CN112633550B - 一种基于rnn的接触网故障趋势预测方法、设备及存储介质 - Google Patents

一种基于rnn的接触网故障趋势预测方法、设备及存储介质 Download PDF

Info

Publication number
CN112633550B
CN112633550B CN202011324024.4A CN202011324024A CN112633550B CN 112633550 B CN112633550 B CN 112633550B CN 202011324024 A CN202011324024 A CN 202011324024A CN 112633550 B CN112633550 B CN 112633550B
Authority
CN
China
Prior art keywords
defect
neural network
catenary
data
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011324024.4A
Other languages
English (en)
Other versions
CN112633550A (zh
Inventor
占栋
黄瀚韬
张金鑫
钟尉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Tangyuan Electric Co Ltd
Original Assignee
Chengdu Tangyuan Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Tangyuan Electric Co Ltd filed Critical Chengdu Tangyuan Electric Co Ltd
Priority to CN202011324024.4A priority Critical patent/CN112633550B/zh
Publication of CN112633550A publication Critical patent/CN112633550A/zh
Application granted granted Critical
Publication of CN112633550B publication Critical patent/CN112633550B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/063Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Economics (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Artificial Intelligence (AREA)
  • Strategic Management (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Primary Health Care (AREA)
  • Neurology (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种基于RNN的接触网故障趋势预测方法、设备及存储介质,涉及接触网技术领域。本发明通过循环神经网络提取接触网缺陷演变的时间规律,其中采用GRU(门控循环单元)作为隐藏层单元,不仅包括当前所见的输入样例,还包含之前时刻感受的信息,充分考虑时间序列的动态特性,进而获得更精准的接触网缺陷预测结果。本发明将循环神经网络用于缺陷统计量的时间序列预测,通过GRU单元充分考虑到接触网缺陷统计序列的时间关联关系,能够准确学习缺陷统计量的时间变化规律。

