合建筑模板的制备领域,尤其涉及一种高强度高分子碳纤维复合建筑模板的制备方法。
背景技术
目前市场上长期使用的建筑模板都是木制、钢模板、铝模板。木制模板便宜使用方便但使用时间不长就容易报废,再说从保护自然环境来说,过渡砍伐森林会造成自然环境失衡,且保存和运输也不是方便,钢模板、铝模板不具备防腐性,容易与水泥发生反应,所以在水泥浇注之前,钢、铝合金模板表面都必须刷油漆防止腐蚀,既不环保又增加成本,钢、铝合金模板一旦刷油不均匀遗漏,就会导致模板与水泥凝固在一起,从而使模板在拆卸时变形或报废。
此外,由于现在对于建筑材料轻量化的需求更为广泛,碳纤维材料由于其本身的特很受欢迎,碳与钛、钢、铝等金属材料相比,碳纤维材料具有量轻、强度大、模量高、密度低、线膨胀系数小等特点,用作建筑模板的增强材料会明显提高其性能,但是碳纤维材料也有一定的缺点,在建筑模板的制备过程中通常有一些高温处理过程,会对碳纤维材料的强度造成一定程度的降低,如何制备出一种高强度的高分子碳纤维复合建筑模板值得探讨。
发明内容
发明目的:为了解决现有技术所存在的问题,本发明提供了一种有效提升模板强度和力学性能的高强度高分子碳纤维复合建筑模板的制备方法及其应用。
技术方案:为达到上述目的,本发明的技术方案为:一种高强度高分子碳纤维复合建筑模板的制备方法,包括如下步骤:
(1)碳纤维增强树脂预浸料层的制备:按重量份称取45-55份热塑性树脂、0.2-0.6份固化剂、0.5-0.8份促进剂、3-5份的多壁纳米管、1-3份的改性纳米复合材料混合均匀后加入挤出机中,采用交错开合双挤出模头组挤出,在模头处与经过多个机械辊压展纤后的70-80份的碳纤维束进行浸润复合,再经过辊压成型,以辊筒缠绕卷曲方式制成碳纤维增强树脂预浸料;
(2)玻璃纤维增强树脂预浸料层的制备:按重量份称取45-55份热塑性树脂、0.2-0.6 份固化剂、0.5-0.8份促进剂、3-5份的多壁纳米管、1-3份的改性纳米复合材料混合均匀后加入挤出机中,采用交错开合双挤出模头组挤出,在模头处与经过多个机械辊压展纤后的50-60份的短切玻璃纤维束进行浸润复合,再经过辊压成型,以辊筒缠绕卷曲方式制成玻璃纤维增强树脂预浸料;
(3)将碳纤维增强树脂预浸料进行裁剪,按照其中碳纤维的方向以 0° /90°的方式进行铺放,形成碳纤维增强树脂预浸料层;对玻璃纤维增强树脂预浸料进行裁剪,与碳纤维增强树脂预浸料以层为单位交错叠放,其中玻璃纤维的方向以30°/120°的方式进行铺放,相邻两层铺设胶膜层;
(4)铺放完成后进行热成型,脱模,完成复核建筑模板的制备。
更进一步的,所述热塑性树脂包括质量比为20:1的PVC树脂和聚碳酸酯树脂。以PVC树脂为主料,并添加了强度较高的聚碳酸酯树脂,耐冲击性能好,折射率高,加工性能好,不需要添加剂就具有UL94V-0级阻燃性能;用作建筑模板中时具有更好的阻燃性能。
更进一步的,所述固化剂为双氰胺100S、DDA-5中的一种。
更进一步的,所述促进剂为有机脲U-24M、UR500中的一种。
更进一步的,所述改性纳米复合材料的制备方法如下:将长链α-烯烃和甲基二氯硅烷按1:1的摩尔比发生硅氢加成反应后,用表面处理剂对产物进行处理;将产物和表面处理剂按100:(1-3)的质量比加入到粉体表面改性设备中,对产物进行表面包覆处理。
长链烯烃引入至有机硅中,增加其更好的脱模性以及对有机材料的亲和性,再进行表面包覆处理改性后,在利用有机硅材料对树脂进行增强的同时对树脂起到增韧作用,改善其抗冲击性能。
更进一步的,所述表面改性剂为邻苯二甲酸。
更进一步的,步骤(1)所用碳纤维为含碳量在90%以上的高模量高强度碳纤维。
更进一步的,所述碳纤维增强树脂预浸料层的厚度为1.2-2.5mm;所述玻璃纤维增强树脂预浸料层的厚度为0.5-0.8mm;所述胶膜层的厚度为0.2mm。
更进一步的,所述碳纤维增强树脂预浸料层的层数为5层;所述玻璃纤维增强树脂预浸料层为4层。
本发明还公开了一种复合建筑模板的应用。