Description

一种基于RNN的接触网故障趋势预测方法、设备及存储介质
技术领域
本发明涉及接触网故障预测技术领域,更具体地说涉及一种基于RNN的接触网故障趋势预测方法、设备及存储介质。
背景技术
在电气化铁路中,接触网通过接触线与受电弓之间的滑动接触,为电力机车提供电能。接触网由于其结构复杂,加上恶劣的自然天气考验,易发生故障,从而对铁路安全运行造成隐患。因此,对接触网各类缺陷发生趋势进行有效预测具有重要意义。
接触网缺陷预测是将定义的接触网系统缺陷统计量按时间排序,通过对接触网检测监测数据、故障数据、运行工况与外部环境等历史数据的挖掘分析,得出缺陷统计量反映出来的发展过程和变化规律,进行类推,预测下一段时间接触网系统缺陷发生率可能达到的水平。
现有的接触网故障预测方法多采用移动平均、指数平滑等传统方法,都假定接触网缺陷时间序列统计量符合线性关系,但接触网缺陷信息的多层次和关联性使得其时间序列呈现非常复杂的非线性,也正由于实际场景中的接触网缺陷统计量时间序列具有大量非线性特征,传统的时间序列分析方法难以对其建立可靠稳定的预测模型。
发明内容
为了克服上述现有技术中存在的缺陷和不足,本发明提供了一种基于RNN(循环神经网络)的接触网故障趋势预测方法,本发明的发明目的在于解决传统时间序列分析方法处理非线性时间序列的局限性。本发明通过RNN(循环神经网络)提取接触网缺陷演变的时间规律,其中采用GRU(Gated Recurrent Unit,门控循环单元)作为隐藏层单元,不仅包括当前所见的输入样例,还包含之前时刻感知的信息,充分考虑时间序列的动态特性,进而获得更精准的接触网缺陷预测结果。
为了解决上述现有技术中存在的问题,本发明是通过下述技术方案实现的:
一种基于RNN的接触网故障趋势预测方法,包括以下步骤:
步骤一,采用接触网缺陷统计量样本序列训练用于接触网故障趋势预测的循环神经网络模型;
步骤二,输入接触网缺陷统计量实际序列至训练后的所述循环神经网路模型输入层,以所述循环神经网络的输出层数据作为接触网缺陷统计量趋势序列;
其中,步骤一包括:
步骤11,对接触网缺陷数据按预设周期进行划分统计,得到每预设周期的接触网缺陷数据原始统计量;对所述接触网缺陷数据原始统计量进行分布变换处理,构建用于训练循环神经网络的接触网缺陷统计量样本序列;
步骤12,按时间顺序从所述接触网缺陷统计量样本序列中选取部分数据作为所述循环神经网络的首次训练数据;
步骤13,根据接触网缺陷的分布复杂度确定所述循环神经网络隐藏层数量;
步骤14,根据缺陷特征的时间相关性确定输入节点数;根据需要预测缺陷的步数确定输出节点数;根据柯尔莫格洛夫定理确定隐藏层神经元个数,或者根据接触网缺陷的样本数、样本噪声和样本规律的复杂程度确定隐藏层神经元个数,上述隐藏层神经元采用门控循环单元;
步骤15,采用动态变化学习效率方式对所述循环神经网络进行迭代优化;
步骤16,使用训练数据计算循环神经网络的各参数权重值,得到训练后的循环神经网络模型;
所述步骤二包括:
步骤21,对接触网缺陷统计量实际序列进行分布变换处理,并输入至训练后的循环神经网络模型;
步骤22,对所述循环神经网络的输出层数据做逆分布变换处理并将结果作为接触网缺陷统计量趋势序列。
更进一步地,步骤一还包括步骤17,即步骤16之后,若还有缺陷统计量数据未使用,则加入部分新数据重复步骤12至步骤16;若所有数据均已使用,则现有权重值为神经网络最终权重值,将神经网络最终权重值代入到神经网络模型中,进行接触网缺陷统计量趋势预测。
更进一步地,所述步骤11中,对所述接触网缺陷数据原始统计量进行分布变换处理,具体是指,采用min-max方法归一化待预测特征数据集;若M(t)为第t个样本数据,I(t)为第t个训练数据,则转换公式为:
所述步骤22中对所述循环神经网络的输出层数据做逆分布变换处理,具体是指,若O(t)表示为逆归一化之后的缺陷预测值,o(t)表示为预测值,则逆分布变换公式为:
所述步骤12中,按时间顺序从所述接触网缺陷统计量样本序列中选取40%数据作为所述循环神经网络的首次训练数据。
所述步骤14中,隐藏层神经元的个数由以下两种方式中的任意一种确定;
方式一,隐藏层节点数s=2n+1,其中n为输入层节点数;
方式二,隐藏层节点数s=sqrt(0.43mn+0.12mm+2.54n+0.35)+0.51,其中n为输入层节点数,m为输出节点数;所述输出节点数与预测步数相等。
所述步骤15中,所述动态变化学习效率方式具体是指,在初期使用较大学习速率进行模型优化,初期的学习速率为0.01-0.001,随着迭代次数的增加,学习速率逐步下降至初期学习速率的1/100。
学习速率逐步下降的方式为下述三种方式中的任意一种:
方式一,轮数减缓,即每N轮学习速率减半;
方式二,指数减缓,学习速率按训练轮数增长的指数差值递减,即其中/>是初始速率,/>是训练轮数,A是衰减的底数,/>表示学习速率;
方式三,分数减缓,即,其中/>是控制减缓幅度参数,/>是训练轮数。
所述步骤16具体是指,基于前序10个时间的特征预测未来某一时间的缺陷强度,将归一化的缺陷统计量作为循环神经网络的输入,用于学习缺陷序列的时序变化规律,再传入输出层做预测,最后将预测值逆归一化作为预测值。
具体计算流程如下:
1.计算重置门和更新门
重置门:
更新门:
其中为sigmoid函数,/>为上一时间的隐藏状态,/>为当前时间输入的接触网缺陷值,/>、/>、/>、/>为对应的权重参数,/>、/>是偏差参数。
2.计算候选隐藏状态
将重置门的输出和上一时间的隐藏状态做元素乘法,将元素乘法运算结果与当前输入连接,再通过(双曲正切)函数计算出候选状态:
其中,和/>是权重参数,/>是偏差参数,/>是候选隐藏参数,/>表示按元素乘法。
3. 计算隐藏状态
t时间的隐藏状态使用当前时间的更新门对上一时间的隐藏状态和当前时间的候选隐藏状态的组合:
4. 计算输出
由神经网络结构可知:
其中,是预测值,/>是偏差参数,/>是权重参数。
输出数据逆归一化公式:
其中是逆归一化之后的缺陷预测值。
迭代优化
得到输出层后建立损失函数用于衡量输出值和真实值的差异,利用BPTT(随时间反向传播算法)最小化损失函数获得神经网络最终权重值。
步骤17中,是指剩余60%未用于训练过的样本数据。一般训练数据与测试数据4:1。迭代参数时,到使用时间顺序前80%数据训练,剩余20%做预测时停止。
一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时,执行上述方法的步骤。
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述方法的步骤。
与现有技术相比,本发明所带来的有益的技术效果表现在:
1、由于实际中的时间序列具有大量非线性特征,传统的时间序列分析方法难以对其建立可靠稳定的预测模型。本发明将循环神经网络用于缺陷统计量的时间序列预测,通过GRU单元充分考虑到接触网缺陷统计序列的时间关联关系,能够准确学习缺陷统计量的时间变化规律。
2、本发明提出的结合接触网缺陷的基于GRU单元的循环神经网络模型结构简单,易搭建,适用于任何具有时间关联性的接触网缺陷预测业务。
附图说明
图1为本发明循环神经网络训练流程图;
图2为本发明使用GRU单元的RNN网络结构图。
具体实施方式
下面结合说明书附图,对本发明的技术方案作出进一步详细地阐述。
实施例1
本发明提出的方法,主要是为从根本上解决传统时间序列处理非线性时间序列的局限性。传统方法(如移动平均、指数平滑法等)都假定时间序列统计量符合线性关系,但信息的多层次和关联性使得时间序列呈现非常复杂的非线性。本发明通过循环神经网络提取接触网缺陷演变的时间规律,其中采用GRU(Gated Recurrent Unit,门控循环单元)作为隐藏层单元。不仅包括当前所见的输入样例,还包含之前时刻感受的信息,充分考虑时间序列的动态特性,进而获得更精准的接触网缺陷预测结果。