有益效果:
1)树脂采用热塑性树脂为主料,并添加了强度较高的聚碳酸酯树脂,耐冲击性能好,折射率高,加工性能好,不需要添加剂就具有UL94V-0级阻燃性能;用作建筑模板中时具有更好的阻燃性能。
2)预浸料中使用了多壁纳米管作为增强剂,前者既具有碳素材料的固有本性,又具有金属材料的导电和导热性,陶瓷材料的耐热和耐腐蚀性,纺织纤维的可编织性,以及高分子材料的轻质、易加工性;作为复合材料增强体,对建筑模板的强度、弹性、抗疲劳性及各向同性都具有促进作用。
3)预浸料中采用改性纳米复合材料作为增强剂,长链烯烃引入至有机硅中,增加其更好的脱模性以及对有机材料的亲和性,再进行表面包覆处理改性后,在利用有机硅材料对树脂进行增强的同时对树脂起到增韧作用,改善其抗冲击性能。
4)将碳纤维增强树脂预浸料层与玻璃纤维增强树脂预浸料层交错以30°的角度进行叠放,两种纤维形成网状的交错结构,有效增强整体的复合材料的强度和韧性。
具体实施方式
下面结合实施方式对本发明作进一步详细说明:
实施例1:
一种高强度高分子碳纤维复合建筑模板的制备方法,包括如下步骤:
(1)碳纤维增强树脂预浸料层的制备:按重量份称取45份热塑性树脂、0.2份双氰胺100S、0.5份有机脲U-24M、3份的多壁纳米管、1份的改性纳米复合材料混合均匀后加入挤出机中,采用交错开合双挤出模头组挤出,在模头处与经过多个机械辊压展纤后的70份的碳纤维束进行浸润复合,再经过辊压成型,以辊筒缠绕卷曲方式制成碳纤维增强树脂预浸料;
(2)玻璃纤维增强树脂预浸料层的制备:按重量份称取45份热塑性树脂、0.2份双氰胺100S、0.5份有机脲U-24M、3份的多壁纳米管、1份的改性纳米复合材料混合均匀后加入挤出机中,采用交错开合双挤出模头组挤出,在模头处与经过多个机械辊压展纤后的50份的短切玻璃纤维束进行浸润复合,再经过辊压成型,以辊筒缠绕卷曲方式制成玻璃纤维增强树脂预浸料;
(3)将碳纤维增强树脂预浸料进行裁剪,按照其中碳纤维的方向以 0° /90°的方式进行铺放,形成碳纤维增强树脂预浸料层;对玻璃纤维增强树脂预浸料进行裁剪,与碳纤维增强树脂预浸料以层为单位交错叠放,其中玻璃纤维的方向以30°/120°的方式进行铺放,相邻两层铺设胶膜层;
(4)铺放完成后进行热成型,脱模,完成复核建筑模板的制备。
其中,所述热塑性树脂包括质量比为20:1的PVC树脂和聚碳酸酯树脂。所述改性纳米复合材料的制备方法如下:将长链α-烯烃和甲基二氯硅烷按1:1的摩尔比发生硅氢加成反应后,用表面处理剂邻苯二甲酸对产物进行处理;将产物和表面处理剂按100:1的质量比加入到粉体表面改性设备中,对产物进行表面包覆处理。步骤(1)所用碳纤维为含碳量在90%以上的高模量高强度碳纤维。
所述碳纤维增强树脂预浸料层的厚度为1.2mm;所述玻璃纤维增强树脂预浸料层的厚度为0.5mm;所述胶膜层的厚度为0.2mm。所述碳纤维增强树脂预浸料层的层数为5层;所述玻璃纤维增强树脂预浸料层为4层。
实施例2:
一种高强度高分子碳纤维复合建筑模板的制备方法,包括如下步骤:
(1)碳纤维增强树脂预浸料层的制备:按重量份称取55份热塑性树脂、.6份双氰胺100S、0.8份有机脲U-24M、5份的多壁纳米管、3份的改性纳米复合材料混合均匀后加入挤出机中,采用交错开合双挤出模头组挤出,在模头处与经过多个机械辊压展纤后的80份的碳纤维束进行浸润复合,再经过辊压成型,以辊筒缠绕卷曲方式制成碳纤维增强树脂预浸料;
(2)玻璃纤维增强树脂预浸料层的制备:按重量份称取55份热塑性树脂、0.6 份双氰胺100S、0.8份有机脲U-24M、5份的多壁纳米管、3份的改性纳米复合材料混合均匀后加入挤出机中,采用交错开合双挤出模头组挤出,在模头处与经过多个机械辊压展纤后的60份的短切玻璃纤维束进行浸润复合,再经过辊压成型,以辊筒缠绕卷曲方式制成玻璃纤维增强树脂预浸料;