如图1所示,为本实施例的基本处理流程:
一种基于RNN的接触网故障趋势预测方法,包括以下步骤:
步骤一,采用接触网缺陷统计量样本序列训练用于接触网故障趋势预测的循环神经网络模型;
步骤二,输入接触网缺陷统计量实际序列至训练后的所述循环神经网路模型输入层,以所述循环神经网络的输出层数据作为接触网缺陷统计量趋势序列;
其中,步骤一包括:
步骤11,对接触网缺陷数据按预设周期进行划分统计,得到每预设周期的接触网缺陷数据原始统计量;对所述接触网缺陷数据原始统计量进行分布变换处理,构建用于训练循环神经网络的接触网缺陷统计量样本序列;
步骤12,按时间顺序从所述接触网缺陷统计量样本序列中选取部分数据作为所述循环神经网络的首次训练数据;
步骤13,根据接触网缺陷的分布复杂度确定所述循环神经网络隐藏层数量;例如:以接触网典型缺陷鸟害为例。隐藏层的目的是用于拟合非线性函数,一般来说,隐藏层数为2搭配适当的激活函数可以表示任意精度的任意决策边界,且可以拟合任意精度的平滑映射。隐藏层大于2可以学习复杂的描述。鸟害缺陷具有平稳性,此外具有季节性的周期特征,因此可设置隐藏层数量为3。若待预测缺陷具有更复杂的分布描述,可适当增加隐藏层数量;
步骤14,根据缺陷特征的时间相关性确定输入节点数;根据需要预测缺陷的步数确定输出节点数;根据柯尔莫格洛夫定理确定隐藏层神经元个数,或者根据接触网缺陷的样本数、样本噪声和样本规律的复杂程度确定隐藏层神经元个数,上述隐藏层神经元采用门控循环单元;例:以上述鸟害缺陷为例,隐藏层个数为3,认为下月鸟害缺陷数量与前三个月的数量密切相关,即输入为3,输出为1。若使用柯尔莫格洛夫定理,则隐藏节点数为7;使用经验公式则隐藏层神经元数为4;
步骤15,采用动态变化学习效率方式对所述循环神经网络进行迭代优化;
步骤16,使用训练数据计算循环神经网络的各参数权重值,得到训练后的循环神经网络模型;
所述步骤二包括:
步骤21,对接触网缺陷统计量实际序列进行分布变换处理,并输入至训练后的循环神经网络模型;
步骤22,对所述循环神经网络的输出层数据做逆分布变换处理并将结果作为接触网缺陷统计量趋势序列。
步骤一还包括步骤17,即步骤16之后,若还有缺陷统计量数据未使用,则加入部分新数据重复步骤12至步骤16;若所有数据均已使用,则现有权重值为神经网络最终权重值,将神经网络最终权重值代入到神经网络模型中,进行接触网缺陷统计量趋势预测。步骤17中,是指剩余60%未用于训练过的样本数据。一般训练数据与测试数据4:1。迭代参数时,到使用时间顺序前80%数据训练,剩余20%做预测时停止。
所述步骤11中,构建训练样本数据:
典型的分布变换处理方式是归一化。采用min-max方法归一化待预测特征数据集(如导高)。M(t)为第t个样本数据,I(t)为第t个训练数据,转换公式为:
。一个网络预测一类数据。不同数据类型需要不同的网络和参数。
所述步骤22中对所述循环神经网络的输出层数据做逆分布变换处理,具体是指,若O(t)表示为逆归一化之后的缺陷预测值,o(t)表示为预测值,则逆分布变换公式为:
确定隐藏层神经元数量和输入输出节点数:
输入输出节点数与实际问题高度相关。接触网时间预测模型中,循环神经网络设定一个输入节点,输出节点与预测步数相等。例如导高n步预测,则需设置n个输出节点。
隐藏层GRU神经元数量可由以下方式确定:
方法1:柯尔莫格洛夫定理
隐藏层节点数,其中n为输入层节点数,接触网故障预测中,由于输入层节点数为1,故s=3;
方法2:经验公式
隐藏层节点数s=sqrt(0.43mn+0.12mm+2.54n+0.35)+0.51,其中n为输入层节点数,m为输出节点数,可根据接触网缺陷预测步数确定,例如m=3,n=1,则s=3,计算结果取整数可得。其中n和m就是根据接触网缺陷特征确定的,隐藏节点数也就随着特征的变化而变化。
确定网络层数:
理论证明:具有偏差和一个隐藏层与线性输出层的神经网络能够逼近任何有理函数。单个接触网缺陷预测神经网络的基础结构可考虑一个隐藏层和一个输出层。
确定学习速率:
网络学习初期使用较大学习率进行模型优化,一般设置为0.01- 0.001。随着迭代的次数增加,学习率逐步下降至初始的1/100;
速率下降方式如下:
轮数减缓:每N轮学习率减半;
指数减缓,学习速率按训练轮数增长的指数差值递减,即,其中/>是初始速率,/>是训练轮数,A是衰减的底数,/>表示学习速率;
方式三,分数减缓,即,其中/>是控制减缓幅度参数,/>是训练轮数。
计算网络权重
本发明考虑到接触网缺陷演变的时许特性,采用GRU(Gated Recurrent Unit)单元作为隐藏层单元,所述的模型基本结构包含一层循环神经网络,基于前序10个时间的特征预测未来某一个时间的缺陷强度,将归一化的缺陷统计量作为循环神经网络的输入,用于学习缺陷序列的时序变化规律,再传入输出层做预测,最后将预测值逆归一化作为预测值。具体计算流程如下:
1.计算重置门和更新门
重置门:
更新门:
其中为sigmoid函数,/>为上一时间的隐藏状态,/>为当前时间输入的接触网缺陷值,/>、/>、/>、/>为对应的权重参数,/>、/>是偏差参数。
2.计算候选隐藏状态
将重置门的输出和上一时间的隐藏状态做元素乘法,将元素乘法运算结果与当前输入连接,再通过(双曲正切)函数计算出候选状态:
其中,和/>是权重参数,/>是偏差参数,/>是候选隐藏参数,/>表示按元素乘法。
3. 计算隐藏状态
t时间的隐藏状态使用当前时间的更新门对上一时间的隐藏状态和当前时间的候选隐藏状态的组合:
计算输出:由神经网络结构可知:,其中,/>是预测值,/>是偏差参数,/>是权重参数;
输出数据逆归一化公式:
其中是逆归一化之后的缺陷预测值。
迭代优化:得到输出层后建立损失函数用于衡量输出值和真实值的差异,利用BPTT最小化损失函数获得最优模型参数。
实施例2
为了实现上述目的,根据本申请的另一方面,还提供了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述基于循环神经网络的接触网故障预测方法的步骤。
在本实施例中处理器可以为中央处理器(Central Processing Unit,CPU)。处理器还可以为其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等芯片,或者上述各类芯片的组合。
存储器作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序、非暂态计算机可执行程序以及单元,如本发明上述方法实施例中对应的程序单元。处理器通过运行存储在存储器中的非暂态软件程序、指令以及模块,从而执行处理器的各种功能应用以及作品数据处理,即实现上述方法实施例中的方法。
存储器可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储处理器所创建的数据等。此外,存储器可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施例中,存储器可选包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至处理器。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述一个或者多个单元存储在所述存储器中,当被所述处理器执行时,执行上述实施例1中的方法。
实施例3
作为本发明又一较佳实施例,本实施例公开了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述实施例1的步骤。