(3)将碳纤维增强树脂预浸料进行裁剪,按照其中碳纤维的方向以 0° /90°的方式进行铺放,形成碳纤维增强树脂预浸料层;对玻璃纤维增强树脂预浸料进行裁剪,与碳纤维增强树脂预浸料以层为单位交错叠放,其中玻璃纤维的方向以30°/120°的方式进行铺放,相邻两层铺设胶膜层;
(4)铺放完成后进行热成型,脱模,完成复核建筑模板的制备。
其中,所述热塑性树脂包括质量比为20:1的PVC树脂和聚碳酸酯树脂。所述改性纳米复合材料的制备方法如下:将长链α-烯烃和甲基二氯硅烷按1:1的摩尔比发生硅氢加成反应后,用表面处理剂邻苯二甲酸对产物进行处理;将产物和表面处理剂按100:3的质量比加入到粉体表面改性设备中,对产物进行表面包覆处理。步骤(1)所用碳纤维为含碳量在90%以上的高模量高强度碳纤维。
所述碳纤维增强树脂预浸料层的厚度为2.5mm;所述玻璃纤维增强树脂预浸料层的厚度为0.8mm;所述胶膜层的厚度为0.2mm。所述碳纤维增强树脂预浸料层的层数为5层;所述玻璃纤维增强树脂预浸料层为4层。
实施例3:
一种高强度高分子碳纤维复合建筑模板的制备方法,包括如下步骤:
(1)碳纤维增强树脂预浸料层的制备:按重量份称取50份热塑性树脂、0.4份双氰胺100S、0.65份有机脲U-24M、4份的多壁纳米管、2份的改性纳米复合材料混合均匀后加入挤出机中,采用交错开合双挤出模头组挤出,在模头处与经过多个机械辊压展纤后的75份的碳纤维束进行浸润复合,再经过辊压成型,以辊筒缠绕卷曲方式制成碳纤维增强树脂预浸料;
(2)玻璃纤维增强树脂预浸料层的制备:按重量份称取50份热塑性树脂、0.4 份双氰胺100S、0.65份有机脲U-24M、4份的多壁纳米管、2份的改性纳米复合材料混合均匀后加入挤出机中,采用交错开合双挤出模头组挤出,在模头处与经过多个机械辊压展纤后的55份的短切玻璃纤维束进行浸润复合,再经过辊压成型,以辊筒缠绕卷曲方式制成玻璃纤维增强树脂预浸料;
(3)将碳纤维增强树脂预浸料进行裁剪,按照其中碳纤维的方向以 0° /90°的方式进行铺放,形成碳纤维增强树脂预浸料层;对玻璃纤维增强树脂预浸料进行裁剪,与碳纤维增强树脂预浸料以层为单位交错叠放,其中玻璃纤维的方向以30°/120°的方式进行铺放,相邻两层铺设胶膜层;
(4)铺放完成后进行热成型,脱模,完成复核建筑模板的制备。
其中,所述热塑性树脂包括质量比为20:1的PVC树脂和聚碳酸酯树脂。所述改性纳米复合材料的制备方法如下:将长链α-烯烃和甲基二氯硅烷按1:1的摩尔比发生硅氢加成反应后,用表面处理剂邻苯二甲酸对产物进行处理;将产物和表面处理剂按100:2的质量比加入到粉体表面改性设备中,对产物进行表面包覆处理。步骤(1)所用碳纤维为含碳量在90%以上的高模量高强度碳纤维。
所述碳纤维增强树脂预浸料层的厚度为2mm;所述玻璃纤维增强树脂预浸料层的厚度为0.7mm;所述胶膜层的厚度为0.2mm。所述碳纤维增强树脂预浸料层的层数为5层;所述玻璃纤维增强树脂预浸料层为4层。
对比例1:
与实施例3基本相同,不同之处并不包括玻璃纤维增强树脂预浸料层;采用的是多层碳纤维增强树脂预浸料层无交错角度的叠放。
对比例2:
与实施例3基本相同,不同之处是热塑性树脂仅包含PVC树脂。
对比例3:
与实施例3基本相同,不同之处是增强剂不包括多碳纳米管。
对比例4:
与实施例3基本相同,不同之处是增强剂不包括改性纳米复合材料。
对比例5:
与实施例3基本相同,不同之处是增强剂不包括多碳纳米管、改性纳米复合材料,使用的是普通增强剂炭黑。
性能测试:
取上述实施例1-3以及对比例1-5制备的建筑模板进行性能测试,如表1所示:
表1: 性能测试结果
性能 弯曲性能(MPa) 弯曲模量(GP) 抗伸断裂强度(MPa) 冲击强度(KJ/m<sup>2</sup>)
测试方法 GB/T9341-2000 GB/T9341-2000 GB/T1040-2006 JG 149-2003
实施例1 255 10 265 200
实施例2 260 11 268 202
实施例3 265 13 278 210
对比例1 240 9 235 160
对比例2 248 10 260 195
对比例3 250 11 235 156
对比例4 255 11 230 155
对比例5 250 10 225 145
从上表数据可看出,本发明一种高强度高分子碳纤维复合建筑模板的制备方法制备的复合建筑模板在弯曲性能,弯曲模量,抗伸断裂强度,冲击强度,以及阻燃性能上都具有明显的优势。尤其是经过几个对比例的对比可以看出,树脂采用热塑性树脂为主料,并添加了强度较高的聚碳酸酯树脂,耐冲击性能好,折射率高,加工性能好,不需要添加剂就具有UL94V-0级阻燃性能;用作建筑模板中时具有更好的阻燃性能。多壁纳米管以及改性纳米复合材料作为增强剂,也有效的对树脂起到增韧作用,改善其抗冲击性能;并且将碳纤维增强树脂预浸料层与玻璃纤维增强树脂预浸料层交错以30°的角度进行叠放,两种纤维形成网状的交错结构,有效增强整体的复合材料的强度和韧性。
应当指出,以上具体实施方式仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。

Claims (10)

1.一种高强度高分子碳纤维复合建筑模板的制备方法,其特征在于包括如下步骤:
(1)碳纤维增强树脂预浸料层的制备:按重量份称取45-55份热塑性树脂、0.2-0.6 份固化剂、0.5-0.8份促进剂、3-5份的多壁纳米管、1-3份的改性纳米复合材料混合均匀后加入挤出机中,采用交错开合双挤出模头组挤出,在模头处与经过多个机械辊压展纤后的70-80份的碳纤维束进行浸润复合,再经过辊压成型,以辊筒缠绕卷曲方式制成碳纤维增强树脂预浸料;
(2)玻璃纤维增强树脂预浸料层的制备:按重量份称取45-55份热塑性树脂、0.2-0.6份固化剂、0.5-0.8份促进剂、3-5份的多壁纳米管、1-3份的改性纳米复合材料混合均匀后加入挤出机中,采用交错开合双挤出模头组挤出,在模头处与经过多个机械辊压展纤后的50-60份的短切玻璃纤维束进行浸润复合,再经过辊压成型,以辊筒缠绕卷曲方式制成玻璃纤维增强树脂预浸料;
(3)将碳纤维增强树脂预浸料进行裁剪,按照其中碳纤维的方向以 0° /90°的方式进行铺放,形成碳纤维增强树脂预浸料层;对玻璃纤维增强树脂预浸料进行裁剪,与碳纤维增强树脂预浸料以层为单位交错叠放,其中玻璃纤维的方向以30°/120°的方式进行铺放,相邻两层铺设胶膜层;
(4)铺放完成后进行热成型,脱模,完成复核建筑模板的制备。
2.根据权利要求1所述的高强度高分子碳纤维复合建筑模板的制备方法,其特征在于:所述热塑性树脂包括质量比为20:1的PVC树脂和聚碳酸酯树脂。
3.根据权利要求1所述的高强度高分子碳纤维复合建筑模板的制备方法,其特征在于:所述固化剂为双氰胺100S、DDA-5中的一种。
4.根据权利要求1所述的高强度高分子碳纤维复合建筑模板的制备方法,其特征在于:所述促进剂为有机脲U-24M、UR500中的一种。
5.根据权利要求1所述的高强度高分子碳纤维复合建筑模板的制备方法,其特征在于所述改性纳米复合材料的制备方法如下:将长链α-烯烃和甲基二氯硅烷按1:1的摩尔比发生硅氢加成反应后,用表面处理剂对产物进行处理;将产物和表面处理剂按100:(1-3)的质量比加入到粉体表面改性设备中,对产物进行表面包覆处理。
6.根据权利要求5所述的高强度高分子碳纤维复合建筑模板的制备方法,其特征在于:所述表面改性剂为邻苯二甲酸。
7.根据权利要求1所述的高强度高分子碳纤维复合建筑模板的制备方法,其特征在于:步骤(1)所用碳纤维为含碳量在90%以上的高模量高强度碳纤维。
8.根据权利要求1所述的高强度高分子碳纤维复合建筑模板的制备方法,其特征在于:所述碳纤维增强树脂预浸料层的厚度为1.2-2.5mm;所述玻璃纤维增强树脂预浸料层的厚度为0.5-0.8mm;所述胶膜层的厚度为0.2mm。
9.根据权利要求1所述的高强度高分子碳纤维复合建筑模板的制备方法,其特征在于:所述碳纤维增强树脂预浸料层的层数为5层;所述玻璃纤维增强树脂预浸料层为4层。
10.一种权利要求1-9中任一权利要求制备出的复合建筑模板的应用。
CN202011345156.5A 2020-11-26 2020-11-26 一种高强度高分子碳纤维复合建筑模板的制备方法及其应用 Pending CN112646284A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011345156.5A CN112646284A (zh) 2020-11-26 2020-11-26 一种高强度高分子碳纤维复合建筑模板的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011345156.5A CN112646284A (zh) 2020-11-26 2020-11-26 一种高强度高分子碳纤维复合建筑模板的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN112646284A true CN112646284A (zh) 2021-04-13

Family

ID=75350105

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011345156.5A Pending CN112646284A (zh) 2020-11-26 2020-11-26 一种高强度高分子碳纤维复合建筑模板的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN112646284A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113427681A (zh) * 2021-07-26 2021-09-24 江苏美龙新材料有限公司 一种全芯增强复合模板的制造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106915132A (zh) * 2015-12-25 2017-07-04 上海杰事杰新材料(集团)股份有限公司 一种夹芯板、制备方法及其用途

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106915132A (zh) * 2015-12-25 2017-07-04 上海杰事杰新材料(集团)股份有限公司 一种夹芯板、制备方法及其用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
朱淮军等: "长链小烯烃在有机硅产品中的应用", 《精细化工》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113427681A (zh) * 2021-07-26 2021-09-24 江苏美龙新材料有限公司 一种全芯增强复合模板的制造方法

Similar Documents

Publication Publication Date Title
Asadi et al. Basalt fibers as a sustainable and cost-effective alternative to glass fibers in sheet molding compound (SMC)
Maurya et al. Study on the mechanical properties of epoxy composite using short sisal fibre
Fegade et al. A review on basalt fibre reinforced polymeric composite materials
Nagaraja et al. Mechanical properties of polymer matrix composites: Effect of hybridization
KR101667530B1 (ko) 고강도 우레탄 수지를 이용하여 현무암섬유, 유리섬유, 탄소섬유, 메탈섬유 등을 인발 가공한 복합소재를 이용한 콘크리트 구조물의 보수보강용 frp 조성물 및 이를 이용한 콘크리트 구조물의 보수 보강공법
CN101864169B (zh) 一种玻璃纤维增强聚苯硫醚树脂复合材料
CN102532688A (zh) 一种高强、高韧、阻燃聚丙烯材料、制备方法及其应用
US20180142083A1 (en) Molded article and molding material
Thomas et al. Unsaturated polyester resins: fundamentals, design, fabrication, and applications
CN102558736A (zh) 一种汽车仪表板用聚丙烯复合材料及其制备方法
CN102993651A (zh) 玻璃纤维增强聚对苯二甲酸丁二醇酯复合材料及其制备方法
JPWO2015016252A1 (ja) 繊維補強複合材料
Jiang et al. Effect of carbon fiber‐graphene oxide multiscale reinforcements on the thermo‐mechanical properties of polyurethane elastomer
CN112646284A (zh) 一种高强度高分子碳纤维复合建筑模板的制备方法及其应用
KR101835426B1 (ko) 에폭시 수지와 산무수물경화제를 바인더로 하여 복합섬유 소재를 인발성형한 frp 조성물을 이용한 콘크리트 구조물 보수보강공법
CN107009649A (zh) 一种玻璃钢拉挤型材的生产工艺
Muthu et al. The effects of carbon nanofiber on the mechanical properties of glass/coir fiber reinforced polyester hybrid composites
Wang et al. RETRACTED ARTICLE: physical, mechanical, and thermal behavior analyses of basalt fiber-reinforced composites
CN105524393B (zh) 一种具有高耐寒性的pp料及其制备方法
KR101830099B1 (ko) 에폭시 수지와 산무수물경화제를 바인더로 하여 복합섬유 소재를 인발성형한 frp 조성물
CN105504577A (zh) 木塑复合材料
Cavdar et al. Investigation of mechanical properties of basalt particle-filled SMC composites
Chlosta Feasibility study on fiber reinforced polymer cylindrical truss bridges for heavy traffic
CN107815112A (zh) 一种鱼竿用玻璃纤维增强塑料及其制备方法
JP7425732B2 (ja) 炭素繊維シート材、プリプレグ、成形体、炭素繊維シート材の製造方法、プリプレグの製造方法および成形体の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210413

RJ01 Rejection of invention patent application after publication