Claims (10)

1.一种基于RNN的接触网故障趋势预测方法,其特征在于,包括以下步骤:
步骤一,采用接触网缺陷统计量样本序列训练用于接触网故障趋势预测的循环神经网络模型;
步骤二,输入接触网缺陷统计量实际序列至训练后的所述循环神经网路模型输入层,以所述循环神经网络的输出层数据作为接触网缺陷统计量趋势序列;
其中,步骤一包括:
步骤11,对接触网缺陷数据按预设周期进行划分统计,得到每预设周期的接触网缺陷数据原始统计量;对所述接触网缺陷数据原始统计量进行分布变换处理,构建用于训练循环神经网络的接触网缺陷统计量样本序列;
步骤12,按时间顺序从所述接触网缺陷统计量样本序列中选取部分数据作为所述循环神经网络的首次训练数据;
步骤13,根据接触网缺陷的分布复杂度确定所述循环神经网络隐藏层数量;
步骤14,根据缺陷特征的时间相关性确定输入节点数;根据需要预测缺陷的步数确定输出节点数;根据柯尔莫格洛夫定理确定隐藏层神经元个数,或者根据接触网缺陷的样本数、样本噪声和样本规律的复杂程度确定隐藏层神经元个数,上述隐藏层神经元采用门控循环单元;
步骤15,采用动态变化学习效率方式对所述循环神经网络进行迭代优化;
步骤16,使用训练数据计算循环神经网络的各参数权重值,得到训练后的循环神经网络模型;
所述步骤二包括:
步骤21,对接触网缺陷统计量实际序列进行分布变换处理,并输入至训练后的循环神经网络模型;
步骤22,对所述循环神经网络的输出层数据做逆分布变换处理并将结果作为接触网缺陷统计量趋势序列。
2.如权利要求1所述的一种基于RNN的接触网故障趋势预测方法,其特征在于:步骤一还包括步骤17,即步骤16之后,若还有缺陷统计量数据未使用,则加入部分新数据重复步骤12至步骤16;若所有数据均已使用,则现有权重值为神经网络最终权重值,将神经网络最终权重值代入到神经网络模型中,进行接触网缺陷统计量趋势预测。
3.如权利要求1或2所述的一种基于RNN的接触网故障趋势预测方法,其特征在于:所述步骤11中,对所述接触网缺陷数据原始统计量进行分布变换处理,具体是指,采用min-max方法归一化待预测特征数据集;若M(t)为第t个样本数据,I(t)为第t个训练数据,则转换公式为:
所述步骤22中对所述循环神经网络的输出层数据做逆分布变换处理,具体是指,若O(t)表示为逆归一化之后的缺陷预测值,o(t)表示为预测值,则逆分布变换公式为:
4.如权利要求1或2所述的一种基于RNN的接触网故障趋势预测方法,其特征在于:所述步骤12中,按时间顺序从所述接触网缺陷统计量样本序列中选取40%数据作为所述循环神经网络的首次训练数据。
5.如权利要求1所述的一种基于RNN的接触网故障趋势预测方法,其特征在于:所述步骤14中,隐藏层神经元的个数由以下两种方式中的任意一种确定;
方式一,隐藏层节点数s=2n+1,其中n为输入层节点数;
方式二,隐藏层节点数s=sqrt(0.43mn+0.12mm+2.54n+0.35)+0.51,其中n为输入层节点数,m为输出节点数;所述输出节点数与预测步数相等。
6.如权利要求1所述的一种基于RNN的接触网故障趋势预测方法,其特征在于:所述步骤15中,所述动态变化学习效率方式具体是指,在初期使用较大学习速率进行模型优化,初期的学习速率为0.01-0.001,随着迭代次数的增加,学习速率逐步下降至初期学习速率的1/100;
学习速率逐步下降的方式为下述三种方式中的任意一种:
方式一,轮数减缓,即每N轮学习速率减半;
方式二,指数减缓,学习速率按训练轮数增长的指数差值递减,即 ,其中 />是初始速率, />是训练轮数,A是衰减的底数, />表示学习速率;
方式三,分数减缓,即 ,其中 />是控制减缓幅度参数,/>是训练轮数。
7.如权利要求1所述的一种基于RNN的接触网故障趋势预测方法,其特征在于:所述步骤16具体是指,基于前序10个时间的特征预测未来某一时间的缺陷强度,将归一化的缺陷统计量作为循环神经网络的输入,用于学习缺陷序列的时序变化规律,再传入输出层做预测,最后将预测值逆归一化作为预测值。
8.如权利要求7所述的一种基于RNN的接触网故障趋势预测方法,其特征在于:具体计算流程如下:
步骤161,计算重置门和更新门
重置门:
更新门:
其中为sigmoid函数,ht-1为上一时间的隐藏状态,xt为当前时间输入的接触网缺陷值,Wxr、Whr、Wxz、Whz为对应的权重参数,br、bz是偏差参数;
步骤162,计算候选隐藏状态,将重置门的输出和上一时间的隐藏状态做元素乘法,将元素乘法运算结果与当前输入连接,再通过tanh双曲正切函数计算出候选状态:
其中,Wxh和Whh是权重参数,bh是偏差参数,是候选隐藏参数,/>表示按元素乘法;
步骤163, 计算隐藏状态,t时间的隐藏状态使用当前时间的更新门对上一时间的隐藏状态和当前时间的候选隐藏状态的组合:
步骤164,计算输出,由神经网络结构可知:,其中,/>是预测值,by是偏差参数,Woh是权重参数;输出数据逆归一化公式:
其中是逆归一化之后的缺陷预测值;
步骤165,迭代优化,得到输出层后建立损失函数用于衡量输出值和真实值的差异,利用BPTT最小化损失函数获得神经网络最终权重值。
9.一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时,执行如权利要求1-8任意一项所述的方法的步骤。
10.一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-8任意一项所述的方法的步骤。
CN202011324024.4A 2020-11-23 2020-11-23 一种基于rnn的接触网故障趋势预测方法、设备及存储介质 Active CN112633550B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011324024.4A CN112633550B (zh) 2020-11-23 2020-11-23 一种基于rnn的接触网故障趋势预测方法、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011324024.4A CN112633550B (zh) 2020-11-23 2020-11-23 一种基于rnn的接触网故障趋势预测方法、设备及存储介质

Publications (2)

Publication Number Publication Date
CN112633550A CN112633550A (zh) 2021-04-09
CN112633550B true CN112633550B (zh) 2023-07-18

Family

ID=75303761

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011324024.4A Active CN112633550B (zh) 2020-11-23 2020-11-23 一种基于rnn的接触网故障趋势预测方法、设备及存储介质

Country Status (1)

Country Link
CN (1) CN112633550B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114816997B (zh) * 2022-03-29 2023-08-18 湖北大学 一种基于图神经网络与双向gru特征抽取的缺陷预测方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109308522A (zh) * 2018-09-03 2019-02-05 河海大学常州校区 一种基于循环神经网络的gis故障预测方法
CN109522600A (zh) * 2018-10-16 2019-03-26 浙江大学 基于组合深度神经网络的复杂装备剩余使用寿命预测方法
CN109753872A (zh) * 2018-11-22 2019-05-14 四川大学 强化学习单元匹配循环神经网络系统及其训练和预测方法
CN109765333A (zh) * 2018-12-05 2019-05-17 国网辽宁省电力有限公司信息通信分公司 一种基于GoogleNet模型的变压器故障诊断方法
CN111242463A (zh) * 2020-01-08 2020-06-05 天津凯发电气股份有限公司 一种基于bp神经网络的at单线供电系统的故障测距方法
CN111523081A (zh) * 2020-05-01 2020-08-11 西北工业大学 一种基于增强门控循环神经网络的航空发动机故障诊断方法
CN111552609A (zh) * 2020-04-12 2020-08-18 西安电子科技大学 一种异常状态检测方法、系统、存储介质、程序、服务器
CN111855810A (zh) * 2020-07-20 2020-10-30 济南大学 一种基于循环神经网络的轨底伤损识别方法及系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5408424A (en) * 1993-05-28 1995-04-18 Lo; James T. Optimal filtering by recurrent neural networks
US11226741B2 (en) * 2018-10-31 2022-01-18 EMC IP Holding Company LLC I/O behavior prediction based on long-term pattern recognition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109308522A (zh) * 2018-09-03 2019-02-05 河海大学常州校区 一种基于循环神经网络的gis故障预测方法
CN109522600A (zh) * 2018-10-16 2019-03-26 浙江大学 基于组合深度神经网络的复杂装备剩余使用寿命预测方法
CN109753872A (zh) * 2018-11-22 2019-05-14 四川大学 强化学习单元匹配循环神经网络系统及其训练和预测方法
CN109765333A (zh) * 2018-12-05 2019-05-17 国网辽宁省电力有限公司信息通信分公司 一种基于GoogleNet模型的变压器故障诊断方法
CN111242463A (zh) * 2020-01-08 2020-06-05 天津凯发电气股份有限公司 一种基于bp神经网络的at单线供电系统的故障测距方法
CN111552609A (zh) * 2020-04-12 2020-08-18 西安电子科技大学 一种异常状态检测方法、系统、存储介质、程序、服务器
CN111523081A (zh) * 2020-05-01 2020-08-11 西北工业大学 一种基于增强门控循环神经网络的航空发动机故障诊断方法
CN111855810A (zh) * 2020-07-20 2020-10-30 济南大学 一种基于循环神经网络的轨底伤损识别方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于LSTM的动车组故障率预测模型;陆航;杨涛存;刘洋;于卫东;田光荣;肖齐;李方烜;;中国铁路(第07期);61-66 *

Also Published As

Publication number Publication date
CN112633550A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
CN114422381A (zh) 通信网络流量预测方法、系统、存储介质及计算机设备
CN103226741B (zh) 城市供水管网爆管预测方法
CN108197648A (zh) 一种基于lstm深度学习模型的水电机组故障诊断方法与系统
CN102469103B (zh) 基于bp神经网络的木马事件预测方法
CN113687433B (zh) 一种基于Bi-LSTM的大地电磁信号去噪方法及系统
CN112633550B (zh) 一种基于rnn的接触网故障趋势预测方法、设备及存储介质
CN115146764A (zh) 一种预测模型的训练方法、装置、电子设备及存储介质
CN114780739A (zh) 基于时间图卷积网络的时序知识图谱补全方法及系统
Li et al. Short-term traffic flow prediction based on recurrent neural network
CN114048546A (zh) 一种基于图卷积网络和无监督域自适应的航空发动机剩余使用寿命预测方法
CN114596726A (zh) 基于可解释时空注意力机制的停车泊位预测方法
CN108491958A (zh) 一种短时公交客流弦不变量预测方法
CN114925723B (zh) 采用编码器和解码器的滚动轴承剩余使用寿命预测方法
Zhao et al. NTAM-LSTM models of network traffic prediction
CN115936062A (zh) 基于场景生成与深度学习的光伏功率日前区间预测方法
CN115081609A (zh) 一种智能决策中的加速方法、终端设备及存储介质
CN115907000A (zh) 一种用于电力系统最优潮流预测的小样本学习方法
CN114566048A (zh) 一种基于多视角自适应时空图网络的交通控制方法
CN114970674A (zh) 一种基于关联度对齐的时序数据概念漂移适配方法
Yan et al. Deep learning-based prediction of base station traffic
Cai et al. Calculation Method of Available Transfer Capacity Based on Graph Convolutional Network
CN109858799B (zh) 主动配电网改造措施与线路重载率关联性挖掘方法及装置
CN111310907A (zh) 一种微波组件故障诊断方法、装置及设备
Yu et al. A Deep Learning-Based Multi-model Ensemble Method for Hydrological Forecasting
CN117768377A (zh) 一种基于图神经网络的电网骨干光通信系统路由计算方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant