CN112630283B - Application of (E, E)-1,1′-bis(2-pyridylvinyl)ferrocene as an electrochemical sensor - Google Patents
Application of (E, E)-1,1′-bis(2-pyridylvinyl)ferrocene as an electrochemical sensor Download PDFInfo
- Publication number
- CN112630283B CN112630283B CN202011501277.4A CN202011501277A CN112630283B CN 112630283 B CN112630283 B CN 112630283B CN 202011501277 A CN202011501277 A CN 202011501277A CN 112630283 B CN112630283 B CN 112630283B
- Authority
- CN
- China
- Prior art keywords
- ferrocene
- bis
- pyridylvinyl
- organic phase
- electrochemical sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- -1 (E, E)-1,1′-bis(2-pyridylvinyl)ferrocene Chemical compound 0.000 title claims abstract description 51
- 239000002253 acid Substances 0.000 claims abstract description 69
- 239000012074 organic phase Substances 0.000 claims abstract description 36
- 238000002484 cyclic voltammetry Methods 0.000 claims abstract description 21
- 238000001903 differential pulse voltammetry Methods 0.000 claims abstract description 20
- 238000012360 testing method Methods 0.000 claims abstract description 20
- 239000003960 organic solvent Substances 0.000 claims abstract description 12
- 239000003115 supporting electrolyte Substances 0.000 claims abstract description 5
- KBLZDCFTQSIIOH-UHFFFAOYSA-M tetrabutylazanium;perchlorate Chemical compound [O-]Cl(=O)(=O)=O.CCCC[N+](CCCC)(CCCC)CCCC KBLZDCFTQSIIOH-UHFFFAOYSA-M 0.000 claims abstract description 5
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 48
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical compound [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 claims description 23
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 12
- 239000002904 solvent Substances 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 9
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 claims description 9
- WYURNTSHIVDZCO-UHFFFAOYSA-N tetrahydrofuran Substances C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 229920002554 vinyl polymer Polymers 0.000 claims description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 6
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 6
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 claims description 6
- 238000010992 reflux Methods 0.000 claims description 4
- 229960000583 acetic acid Drugs 0.000 claims description 3
- 239000012362 glacial acetic acid Substances 0.000 claims description 3
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 2
- PQLVXDKIJBQVDF-UHFFFAOYSA-N acetic acid;hydrate Chemical compound O.CC(O)=O PQLVXDKIJBQVDF-UHFFFAOYSA-N 0.000 claims description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-M iodide Chemical compound [I-] XMBWDFGMSWQBCA-UHFFFAOYSA-M 0.000 claims description 2
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 2
- 238000003756 stirring Methods 0.000 claims description 2
- KHPLPBHMTCTCHA-UHFFFAOYSA-N ammonium chlorate Chemical compound N.OCl(=O)=O KHPLPBHMTCTCHA-UHFFFAOYSA-N 0.000 claims 1
- 239000012467 final product Substances 0.000 claims 1
- DGZXMSLLXBWIFG-UHFFFAOYSA-N formaldehyde;pyridine Chemical compound O=C.C1=CC=NC=C1 DGZXMSLLXBWIFG-UHFFFAOYSA-N 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 29
- 150000007513 acids Chemical class 0.000 abstract description 7
- 239000012085 test solution Substances 0.000 abstract description 4
- 150000001768 cations Chemical class 0.000 abstract description 3
- 238000002474 experimental method Methods 0.000 abstract description 3
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 54
- 239000000243 solution Substances 0.000 description 26
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 26
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 17
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 239000003446 ligand Substances 0.000 description 14
- 230000005588 protonation Effects 0.000 description 13
- 230000004044 response Effects 0.000 description 11
- 230000008859 change Effects 0.000 description 10
- 239000012086 standard solution Substances 0.000 description 10
- 238000000835 electrochemical detection Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 229910021645 metal ion Inorganic materials 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 239000012488 sample solution Substances 0.000 description 6
- 229940075397 calomel Drugs 0.000 description 5
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical compound Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 5
- 239000012154 double-distilled water Substances 0.000 description 5
- 238000000840 electrochemical analysis Methods 0.000 description 5
- 229910021397 glassy carbon Inorganic materials 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- 238000005498 polishing Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000004448 titration Methods 0.000 description 4
- 241000282414 Homo sapiens Species 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical compound ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 3
- CAMXVZOXBADHNJ-UHFFFAOYSA-N ammonium nitrite Chemical compound [NH4+].[O-]N=O CAMXVZOXBADHNJ-UHFFFAOYSA-N 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- CSDSSGBPEUDDEE-UHFFFAOYSA-N 2-formylpyridine Chemical compound O=CC1=CC=CC=N1 CSDSSGBPEUDDEE-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- CLWRFNUKIFTVHQ-UHFFFAOYSA-N [N].C1=CC=NC=C1 Chemical group [N].C1=CC=NC=C1 CLWRFNUKIFTVHQ-UHFFFAOYSA-N 0.000 description 2
- XOSYMQSBCJQIHC-UHFFFAOYSA-N acetonitrile;perchloric acid Chemical compound CC#N.OCl(=O)(=O)=O XOSYMQSBCJQIHC-UHFFFAOYSA-N 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 150000003983 crown ethers Chemical class 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 2
- 230000033116 oxidation-reduction process Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000002468 redox effect Effects 0.000 description 2
- 230000027756 respiratory electron transport chain Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000004365 square wave voltammetry Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- LBLYYCQCTBFVLH-UHFFFAOYSA-N 2-Methylbenzenesulfonic acid Chemical compound CC1=CC=CC=C1S(O)(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-N 0.000 description 1
- GDDNTTHUKVNJRA-UHFFFAOYSA-N 3-bromo-3,3-difluoroprop-1-ene Chemical compound FC(F)(Br)C=C GDDNTTHUKVNJRA-UHFFFAOYSA-N 0.000 description 1
- MCSXGCZMEPXKIW-UHFFFAOYSA-N 3-hydroxy-4-[(4-methyl-2-nitrophenyl)diazenyl]-N-(3-nitrophenyl)naphthalene-2-carboxamide Chemical compound Cc1ccc(N=Nc2c(O)c(cc3ccccc23)C(=O)Nc2cccc(c2)[N+]([O-])=O)c(c1)[N+]([O-])=O MCSXGCZMEPXKIW-UHFFFAOYSA-N 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000007832 Na2SO4 Substances 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 239000012065 filter cake Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000010898 silica gel chromatography Methods 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical class O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
- POXSDSRWVJZWCN-UHFFFAOYSA-N triphenylphosphanium;iodide Chemical compound I.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 POXSDSRWVJZWCN-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000011345 viscous material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/4166—Systems measuring a particular property of an electrolyte
- G01N27/4168—Oxidation-reduction potential, e.g. for chlorination of water
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/48—Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Pyridine Compounds (AREA)
Abstract
本发明公开了以(E,E)‑1,1'‑双(2‑吡啶乙烯基)二茂铁作为有机相质子性酸电化学传感器及其应用,具体为:将(E,E)‑1,1'‑双(2‑吡啶乙烯基)二茂铁、支持电解质(四正丁基高氯酸铵)按比例溶于有机溶剂中,获得试剂盒;向试剂盒中加入待测液,并插入参比电极、工作电极及辅助电极,在三电极条件下,用电化学工作站以循环伏安法、差示脉冲伏安法等对测试体系在‑0.2‑1.3V电压范围内进行测定。试验发现:将(E,E)‑1,1'‑双(2‑吡啶乙烯基)二茂铁作为电化学传感器用于有机相质子性酸检测时,受有机相中Ca2+、Mg2+、Mn2+、Co2+、Ni2+、Cd2+等阳离子干扰小,本发明电化学传感器制作电化学池用于有机相质子性酸酸浓度的检测,制作简单、使用方便、无需专业人员操作、特别适用于快速现场检测质子酸含量测定。
The invention discloses (E,E)-1,1'-bis(2-pyridylvinyl)ferrocene as an organic phase protic acid electrochemical sensor and its application, specifically: (E,E)- 1,1'-bis(2-pyridylvinyl)ferrocene and supporting electrolyte (tetra-n-butylammonium perchlorate) are dissolved in an organic solvent in proportion to obtain a kit; add the test solution to the kit, And insert the reference electrode, working electrode and auxiliary electrode, under the condition of three electrodes, use the electrochemical workstation to measure the test system in the voltage range of -0.2-1.3V by cyclic voltammetry, differential pulse voltammetry, etc. The experiment found that when (E,E)-1,1'-bis(2-pyridylvinyl)ferrocene was used as an electrochemical sensor for the detection of protic acids in the organic phase, it was affected by Ca 2+ , Mg 2 in the organic phase + , Mn 2+ , Co 2+ , Ni 2+ , Cd 2+ and other cations have little interference. The electrochemical sensor of the present invention is used to make an electrochemical cell for the detection of the concentration of protic acids in the organic phase. It is simple to make, easy to use, and requires no Professional operation, especially suitable for rapid on-site detection of protonic acid content determination.
Description
技术领域technical field
本发明属于快速检测分析技术领域,具体涉及(E, E)-1,1'-双(2-吡啶乙烯基)二茂铁作为质子电化学传感器的应用,尤其是用于有机相质子性酸浓度的快速检测。The invention belongs to the technical field of rapid detection and analysis, and in particular relates to the application of (E, E)-1,1'-bis(2-pyridylvinyl)ferrocene as a proton electrochemical sensor, especially for organic phase protic acid Rapid detection of concentration.
背景技术Background technique
由于二茂铁衍生物在超分子化学、电子传输材料及非线性光学材料等方面巨大的潜在应用,使得对二茂铁衍生物的设计合成及性质研究日益繁荣。Due to the huge potential application of ferrocene derivatives in supramolecular chemistry, electron transport materials and nonlinear optical materials, the design, synthesis and property research of ferrocene derivatives are increasingly prosperous.
在超分子化学研究中,对底物分子、离子结合片段的合适部位引入二茂铁基团,可使得该主体分子能够利用二茂铁中心良好的氧化还原性质,用来电化学识别特定客体底物。其中含有二茂铁基的共轭体系结构为端基间的电子传递提供了可能性,这使得此类化合物表现出优异的电子传输能力。尽管已报道大量具各种官能团二茂铁基主体化合物,用于各类金属离子、阴离子的识别检测,但是对结合单元以烯键直接与二茂铁片段相连的主体化合物却依然少有报导。In the study of supramolecular chemistry, the introduction of ferrocene groups to the appropriate parts of substrate molecules and ion-binding fragments can enable the host molecule to use the good redox properties of the ferrocene center to electrochemically recognize specific guest substrates . The conjugated structure containing ferrocenyl groups provides the possibility of electron transfer between terminal groups, which makes these compounds exhibit excellent electron transport capabilities. Although a large number of ferrocenyl host compounds with various functional groups have been reported for the recognition and detection of various metal ions and anions, there are still few reports on the host compounds in which the binding unit is directly connected to the ferrocene fragment through an ethylenic bond.
当客体与主体分子结合时,会造成主体化合物分子微环境的改变,引发电化学响应基团的电化学响应,通常以响应基团电位或电流值的改变。Beer等人([1] P.D. Beer,P.A. Gale, G.Z. Chen, J. Chem. Soc., Dalton Trans., (1999) 1897.)研究表明,键合的客体对主体分子氧化还原活性中心的影响主要通过以下方式起作用:(1)空间的静电微扰;(2)通过联结氧化还原活性中心和键合部位的共轭基团传递;(3)被络合的客体与属于环结构组成部分的氧化还原活性中心的金属离子间直接的相互作用。这些结合信息可通过二茂铁基的表达,利用电化学仪器、技术进行宏观的检测,从而达到识别的目的。常用的电化学监测方法有循环伏安法(CV)、差示脉冲伏安法(DPV)、方波伏安法(SWV)、电阻抗法等。在主体化合物中加入客体前后氧化还原过程和主客体间结合解离过程中,Kred为中性主体与客体间的结合稳定常数,Kox为处于氧化状态的主体分子与客体间的络合稳定常数,E0 H、E0 HG分别为自由主体分子和主客体结合物的氧化还原峰电位。其有如下关系When the guest combines with the host molecule, it will cause the change of the molecular microenvironment of the host compound, triggering the electrochemical response of the electrochemical response group, usually in response to the change of the potential or current value of the group. Beer et al. ([1] PD Beer, PA Gale, GZ Chen, J. Chem. Soc., Dalton Trans., (1999) 1897.) showed that the effect of the bonded guest on the redox active center of the host molecule is mainly It works in the following ways: (1) electrostatic perturbation in space; (2) transfer through the conjugated group connecting the redox active center and the bonding site; (3) the complexed guest and the ring structure component Direct interaction between metal ions in redox active centers. These binding information can be detected macroscopically through the expression of ferrocenyl, using electrochemical instruments and techniques, so as to achieve the purpose of identification. The commonly used electrochemical monitoring methods include cyclic voltammetry (CV), differential pulse voltammetry (DPV), square wave voltammetry (SWV), electrical impedance method, etc. In the oxidation-reduction process before and after the guest is added to the host compound and the binding and dissociation process between the host and the guest, K red is the binding stability constant between the neutral host and the guest, and K ox is the complexation stability between the host molecule and the guest in the oxidized state Constants, E 0 H , E 0 HG are redox peak potentials of free host molecules and host-guest conjugates, respectively. It has the following relationship
ΔE0= E0 HG-E0 H =(RT/nF)×ln(Kred/Kox)ΔE 0 = E 0 HG -E 0 H = (RT/nF)×ln (K red /K ox )
可以预料:当加入正电荷客体时,由于主客体间的空间静电排斥作用,Kox应小于Kred,这即是配体与阳离子作用导致二茂铁基配体Fc+/Fc电对式量电位阳极移动的原因;这里ΔE0值的大小,直接反映了二茂铁中心氧化前后主体分子与客体分子间结合能力的改变,这对发展分子开关器件有着重要意义。It can be expected that when a positively charged guest is added, K ox should be less than K red due to the steric repulsion between the host and the guest. The reason for the potential anode movement; here, the value of ΔE 0 directly reflects the change of the binding ability between the host molecule and the guest molecule before and after the oxidation of the ferrocene center, which is of great significance for the development of molecular switching devices.
在主客体作用循环伏安(CV)曲线中,较大的ΔE0(通常大于100 mV)值往往给出CV曲线的双波行为,以1986年,Saji(T. Saji, J. Kinoshita, J. Chem. Soc., Chem.Commun.,1986,716.)报道的含二茂铁的大环冠醚类配体为例,在报道中的实列中其与阳离子Na+间相互作用会引起Fc+/Fc电对氧化还原电位的阳极移动,并且随着Na+的加入,在较高电位区出现一新峰且伴随着原氧化还原峰的消退;当加入1当量Na+后导致了原峰的消失,阳极方向的新峰得到完全的发展;在0.5当量Na+的存在下,其循环伏安表现显著的双波行为。In the host-guest interaction cyclic voltammetry (CV) curve, larger ΔE 0 (usually greater than 100 mV) values often give the double-wave behavior of the CV curve, in 1986, Saji (T. Saji, J. Kinoshita, J . Chem. Soc., Chem.Commun., 1986, 716.) The ferrocene-containing macrocyclic crown ether ligand reported as an example, in the reported example, its interaction with the cation Na + will cause Fc + /Fc moves to the anode of the redox potential, and with the addition of Na + , a new peak appears in the higher potential region and the original redox peak fades; when 1 equivalent of Na + is added, the original The peak disappears, and the new peak in the anodic direction is fully developed; in the presence of 0.5 equivalent Na + , its cyclic voltammetry shows a remarkable double-wave behavior.
本申请附图8中,可以看到随高氯酸的加入,在较高电位区出现新的氧化还原峰且伴随着原主体分子的氧化还原峰的消退;随着高氯酸量的越来越大高电位处出现的新峰逐渐发展,而原主体分子氧化还原峰则逐渐消失,当主体分子与客体分子结合达到饱和状态后,阳极方向的新峰得到完全的发展,而对应原主体分子的氧化还原峰则彻底消失。这与Saji的报道中大环冠醚对Na+识别的循环伏安行为曲线结果类似。当体系的的ΔE0大于100mV时,在电化学检测时,对应自由主体分子和主客体结合物的氧化还原峰会具有较好的分离度,这给分别准确测定相应氧化还原峰的峰电流提供了可能,这类体系可以用来发展电流安培传感器用于客体粒子的电化学识别及含量检测。In the accompanying drawing 8 of the present application, it can be seen that with the addition of perchloric acid, a new redox peak appears in the higher potential region and is accompanied by the disappearance of the redox peak of the original host molecule; as the amount of perchloric acid increases The larger the new peak at the higher potential gradually develops, the redox peak of the original host molecule will gradually disappear. The redox peaks completely disappeared. This is similar to the results of cyclic voltammetry behavior curves of macrocyclic crown ethers for Na + recognition reported by Saji. When the ΔE 0 of the system is greater than 100mV, the redox peaks corresponding to free host molecules and host-guest conjugates have a good resolution during electrochemical detection, which provides a basis for accurate determination of the peak currents of the corresponding redox peaks. Possibly, such systems can be used to develop amperometric sensors for electrochemical recognition and content detection of guest particles.
本申请设计以1,1’-二茂铁双亚甲基三苯基季鏻碘盐为原料,与2-吡啶甲醛反应制得了(E, E)-1,1'-双(2-吡啶乙烯基)二茂铁,在这一双臂型二茂铁烯烃化合物中,由于分子中吡啶氮原子具有很好的碱性,易于和有机相质子性酸的质子结合从而质子化,这导致了整个分子的变化,可以预料由于烯键的存在,使得二茂铁基团和吡啶构成了一个巨大的的共轭体系,而吡啶氮原子的质子化导致的吡啶环电子状态的变化,必然会通过共轭结构的电子传递传输,反馈到二茂铁中心,从而改变二茂铁的氧化还原电位,进而通过电化学检测实现质子结合过程的电化学信号的输出。这种客体质子性酸的质子与主体分子(E,E)-1,1'-双(2-吡啶乙烯基)二茂铁的结合作用可利用循环伏安、DPV等电化学方法监测。以其作为有机相质子性酸电化学传感器应用于有机相质子性酸[H]+的快速电化学检测,记录电化学检测所得对应氧化还原峰峰电流,做酸浓度与峰电流关系曲线,获得传感器检测酸浓度的标准曲线,将待测液与所制试剂盒按比例混合,记录电化学检测所得到氧化还原峰峰电流,通过标准曲线可换算出将待测液酸值。(E, E)-1,1'-双(2-吡啶乙烯基)二茂铁作为质子电化学传感器用于有机相质子性酸浓度测定,其灵敏度高,制作简单、使用方便、解决了传统滴定操作人为影响大、对操作人员操作技能高、低浓度时误差大乃至无法检测的问题。This application designs (E, E)-1,1'-bis (2-pyridine Vinyl) ferrocene, in this two-arm type ferrocene compound, due to the good basicity of the pyridine nitrogen atom in the molecule, it is easy to combine with the proton of the organic phase protic acid to protonate, which leads to The change of the whole molecule can be expected due to the existence of ethylenic bonds, so that the ferrocene group and pyridine constitute a huge conjugated system, and the change of the electronic state of the pyridine ring caused by the protonation of the pyridine nitrogen atom will inevitably pass through The electron transfer of the conjugated structure is fed back to the ferrocene center, thereby changing the redox potential of the ferrocene, and then realizing the output of the electrochemical signal of the proton binding process through electrochemical detection. The combination of the proton of the guest protic acid and the host molecule (E,E)-1,1'-bis(2-pyridylvinyl)ferrocene can be monitored by electrochemical methods such as cyclic voltammetry and DPV. Use it as an organic phase protic acid electrochemical sensor for rapid electrochemical detection of organic phase protic acid [H] + , record the corresponding redox peak current obtained from electrochemical detection, and make the acid concentration and peak current relationship curve, and obtain The sensor detects the standard curve of the acid concentration, mixes the test solution with the prepared kit in proportion, records the redox peak-peak current obtained by electrochemical detection, and converts the acid value of the test solution through the standard curve. (E, E)-1,1'-bis(2-pyridylvinyl)ferrocene is used as a proton electrochemical sensor for the determination of the concentration of protic acids in organic phases. The titration operation has a large human influence, high operating skills for the operator, large error or even undetectable problems at low concentrations.
发明内容Contents of the invention
本发明目的在于克服现有技术缺陷,提供一种 (E, E)-1,1'-双(2-吡啶乙烯基)二茂铁作为质子电化学传感器用于有机相质子性酸(如对甲苯磺酸、或高氯酸等)浓度的快速检测,其具有灵敏度高,制作简单、使用方便等优点,解决了传统滴定操作存在人为影响大、低浓度时误差大乃至无法检测的缺陷。The purpose of the present invention is to overcome the defects of the prior art, to provide a kind of (E, E)-1,1'-bis(2-pyridylvinyl)ferrocene as a proton electrochemical sensor for organic phase protic acid (such as for The rapid detection of the concentration of toluenesulfonic acid, or perchloric acid, etc.) has the advantages of high sensitivity, simple production, and convenient use. It solves the shortcomings of traditional titration operations such as large human influence, large errors at low concentrations, and even undetectable defects.
为实现上述目的,本发明采用如下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
(E, E)-1,1'-双(2-吡啶乙烯基)二茂铁作为有机相质子性酸电化学传感器的应用,所述(E, E)-1,1'-双(2-吡啶乙烯基)二茂铁的结构式如下所示: The application of (E, E)-1,1'-bis(2-pyridylvinyl)ferrocene as an organic phase protic acid electrochemical sensor, the (E, E)-1,1'-bis(2 The structural formula of -pyridine vinyl) ferrocene is as follows:
。 .
具体的,所述(E, E)-1,1'-双(2-吡啶乙烯基)二茂铁经下述步骤制备获得:Specifically, the (E, E)-1,1'-bis(2-pyridylvinyl)ferrocene is prepared through the following steps:
1)将碘化钾、1,1’-二茂铁基二甲醇和三苯基膦加至盛有水、氯仿和冰醋酸的圆底烧瓶中,加热回流30-40 h;减压蒸出有机溶剂,得黄色固体,经洗涤,真空干燥得二茂铁双亚甲基三苯基鏻碘盐;1) Add potassium iodide, 1,1'-ferrocenyldimethanol and triphenylphosphine into a round-bottomed flask filled with water, chloroform and glacial acetic acid, heat and reflux for 30-40 h; evaporate the organic solvent under reduced pressure , to obtain a yellow solid, which was washed and dried in vacuo to obtain ferrocene bis-methylene triphenylphosphonium iodide salt;
2)称取二茂铁双亚甲基三苯基鏻碘盐和叔丁醇钾于圆底烧瓶中,避光、室温氮气氛围搅拌条件下加入无水THF(四氢呋喃),20-40min后加入含有2-吡啶甲醛的无水THF溶液,室温反应1-3h,然后回流条件下反应10-14h,减压蒸出有机溶剂,残留物中加入饱和食盐水,用CH2C12 萃取,有机相用无水Na2SO4干燥,减压蒸出溶剂,分离纯化即得。2) Weigh ferrocenebismethylenetriphenylphosphonium iodide salt and potassium tert-butoxide in a round bottom flask, add anhydrous THF (tetrahydrofuran) under the condition of avoiding light and stirring under nitrogen atmosphere at room temperature, and add after 20-40min Anhydrous THF solution containing 2 -pyridinecarbaldehyde, react at room temperature for 1-3h, then react under reflux for 10-14h, distill off the organic solvent under reduced pressure, add saturated saline to the residue, extract with CH2C12 , organic phase Dry it with anhydrous Na 2 SO 4 , distill off the solvent under reduced pressure, separate and purify the product.
上述(E, E)-1,1'-双(2-吡啶乙烯基)二茂铁作为有机相质子性酸电化学传感器的应用,具体的,可以将(E, E)-1,1'-双(2-吡啶乙烯基)二茂铁和支持电解质四正丁基高氯酸铵按比例溶于有机溶剂中,获得试剂盒。The application of the above-mentioned (E, E)-1,1'-bis(2-pyridylvinyl)ferrocene as an organic phase protic acid electrochemical sensor, specifically, (E, E)-1,1' - Bis(2-pyridylvinyl)ferrocene and supporting electrolyte tetra-n-butylammonium perchlorate are dissolved in an organic solvent in proportion to obtain a kit.
进一步的,试剂盒中,(E, E)-1,1'-双(2-吡啶乙烯基)二茂铁的浓度为2×10- 2mol/L-2×10-5mol/L,支持电解质四正丁基高氯酸铵的浓度2×10-1mol/L。四正丁基高氯酸铵的作用在于它在有机溶剂中有很好的溶解性,为电化学检测提供导电介质,也能更好排除常见电解质阳离子和阴离子对测试体系可能带来的干扰。Further, in the kit, the concentration of (E, E)-1,1'-bis(2-pyridylvinyl)ferrocene is 2×10 - 2 mol/L-2×10 -5 mol/L, The concentration of the supporting electrolyte tetra-n-butylammonium perchlorate is 2×10 -1 mol/L. The role of tetra-n-butylammonium perchlorate is that it has good solubility in organic solvents, provides a conductive medium for electrochemical detection, and can better eliminate the possible interference of common electrolyte cations and anions on the test system.
进一步优选的,所述有机溶剂为乙腈、二氯甲烷、甲醇、乙醇和二甲基甲酰胺等中的一种或两种以上的混合物。溶剂的作用在于:作为(E, E)-1,1'-双(2-吡啶乙烯基)二茂铁的溶解试剂,并利用该类溶剂与待测试样较好的混溶性,用来测定有机相质子性酸待测液。溶剂的纯度选用分析纯。Further preferably, the organic solvent is one or a mixture of two or more of acetonitrile, dichloromethane, methanol, ethanol, and dimethylformamide. The role of the solvent is: as a dissolving reagent for (E, E)-1,1'-bis(2-pyridylvinyl)ferrocene, and using the better miscibility of this type of solvent with the sample to be tested, it is used for Determination of organic phase protic acid test solution. The purity of the solvent was analytically pure.
上述(E, E)-1,1'-双(2-吡啶乙烯基)二茂铁作为有机相质子性酸电化学传感器的应用,检测时,将待测样品液与试剂盒混合,并插入参比电极、工作电极及辅助电极,在三电极体系条件下,用电化学工作站以循环伏安法或差示脉冲伏安法等在-0.2-1.3V电压范围内对测试体系进行测定。记录电化学检测对应所得的氧化或还原峰电流,依据标准曲线计算出待测样品液中的有机相质子性酸浓度(如对甲苯磺酸、或高氯酸等)。The above-mentioned (E, E)-1,1'-bis(2-pyridylvinyl)ferrocene is used as an organic phase protic acid electrochemical sensor. During detection, the sample solution to be tested is mixed with the kit, and inserted into the Reference electrode, working electrode and auxiliary electrode, under the condition of three-electrode system, use electrochemical workstation to measure the test system by cyclic voltammetry or differential pulse voltammetry in the voltage range of -0.2-1.3V. Record the oxidation or reduction peak current corresponding to the electrochemical detection, and calculate the concentration of the organic phase protic acid (such as p-toluenesulfonic acid, or perchloric acid, etc.) in the sample solution to be tested according to the standard curve.
标准曲线制作如下:配制准确浓度的对甲苯磺酸或高氯酸的标准溶液,取一定量标准溶液和试剂盒混合,利用三电极体系测试,记录电化学检测对应所得氧化还原峰的峰电流,作酸浓度与峰电流的关系曲线,获得传感器检测酸浓度的标准曲线;向试剂盒中加入待测样品液,相同条件下进行测定,记录电化学检测对应所得氧化还原峰的峰电流,带入标准曲线得出待测样品液中的有机相质子性酸浓度。The standard curve is made as follows: prepare a standard solution of p-toluenesulfonic acid or perchloric acid with accurate concentration, take a certain amount of standard solution and mix it with the kit, use the three-electrode system to test, record the peak current corresponding to the redox peak obtained by electrochemical detection, Draw the relationship curve between acid concentration and peak current to obtain the standard curve of acid concentration detected by the sensor; add the sample solution to be tested into the kit, measure under the same conditions, record the peak current corresponding to the redox peak obtained by electrochemical detection, and bring it into The standard curve obtains the organic phase protonic acid concentration in the sample solution to be tested.
(E, E)-1,1'-双(2-吡啶乙烯基)二茂铁作为有机相质子性酸电化学传感器的应用中,当逐量加入质子性酸时,其CV曲线表现出良好的双波行为(见附图8、10);且较大的式量电位移动值,使得(E, E)-1,1'-双(2-吡啶乙烯基)二茂铁作为电流安培传感器实现质子性酸的定量检测成为了可能。本申请利用精确度较高的DPV法,对不同当量质子性酸进行了存在时体系实验,其结果如附图3、9所示。在DPV曲线中,以峰电流值与加入质子性酸与配体计量比做关系曲线,从关系曲线中可以看出,随质子性酸的加入,峰电流的变化值与加入量成良好相关性,直至质子性酸与(E, E)-1,1'-双(2-吡啶乙烯基)二茂铁达到2:1当量时峰电流达到最大值。In the application of (E, E)-1,1'-bis(2-pyridylvinyl)ferrocene as an organic phase protic acid electrochemical sensor, when the protic acid is added gradually, its CV curve shows a good The double-wave behavior (see Figures 8 and 10); and the larger formula potential shift value makes (E, E)-1,1'-bis(2-pyridylvinyl)ferrocene as an amperometric sensor It is possible to realize the quantitative detection of protic acid. This application uses the DPV method with high accuracy to conduct system experiments in the presence of protic acids with different equivalents, and the results are shown in Figures 3 and 9. In the DPV curve, the relationship between the peak current value and the ratio of the added protic acid to the ligand is drawn. It can be seen from the relationship curve that with the addition of the protic acid, the change value of the peak current has a good correlation with the amount added. , until the protic acid and (E, E)-1,1'-bis(2-pyridylvinyl)ferrocene reached 2:1 equivalent peak current reached the maximum.
本发明中,(E, E)-1,1'-双(2-吡啶乙烯基)二茂铁为有机相质子性酸电化学传感器,利用其与有机相质子性酸的结合可造成二茂铁的氧化还原电位及氧化还原峰电流的改变,体系中酸的含量与氧化还原峰峰电流的改变呈较好线性关系,由此来实现质子性酸含量的测定。In the present invention, (E, E)-1,1'-bis(2-pyridylvinyl)ferrocene is an organic phase protic acid electrochemical sensor, and its combination with organic phase protonic acid can generate ferrocene The change of redox potential and redox peak current of iron, the content of acid in the system and the change of redox peak peak current have a good linear relationship, so as to realize the determination of protic acid content.
本发明采用(E, E)-1,1'-双(2-吡啶乙烯基)二茂铁作为电化学传感器,利用分子中吡啶环N原子质子化后造成二茂铁中心氧化还原电位的正向移动,随着质子化程度的增大原二茂铁中心氧化还原峰电流逐渐降低,而在更高的电位处位置得到的新峰的峰电流逐渐增大,直至质子化全部完成,这时达到质子酸浓度检测上限,检测上限受传感器(E, E)-1,1'-双(2-吡啶乙烯基)二茂铁浓度限定,传感器浓度越大检测上限越高,传感器浓度越小检测灵敏度越高。使用中,可配置(E, E)-1,1'-双(2-吡啶乙烯基)二茂铁10-2mol/L-10- 5mol/L的梯度溶液,将待测样品液先与低浓度传感器溶液混合测试,如只观察到对应质子化后电位处氧化还原峰,则说明已达该浓度检测上限,进一步换更高浓度传感器试剂盒,至出现双波,记录新峰峰电流及低电位处旧峰电流。此时做该浓度下标准酸浓度与峰电流关系标准曲线,通过作图可得到待测样品液中的质子酸浓度。和现有技术相比,本发明的有益效果如下:The present invention adopts (E, E)-1,1'-bis(2-pyridylvinyl)ferrocene as an electrochemical sensor, and utilizes the positive oxidation-reduction potential of the ferrocene center caused by the protonation of the N atom of the pyridine ring in the molecule. As the degree of protonation increases, the redox peak current of the original ferrocene center gradually decreases, while the peak current of the new peak obtained at a higher potential position gradually increases until the protonation is completely completed, at which point it reaches Protonic acid concentration detection limit, the detection limit is limited by the sensor (E, E)-1,1'-bis(2-pyridylvinyl)ferrocene concentration, the higher the sensor concentration is, the higher the detection limit is, and the smaller the sensor concentration is, the detection sensitivity higher. In use, a gradient solution of (E, E)-1,1'-bis(2-pyridylvinyl)ferrocene 10 -2 mol/L-10 - 5 mol/L can be configured, and the sample solution to be tested is first Mix the test with a low-concentration sensor solution. If only the redox peak at the corresponding protonated potential is observed, it means that the detection limit of the concentration has been reached. Further change to a higher concentration sensor kit until double waves appear, and record the new peak-to-peak current And the old peak current at low potential. At this time, make a standard curve of the relationship between the standard acid concentration and the peak current at this concentration, and the concentration of the protonic acid in the sample solution to be tested can be obtained by drawing a graph. Compared with the prior art, the beneficial effects of the present invention are as follows:
检测试剂盒制作简单、使用方便、测试范围广、无需专业人员操作,特别适用于有机相体系质子性酸含量的测定。在给出实施例中,质子酸检出浓度下限达2.4×10-6mol/L,可很好用于有机相质子性酸浓度测定。在测定环境下酸浓度50倍的K+、Ca2+、Mg2+以及酸浓度10倍的Mn2+、Co2+、Ni2+、Cd2+对酸浓度的测定无干扰。本发明解决了传统滴定操作人为影响大、对操作人员操作技能高、低浓度时误差大乃至无法检测的问题,在快速检测有机相质子性酸含量应用领域中具有重要的应用价值。The detection kit is simple to make, easy to use, has a wide range of tests, does not require professional operation, and is especially suitable for the determination of the content of protonic acids in organic phase systems. In the given example, the lower limit of detection concentration of protonic acid reaches 2.4×10 -6 mol/L, which can be well used for the concentration determination of protonic acid in organic phase. In the measurement environment, K + , Ca 2+ , Mg 2+ , which are 50 times the acid concentration, and Mn 2+ , Co 2+ , Ni 2+ , Cd 2+ , which are 10 times the acid concentration, do not interfere with the determination of the acid concentration. The invention solves the problems that the traditional titration operation is greatly influenced by human beings, has high operating skills for operators, and has large errors or even undetectable problems at low concentrations, and has important application value in the application field of rapid detection of the content of protic acids in organic phases.
附图说明Description of drawings
图1为(E, E)-1,1'-双(2-吡啶乙烯基)二茂铁(lig)的核磁共振氢谱图;Figure 1 is the hydrogen nuclear magnetic resonance spectrum of (E, E)-1,1'-bis(2-pyridylvinyl)ferrocene (lig);
图2为(E, E)-1,1'-双(2-吡啶乙烯基)二茂铁(lig)在4当量的不同金属离子、对甲苯磺酸和高氯酸下循环伏安法(CV)测试结果对比图;Figure 2 is the cyclic voltammetry of (E, E)-1,1'-bis(2-pyridylvinyl)ferrocene (lig) under 4 equivalents of different metal ions, p-toluenesulfonic acid and perchloric acid ( CV) test results comparison chart;
图3为(E, E)-1,1'-双(2-吡啶乙烯基)二茂铁(lig)在不同当量高氯酸下差示脉冲伏安法(DPV)测试结果;Figure 3 shows the test results of (E, E)-1,1'-bis(2-pyridylvinyl)ferrocene (lig) under different equivalents of perchloric acid by differential pulse voltammetry (DPV);
图4为差示脉冲伏安法(DPV)(lig)峰的峰电流与 HClO4浓度关系曲线;Fig. 4 is the relationship curve between the peak current of differential pulse voltammetry (DPV) (lig) peak and the concentration of HClO4 ;
图5为差示脉冲伏安法(DPV)(lig+HClO4)峰的峰电流与 HClO4浓度关系散点图;Figure 5 is a scatter diagram of the relationship between the peak current of the differential pulse voltammetry (DPV) (lig+HClO 4 ) peak and the concentration of HClO 4 ;
图6为差示脉冲伏安法(DPV)(lig+HClO4)峰的峰电流与 HClO4浓度关系曲线;Figure 6 is the relationship curve between the peak current of differential pulse voltammetry (DPV) (lig+HClO 4 ) peak and the concentration of HClO 4 ;
图7 为(E, E)-1,1'-双(2-吡啶乙烯基) 二茂铁对5ml浓度为3.2×10-3mol/L的HClO4溶液差示脉冲伏安法(DPV)测试结果;Figure 7 is the differential pulse voltammetry (DPV) of (E, E)-1,1'-bis(2-pyridylvinyl)ferrocene to 5ml of HClO 4 solution with a concentration of 3.2×10 -3 mol/L Test Results;
图8为(E, E)-1,1'-双(2-吡啶乙烯基)二茂铁(lig)在不同当量高氯酸下循环伏安(CV)测试结果;Figure 8 shows the test results of cyclic voltammetry (CV) of (E, E)-1,1'-bis(2-pyridylvinyl)ferrocene (lig) under different equivalents of perchloric acid;
图9为(E, E)-1,1'-双(2-吡啶乙烯基)二茂铁(lig)在不同当量对甲苯磺酸(TSOH)下差示脉冲伏安法(DPV)测试结果;Figure 9 shows the differential pulse voltammetry (DPV) test results of (E, E)-1,1'-bis(2-pyridylvinyl)ferrocene (lig) under different equivalents of p-toluenesulfonic acid (TSOH) ;
图10为(E, E)-1,1'-双(2-吡啶乙烯基)二茂铁(lig)在不同当量对甲苯磺酸(TSOH)下循环伏安法(CV)测试结果。Figure 10 shows the test results of cyclic voltammetry (CV) of (E, E)-1,1'-bis(2-pyridylvinyl)ferrocene (lig) under different equivalents of p-toluenesulfonic acid (TSOH).
具体实施方式detailed description
以下结合实施例对本发明的技术方案作进一步地详细介绍,但本发明的保护范围并不局限于此。The technical solutions of the present invention will be further described in detail below in conjunction with the examples, but the protection scope of the present invention is not limited thereto.
下述实施例中,(E, E)-1,1'-双(2-吡啶乙烯基)二茂铁可通过以下方法制备获得:In the following examples, (E, E)-1,1'-bis(2-pyridylvinyl)ferrocene can be prepared by the following method:
将16.6 g碘化钾、4.92 g1,1’-二茂铁基二甲醇和17.6 g三苯基膦加至盛有20 mL水、60 mL氯仿和30 mL冰醋酸的250 mL的圆底烧瓶中,加热回流36 h,反应瓶中有大量黄色晶体析出,减压蒸出有机溶剂,得大量黄色固体,抽滤,滤饼依次用3 × 20 mL二次水、3 ×10 mL无水乙醇、3 × 10 mL无水乙醚洗涤,真空干燥得二茂铁双亚甲基三苯基鏻碘盐黄色晶体19.2 g (产率97%)。Add 16.6 g of potassium iodide, 4.92 g of 1,1'-ferrocenyldimethanol and 17.6 g of triphenylphosphine into a 250 mL round-bottomed flask filled with 20 mL of water, 60 mL of chloroform and 30 mL of glacial acetic acid, and heat Refluxed for 36 h, a large amount of yellow crystals precipitated in the reaction flask, and the organic solvent was evaporated under reduced pressure to obtain a large amount of yellow solid, which was filtered with suction, and the filter cake was successively washed with 3 × 20 mL of secondary water, 3 × 10 mL of absolute ethanol, and 3 × Wash with 10 mL of anhydrous ether and dry in vacuo to obtain 19.2 g of yellow crystals of ferrocene bismethylene triphenylphosphonium iodide salt (yield 97%).
室温下手套箱里,称取6.0 g 二茂铁双亚甲基三苯基鏻碘盐和1.5 g 叔丁醇钾于100 mL的圆底烧瓶中,避光、室温氮气氛围剧烈搅拌条件下,向体系中加入40 mL无水THF(反应液呈暗红色),30 min后将含有13.5 mmol 2-吡啶甲醛的无水THF溶液逐滴加入反应体系,滴加完毕室温反应2 h,然后回流条件下反应过夜(12h)。反应液减压蒸出有机溶剂,残留物中加入饱和食盐水,用CH2C12 萃取,有机相用无水Na2SO4干燥过夜,减压蒸出溶剂,得深红色粘稠物,以CH2Cl2/CH3COOC2H5(V/V= 5:1)混合溶剂为洗脱剂进行硅胶柱色谱分离,得目标产物;暗红色粉末状晶体0.823g,Yield: 35%;M.p.: 160-162 ºC; HRMS: Cacld forC24H21FeN2 [M + H]+ 393.1054, found 393.1052; IR νmax (KBr): 1632, 1582, 1469,1427, 963, 768 cm-1; 1H NMR (400 MHz): 4.32(t, J=1.7 Hz, 4H, Cp-H), 4.50(t, J=1.7 Hz, 4H, Cp-H), 6.65(d, J=16.0 Hz, 2H, olefinic H), 7.01-7.07(m, 4H, Ar-H), 7.21(d, J=16.2 Hz, 2H, olefinic H), , 7.42-7.46 (m, 2H, Ar-H), 8.45(d,2H, J= 4.4 Hz, Ar-H); 13C NMR (100 MHz): 68.60, 70.75, 83.15, 120.98, 120.99,126.06, 130.75, 136.35, 149.26, 155.82; ESI-MS: [M + H] + : 393.1, [M + Na] +:415.0。核磁共振氢谱图详见图1。In a glove box at room temperature, weigh 6.0 g of ferrocenebismethylenetriphenylphosphonium iodide and 1.5 g of potassium tert-butoxide in a 100 mL round-bottomed flask. Add 40 mL of anhydrous THF to the system (the reaction solution is dark red), and after 30 min, add the anhydrous THF solution containing 13.5 mmol 2-pyridinecarbaldehyde to the reaction system dropwise, and react at room temperature for 2 h after the dropwise addition, and then Under the reaction overnight (12h). The organic solvent was evaporated from the reaction liquid under reduced pressure, saturated brine was added to the residue, extracted with CH2C12 , the organic phase was dried overnight with anhydrous Na2SO4 , and the solvent was evaporated under reduced pressure to obtain a deep red viscous substance, which was obtained as CH 2 Cl 2 /CH 3 COOC 2 H 5 (V/V= 5:1) mixed solvent was used as eluent for silica gel column chromatography to obtain the target product; dark red powder crystal 0.823g, Yield: 35%; Mp : 160-162 ºC; HRMS: Cacld for C 24 H 21 FeN 2 [M + H] + 393.1054, found 393.1052; IR ν max (KBr): 1632, 1582, 1469,1427, 963, 768 cm -1 ; 1 H NMR (400 MHz): 4.32(t, J=1.7 Hz, 4H, Cp-H), 4.50(t, J=1.7 Hz, 4H, Cp-H), 6.65(d, J=16.0 Hz, 2H, olefinic H), 7.01-7.07(m, 4H, Ar-H), 7.21(d, J=16.2 Hz, 2H, olefinic H), , 7.42-7.46 (m, 2H, Ar-H), 8.45(d,2H , J= 4.4 Hz, Ar-H); 13 C NMR (100 MHz): 68.60, 70.75, 83.15, 120.98, 120.99, 126.06, 130.75, 136.35, 149.26, 155.82; ESI-MS: [M + H] + : 393.1, [M + Na] + : 415.0. See Figure 1 for the H NMR spectrum.
金属离子识别和竞争实验:Metal ion recognition and competition experiments:
在电解池中加入配好的(E, E)-1,1'-双(2-吡啶乙烯基)二茂铁的乙腈溶液(1×10-3 M),金属离子(以其高氯酸盐的形式)的乙腈溶液(0.2 M)由微量进样器加入,加入量为4当量(E, E)-1,1'-双(2-吡啶乙烯基)二茂铁量;电化学测试用CHI-650A型综合电化学工作站(上海晨华公司)测定,三电极体系,工作电极为Φ3 mm的玻碳电极,辅助电极为铂丝,参比电极为232型甘汞电极;工作电极在使用前先经0.05 μm A12O3抛光粉研磨抛光至镜面,再依次用0.1 M NaOH、体积l:1 的浓HNO3和水、无水乙醇、二次蒸馏水超声清洗;在0.00~0.90 V 电位范围内、电位扫描速率为100 mV/ s的条件下利用循环伏安法进行测定。Add the acetonitrile solution (1×10 -3 M) of (E, E)-1,1'-bis(2-pyridylvinyl)ferrocene prepared in the electrolytic cell, metal ions (with its perchloric acid salt form) in acetonitrile solution (0.2 M) was added from a microinjector in an amount of 4 equivalents of (E, E)-1,1'-bis(2-pyridylvinyl)ferrocene; electrochemical test Measured with CHI-650A comprehensive electrochemical workstation (Shanghai Chenhua Company), three-electrode system, the working electrode is a Φ3 mm glassy carbon electrode, the auxiliary electrode is a platinum wire, and the reference electrode is a 232-type calomel electrode; the working electrode is at Grind and polish to the mirror surface with 0.05 μm A1 2 O 3 polishing powder before use, and then use 0.1 M NaOH, 1:1 volume of concentrated HNO 3 , water, absolute ethanol, and double distilled water to ultrasonically clean; The potential range was determined by cyclic voltammetry under the condition of a potential scan rate of 100 mV/s.
结果显示:除Ca2+、Mg2+几乎无响应外,当加入Mn2+、Co2+、Zn2+、Cd2+于(E, E)-1,1'-双(2-吡啶乙烯基)二茂铁的乙腈溶液中,所选过渡金属离子均改变了二茂铁中心氧化还原性质(见附图2),导致了二茂铁Fc/Fc+电对式量电位产生的阳极移动,且电对仍表现出较好的可逆性。尽管Mn2+、Co2+、Zn2+、Cd2+有一定电化学响应,但其Fc/Fc+电对式量电位变化值显著小于质子性酸高氯酸、对甲苯磺酸对Fc/Fc+电对式量电位的影响值。当同时加入(E, E)-1,1'-双(2-吡啶乙烯基)二茂铁2当量的高氯酸和100当量的Ca2+或Mg2+时,其氧化还原式峰形仍表现和2当量的高氯酸存在下相同。当同时加入(E, E)-1,1'-双(2-吡啶乙烯基)二茂铁2当量的高氯酸和20当量的Mn2+、 Co2+、Zn2+或Cd2+时,氧化还原式峰形仍表现和2当量的高氯酸存在下相同,这表明(E, E)-1,1'-双(2-吡啶乙烯基)二茂铁在所测试这些金属离子的存在下,选择性识别质子性酸。The results showed that except Ca 2+ and Mg 2+ had almost no response, when Mn 2+ , Co 2+ , Zn 2+ , and Cd 2+ were added to (E, E)-1,1'-bis(2-pyridine In the acetonitrile solution of vinyl) ferrocene, the selected transition metal ions have changed the redox properties of the ferrocene center (see Figure 2), resulting in the anode Move, and the pair still shows good reversibility. Although Mn 2+ , Co 2+ , Zn 2+ , and Cd 2+ have a certain electrochemical response, their Fc/Fc + electron pair type potential change value is significantly smaller than that of protic acid perchloric acid and p-toluenesulfonic acid to Fc The influence value of /Fc + electricity on the stoichiometric potential. When (E, E)-1,1'-bis(2-pyridylvinyl)
其对于高氯酸、对甲苯磺酸在乙腈溶液里识别检测结果如下实施例所示。Its recognition and detection results for perchloric acid and p-toluenesulfonic acid in acetonitrile solution are shown in the following examples.
实施例1:Example 1:
一种有机相质子性酸电化学传感器及其检测方法:An organic phase protic acid electrochemical sensor and its detection method:
传感器(E, E)-1,1'-双(2-吡啶乙烯基)二茂铁(lig)溶液制备:以乙腈为溶剂,配制含2×10-1mol/L四正丁基高氯酸铵和2×10-3mol/L lig的溶液;将配制好的溶液取5mL装瓶作为试剂盒供检测使用;Preparation of sensor (E, E)-1,1'-bis(2-pyridylvinyl)ferrocene (lig) solution: using acetonitrile as solvent, prepare 2×10 -1 mol/L tetra-n-butyl perchlor ammonium nitrite and 2×10 -3 mol/L lig solution; bottle the prepared solution in 5mL as a kit for testing;
配置高氯酸的乙腈标准溶液:0 mol/L、5×10-4mol/L、1×10-3mol/L、1.5×10- 3mol/L、2×10-3mol/L、2.5×10-3mol/L、3×10-3mol/L、3.5×10-3mol/L、4×10-3mol/L、4.5×10-3mol/L、5×10-3mol/L,分别取5mL装瓶供标定标准曲线使用;Acetonitrile standard solution of perchloric acid: 0 mol/L, 5×10 -4 mol/L, 1×10 -3 mol/L, 1.5×10 -3 mol/L, 2 ×10 -3 mol/L, 2.5×10 -3 mol/L, 3×10 -3 mol/L, 3.5×10 -3 mol/L, 4×10 -3 mol/L, 4.5×10 -3 mol/L, 5×10 -3 mol/L, respectively take 5mL and bottle it for the calibration standard curve;
电化学测试用CHI-650A型综合电化学工作站(上海晨华公司)测定,三电极体系,工作电极为Φ3 mm的玻碳电极,辅助电极为铂丝,参比电极为232型甘汞电极;工作电极在使用前先经0.05 μm A12O3抛光粉研磨抛光至镜面,再依次用0.1 M NaOH、体积l:1 的浓HNO3和水、无水乙醇、二次蒸馏水超声清洗。The electrochemical test was determined by CHI-650A comprehensive electrochemical workstation (Shanghai Chenhua Company), three-electrode system, the working electrode was a Φ3 mm glassy carbon electrode, the auxiliary electrode was a platinum wire, and the reference electrode was a 232-type calomel electrode; Before use, the working electrode was ground and polished to a mirror surface with 0.05 μm A1 2 O 3 polishing powder, and then ultrasonically cleaned with 0.1 M NaOH, concentrated HNO 3 with a volume of 1:1, water, absolute ethanol, and double distilled water.
在0.00~0.90 V 电位范围内,将配置好的5ml试剂盒和5ml高氯酸的乙腈标准溶液等体积混合,利用差示脉冲伏安法(DPV,操作参数如图3右侧栏中所示)进行传感器对不同高氯酸酸浓度响应的测定。结果如图3所示。从图3中可以看出,在DPV曲线中,随着高氯酸的量的增大,质子化程度的增大,原配体二茂铁中心氧化还原峰电流逐渐降低,而在更高的电位位置处得到的新峰的峰电流逐渐增大,直至酸与配体2:1当量时质子化全部完成,这时对应原配体二茂铁中心氧化还原峰彻底消失,达到质子酸浓度检测上限。Within the potential range of 0.00 to 0.90 V, mix equal volumes of the prepared 5ml kit and 5ml perchloric acid acetonitrile standard solution, and use differential pulse voltammetry (DPV, the operating parameters are shown in the right column of Figure 3 ) to measure the response of the sensor to different concentrations of perchloric acid. The result is shown in Figure 3. It can be seen from Figure 3 that in the DPV curve, with the increase of the amount of perchloric acid and the increase of the degree of protonation, the redox peak current of the original ligand ferrocene center gradually decreases, while at higher The peak current of the new peak obtained at the potential position gradually increases until the protonation is completed when the acid and ligand are 2:1 equivalent. At this time, the redox peak corresponding to the original ligand ferrocene center completely disappears, reaching the concentration detection upper limit.
进一步,对所得的DPV测试结果进行处理,在HClO4浓度0-1.5×10-3mol/L范围内,以对应(E, E)-1,1'-双(2-吡啶乙烯基) 二茂铁(lig)峰(低电位处峰)的峰电流为纵坐标,以HClO4浓度为横坐标,作图,得图4,从图4中可以看出:在该浓度区间,对应lig的峰的峰电流与高氯酸浓度呈现较好的线性关系。Further, the obtained DPV test results were processed to correspond to (E, E)-1,1'-bis( 2 - pyridylvinyl )di The peak current of the ferrocene (lig) peak (peak at low potential) is the ordinate, and the concentration of HClO 4 is the abscissa. Figure 4 is obtained. It can be seen from Figure 4 that in this concentration range, the corresponding lig The peak current of the peak has a good linear relationship with the concentration of perchloric acid.
在HClO4浓度2×10-3-5×10-3mol/L范围内,以对应(E, E)-1,1'-双(2-吡啶乙烯基) 二茂铁与HClO4的加合物(lig+HClO4)峰(高电位处峰)的峰电流为纵坐标,以HClO4浓度为横坐标,作图得散点关系图-图5。从图5中可以看出,当高氯酸浓度达到4×10-3mol/L后,在该状态下(E, E)-1,1'-双(2-吡啶乙烯基) 二茂铁(lig)与高氯酸已经完全形成了稳定加合物,并达到测试上限,更高的酸浓度并不能够使峰电流得到进一步明显提高。In the range of HClO 4 concentration 2×10 -3 -5×10 -3 mol/L, to correspond to the addition of (E, E)-1,1'-bis(2-pyridylvinyl)ferrocene to HClO 4 The peak current of the compound (lig+HClO 4 ) peak (peak at high potential) is the ordinate, and the concentration of HClO 4 is the abscissa, and a scatter diagram is obtained - Figure 5. It can be seen from Figure 5 that when the concentration of perchloric acid reaches 4×10 -3 mol/L, in this state, (E, E)-1,1'-bis(2-pyridylvinyl)ferrocene (lig) has completely formed a stable adduct with perchloric acid and reached the upper limit of the test. Higher acid concentrations cannot further significantly increase the peak current.
在HClO4浓度0-4×10-3mol/L范围内,以(lig+HClO4)峰(高电位处峰)的峰电流为纵坐标,以HClO4浓度为横坐标,作图,得图6。从图6中可以看出:在该浓度区间,对应(lig+HClO4)峰的峰电流与高氯酸浓度呈现较好线性关系。In the range of HClO 4 concentration 0-4×10 -3 mol/L, take the peak current of (lig+HClO 4 ) peak (peak at high potential) as the ordinate, and the HClO 4 concentration as the abscissa, draw a graph, Figure 6. It can be seen from Figure 6 that in this concentration range, the peak current corresponding to the (lig+HClO 4 ) peak has a good linear relationship with the concentration of perchloric acid.
进一步,本申请配置5ml浓度为3.2×10-3mol/L的HClO4溶液,然后与5ml试剂盒等体积混合,利用差示脉冲伏安法(DPV)进行传感器对高氯酸酸浓度响应测定,其结果如图7所示;记录峰电流2.647E-05,代入图6所示标准曲线的线性关系式(y=0.0091x-3E-06)进行求算,得到检测的浓度结果为3.24×10-3mol/L,其偏差为1.25%,结果令人满意。Further, this application prepares 5ml of HClO 4 solution with a concentration of 3.2×10 -3 mol/L, and then mixes it with a 5ml kit in equal volume, and uses differential pulse voltammetry (DPV) to measure the sensor's response to the concentration of perchloric acid , the result is shown in Figure 7; record the peak current 2.647E-05, and substitute it into the linear relational formula (y=0.0091x-3E-06) of the standard curve shown in Figure 6 to calculate, and the detected concentration result is 3.24× 10 -3 mol/L, the deviation is 1.25%, the result is satisfactory.
实施例2:Example 2:
一种有机相质子性酸电化学传感器及其检测方法:An organic phase protic acid electrochemical sensor and its detection method:
传感器(E, E)-1,1'-双(2-吡啶乙烯基)二茂铁(lig)溶液制备:以乙腈为溶剂,配制含2×10-1mol/L四正丁基高氯酸铵和2×10-3mol/L lig的溶液;将配制好的溶液取5mL装瓶作为试剂盒供检测使用;Preparation of sensor (E, E)-1,1'-bis(2-pyridylvinyl)ferrocene (lig) solution: using acetonitrile as solvent, prepare 2×10 -1 mol/L tetra-n-butyl perchlor ammonium nitrite and 2×10 -3 mol/L lig solution; bottle the prepared solution in 5mL as a kit for testing;
配置高氯酸的乙腈标准溶液0 mol/L、5×10-4mol/L、1×10-3mol/L、1.5×10-3mol/L、2×10-3mol/L、2.5×10-3mol/L、3×10-3mol/L、3.5×10-3mol/L、4×10-3mol/L,分别取5mL装瓶供标定标准曲线使用;Prepare acetonitrile standard solution of
电化学测试用CHI-650A型综合电化学工作站(上海晨华公司)测定,三电极体系,工作电极为Φ3 mm的玻碳电极,辅助电极为铂丝,参比电极为232型甘汞电极;工作电极在使用前先经0.05 μm A12O3抛光粉研磨抛光至镜面,再依次用0.1 M NaOH、体积l:1 的浓HNO3和水、无水乙醇、二次蒸馏水超声清洗。The electrochemical test was determined by CHI-650A comprehensive electrochemical workstation (Shanghai Chenhua Company), three-electrode system, the working electrode was a Φ3 mm glassy carbon electrode, the auxiliary electrode was a platinum wire, and the reference electrode was a 232-type calomel electrode; Before use, the working electrode was ground and polished to a mirror surface with 0.05 μm A1 2 O 3 polishing powder, and then ultrasonically cleaned with 0.1 M NaOH, concentrated HNO 3 with a volume of 1:1, water, absolute ethanol, and double distilled water.
在0.00~0.90 V 电位范围内,将配置好的5ml试剂盒和5ml高氯酸的乙腈标准溶液等体积混合,利用循环伏安法(CV,操作参数如图8右侧栏中所示)进行传感器对不同高氯酸酸浓度响应的测定。结果如图8所示。从图8中可以看出,在CV曲线中,随着高氯酸的量的增大,质子化程度的增大,原配体二茂铁中心氧化还原峰的峰电流逐渐降低,而在更高的电位位置处得到的新的氧化还原峰的峰电流逐渐增大,直至酸与配体2:1当量时质子化全部完成,这时对应原配体二茂铁中心氧化还原峰彻底消失,达到质子酸浓度检测上限。Within the potential range of 0.00 to 0.90 V, mix equal volumes of the configured 5ml kit and 5ml perchloric acid acetonitrile standard solution, and use cyclic voltammetry (CV, operating parameters as shown in the right column of Figure 8) to conduct Determination of sensor response to different perchloric acid concentrations. The result is shown in Figure 8. It can be seen from Figure 8 that in the CV curve, with the increase of the amount of perchloric acid and the increase of the protonation degree, the peak current of the redox peak of the original ligand ferrocene center gradually decreases, while in the more The peak current of the new redox peak obtained at the high potential position gradually increases until the protonation is completely completed when the acid and the ligand are 2:1 equivalent. At this time, the redox peak corresponding to the original ligand ferrocene center completely disappears. The upper detection limit of the protonic acid concentration was reached.
进一步,本申请配置5ml浓度为3.0×10-3mol/L的HClO4溶液,然后与5ml试剂盒等体积混合,利用循环伏安进行传感器对高氯酸酸浓度响应测定,记录高电位处对应[lig+HClO4]氧化还原电对的氧化峰的峰电流,利用标准曲线线性关系式进行求算,得到检测的浓度结果为2.92×10-3mol/L,其偏差为2.67%,结果尚可。Further, the applicant configures 5ml of HClO 4 solution with a concentration of 3.0×10 -3 mol/L, and then mixes it with a 5ml kit in equal volume, uses cyclic voltammetry to measure the response of the sensor to the concentration of perchloric acid, and records the corresponding The peak current of the oxidation peak of the [lig+HClO 4 ] redox pair was calculated using the linear relational formula of the standard curve, and the detected concentration was 2.92×10 -3 mol/L, with a deviation of 2.67%. Can.
实施例3:Example 3:
一种有机相质子性酸电化学传感器及其检测方法:An organic phase protic acid electrochemical sensor and its detection method:
传感器(E, E)-1,1'-双(2-吡啶乙烯基) 二茂铁(lig)溶液制备:以乙腈为溶剂,配制含2×10-1mol/L四正丁基高氯酸铵和2×10-3mol/L lig的溶液;将配制好的溶液取5mL装瓶作为试剂盒供检测使用;Preparation of sensor (E, E)-1,1'-bis(2-pyridylvinyl)ferrocene (lig) solution: using acetonitrile as solvent, prepare 2×10 -1 mol/L tetra-n-butyl perchlor ammonium nitrite and 2×10 -3 mol/L lig solution; bottle the prepared solution in 5mL as a kit for testing;
配置对甲苯磺酸(TSOH)的乙腈标准溶液:0×10-3mol/L、2×10-3mol/L、2.5×10- 4mol/L、3×10-3mol/L、3.5×10-3mol/L、4×10-3mol/L,分别取5mL装瓶供标定标准曲线使用;Prepare acetonitrile standard solution of p-toluenesulfonic acid (TSOH): 0×10 -3 mol/L, 2×10 -3 mol/L, 2.5×10 -4 mol/L, 3×10 -3 mol /L, 3.5 ×10 -3 mol/L, 4×10 -3 mol/L, respectively take 5mL bottles for calibration standard curve;
电化学测试用CHI-650A型综合电化学工作站(上海晨华公司)测定,三电极体系,工作电极为Φ3 mm的玻碳电极,辅助电极为铂丝,参比电极为232型甘汞电极;工作电极在使用前先经0.05 μm A12O3抛光粉研磨抛光至镜面,再依次用0.1 M NaOH、体积l:1 的浓HNO3和水、无水乙醇、二次蒸馏水超声清洗。The electrochemical test was determined by CHI-650A comprehensive electrochemical workstation (Shanghai Chenhua Company), three-electrode system, the working electrode was a Φ3 mm glassy carbon electrode, the auxiliary electrode was a platinum wire, and the reference electrode was a 232-type calomel electrode; Before use, the working electrode was ground and polished to a mirror surface with 0.05 μm A1 2 O 3 polishing powder, and then ultrasonically cleaned with 0.1 M NaOH, concentrated HNO 3 with a volume of 1:1, water, absolute ethanol, and double distilled water.
在0.00~0.90 V 电位范围内,将配置好的5ml试剂盒和5ml对甲苯磺酸的乙腈标准溶液等体积混合,利用差示脉冲伏安法(操作参数如图9右侧栏中所示)进行传感器对不同对甲苯磺酸(TSOH)浓度响应的测定。结果如图9所示。从图9中可以看出,在DPV曲线中,随着酸的量的增大,原配体二茂铁中心氧化还原峰电流逐渐降低,而在更高的电位处位置得到的新峰的峰电流逐渐增大,直至酸与配体2:1当量时质子化全部完成,这时对应原配体二茂铁中心氧化还原峰彻底消失,达到质子酸浓度检测上限。Within the potential range of 0.00 to 0.90 V, mix equal volumes of the prepared 5ml kit and 5ml acetonitrile standard solution of p-toluenesulfonic acid, and use differential pulse voltammetry (the operating parameters are shown in the right column of Figure 9) A measurement of the sensor's response to different p-toluenesulfonic acid (TSOH) concentrations was performed. The result is shown in Figure 9. It can be seen from Figure 9 that in the DPV curve, as the amount of acid increases, the redox peak current of the original ligand ferrocene center gradually decreases, and the peak current of the new peak obtained at a higher potential position The current gradually increases until the protonation is completed when the acid and ligand are 2:1 equivalent. At this time, the redox peak corresponding to the original ligand ferrocene center completely disappears, reaching the detection limit of the protonic acid concentration.
实施例4:Example 4:
一种有机相质子性酸电化学传感器及其检测方法:An organic phase protic acid electrochemical sensor and its detection method:
传感器(E, E)-1,1'-双(2-吡啶乙烯基) 二茂铁(lig)溶液制备:以乙腈为溶剂,将配制成含2×10-1mol/L四正丁基高氯酸铵和2×10-3mol/L lig的溶液;将配制好的溶液取5mL装瓶供检测使用;Preparation of sensor (E, E)-1,1'-bis(2-pyridine vinyl) ferrocene (lig) solution: using acetonitrile as solvent, prepare 2×10 -1 mol/L tetra-n-butyl A solution of ammonium perchlorate and 2×10 -3 mol/L lig; take 5 mL of the prepared solution and bottle it for testing;
配置对甲苯磺酸(TSOH)的乙腈标准溶液0 mol/L、2×10-3mol/L、2.5×10-4mol/L、3×10-3mol/L、3.5×10-3mol/L、4×10-3mol/L,分别取5mL装瓶供标定标准曲线使用;Prepare acetonitrile standard solutions of p-toluenesulfonic acid (TSOH) 0 mol/L, 2×10 -3 mol/L, 2.5×10 -4 mol/L, 3×10 -3 mol/L, 3.5×10 -3 mol /L, 4×10 -3 mol/L, take 5mL bottles for calibration standard curve;
电化学测试用CHI-650A型综合电化学工作站(上海晨华公司)测定,三电极体系,工作电极为Φ3 mm的玻碳电极,辅助电极为铂丝,参比电极为232型甘汞电极;工作电极在使用前先经0.05 μm A12O3抛光粉研磨抛光至镜面,再依次用0.1 M NaOH、体积l:1 的浓HNO3和水、无水乙醇、二次蒸馏水超声清洗。The electrochemical test was determined by CHI-650A comprehensive electrochemical workstation (Shanghai Chenhua Company), three-electrode system, the working electrode was a Φ3 mm glassy carbon electrode, the auxiliary electrode was a platinum wire, and the reference electrode was a 232-type calomel electrode; Before use, the working electrode was ground and polished to a mirror surface with 0.05 μm A1 2 O 3 polishing powder, and then ultrasonically cleaned with 0.1 M NaOH, concentrated HNO 3 with a volume of 1:1, water, absolute ethanol, and double distilled water.
在0.00~0.90 V 电位范围内,将配置好的5ml试剂盒和标准5ml对甲苯磺酸的乙腈标准溶液等体积混合,利用循环伏安法(操作参数如图10右侧栏中所示)进行传感器对不同对甲苯磺酸(TSOH)浓度响应的测定。结果如图10所示。从图10中可以看出,在CV曲线中,随着酸的量的增大,质子化程度的增大,原配体二茂铁中心氧化还原峰电流逐渐降低,而在更高的电位位置处得到的新峰的峰电流逐渐增大,直至酸与配体2:1当量时质子化全部完成,这时对应原配体二茂铁中心氧化还原峰彻底消失,达到质子酸浓度检测上限。Within the potential range of 0.00 to 0.90 V, mix equal volumes of the configured 5ml kit and standard 5ml acetonitrile standard solution of p-toluenesulfonic acid, and use cyclic voltammetry (operating parameters are shown in the right column of Figure 10) to conduct Determination of sensor response to different p-toluenesulfonic acid (TSOH) concentrations. The results are shown in Figure 10. It can be seen from Figure 10 that in the CV curve, as the amount of acid increases and the degree of protonation increases, the redox peak current of the original ligand ferrocene center gradually decreases, while at a higher potential position The peak current of the new peak obtained gradually increases until the protonation is completely completed when the acid and ligand are 2:1 equivalent. At this time, the redox peak corresponding to the original ligand ferrocene center completely disappears, reaching the detection limit of the protonic acid concentration.
本发明中,(E, E)-1,1'-双(2-吡啶乙烯基)二茂铁为有机相质子性酸电化学传感器,有机相质子性酸浓度测定在检测上限浓度范围下随着待测体系质子浓度的增大,质子化程度的增大原二茂铁中心氧化还原峰电流逐渐降低,而在更高的电位处位置得到的新峰的峰电流逐渐增大,直至质子化全部完成,通过记录不同浓度下标准酸浓度与峰电流关系标准曲线,通过检测和作图可得到未知测试样质子酸浓度。本发明其灵敏度高,制作简单、使用方便、解决了传统滴定操作人为影响大、对操作人员操作技能高、低浓度时误差大乃至无法检测的问题。In the present invention, (E, E)-1,1'-bis(2-pyridylvinyl)ferrocene is an organic phase protic acid electrochemical sensor, and the concentration of the organic phase protic acid is measured in the range of the upper detection limit concentration. With the increase of the proton concentration of the system to be tested, the increase of the protonation degree increases the redox peak current of the original ferrocene center gradually decreases, while the peak current of the new peak obtained at a higher potential position gradually increases until the protonation is completely Complete, by recording the standard curve of the relationship between the standard acid concentration and the peak current at different concentrations, the protonic acid concentration of the unknown test sample can be obtained through detection and drawing. The invention has the advantages of high sensitivity, simple manufacture and convenient use, and solves the problems of large artificial influence in traditional titration operation, high operating skills for operators, large error and even undetectable problems at low concentrations.
上述具体实施方式只是示例性的,是为了更好地使本领域技术人员能够理解本专利,不能理解为是对本专利保护范围的限制;只要是根据本专利所揭示精神的所作的任何等同变更或修饰,均落入本专利包括的范围。The above-mentioned specific embodiments are only exemplary, and are for better understanding of this patent by those skilled in the art, and should not be understood as limiting the scope of protection of this patent; as long as any equivalent changes or Modifications all fall within the scope of this patent.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011501277.4A CN112630283B (en) | 2020-12-18 | 2020-12-18 | Application of (E, E)-1,1′-bis(2-pyridylvinyl)ferrocene as an electrochemical sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011501277.4A CN112630283B (en) | 2020-12-18 | 2020-12-18 | Application of (E, E)-1,1′-bis(2-pyridylvinyl)ferrocene as an electrochemical sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112630283A CN112630283A (en) | 2021-04-09 |
CN112630283B true CN112630283B (en) | 2023-01-17 |
Family
ID=75317066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011501277.4A Active CN112630283B (en) | 2020-12-18 | 2020-12-18 | Application of (E, E)-1,1′-bis(2-pyridylvinyl)ferrocene as an electrochemical sensor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112630283B (en) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB763550A (en) * | 1953-11-02 | 1956-12-12 | Bataafsche Petroleum | Dialkyl and diacyl derivatives of ferrocene and processes for the preparation thereof |
US5922183A (en) * | 1997-06-23 | 1999-07-13 | Eic Laboratories, Inc. | Metal oxide matrix biosensors |
WO1999041263A1 (en) * | 1998-02-16 | 1999-08-19 | Ea Technology Limited | Electrochemical processes, and compounds, and electrodes therewith |
CN101395473A (en) * | 2006-03-20 | 2009-03-25 | 因韦尔尼斯医药瑞士股份有限公司 | Water-soluble conjugates for electrochemical detection |
CN101418022A (en) * | 2008-11-21 | 2009-04-29 | 浙江大学 | Method for preparing ferrocenyl cyclic amine compound sensing material and use |
CN101988913A (en) * | 2009-08-05 | 2011-03-23 | 西北师范大学 | Testing method for transfer of hydroquinone electrons on biological film |
WO2013142994A1 (en) * | 2012-03-30 | 2013-10-03 | Valorisation-Recherche, Limited Partnership | Redox-active ionic liquids |
CN104459124A (en) * | 2014-12-04 | 2015-03-25 | 济南大学 | Preparation method and application of electrochemical immunosensor based on HS-beta-CD-Ag-GOD conjugate |
CN106198522A (en) * | 2016-07-05 | 2016-12-07 | 河南城建学院 | A kind of fast detection kit for copper ions and detection method thereof |
CN110927236A (en) * | 2019-12-09 | 2020-03-27 | 新疆天业(集团)有限公司 | Method for detecting lead ion content of industrial wastewater based on electrochemical sensor |
CN111248924A (en) * | 2019-06-24 | 2020-06-09 | 深圳硅基传感科技有限公司 | Working electrode of glucose monitoring probe and manufacturing method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2492687B (en) * | 2010-03-16 | 2014-08-13 | Univ Ohio | Methods and compositions for applications related to microbiologically influenced corrosion |
JP2014532720A (en) * | 2011-11-04 | 2014-12-08 | オームクス コーポレイション | New chemistry used in biosensors |
EP3055317B1 (en) * | 2013-10-08 | 2018-01-31 | Atlas Genetics Limited | Labelling compounds and their use in assays |
-
2020
- 2020-12-18 CN CN202011501277.4A patent/CN112630283B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB763550A (en) * | 1953-11-02 | 1956-12-12 | Bataafsche Petroleum | Dialkyl and diacyl derivatives of ferrocene and processes for the preparation thereof |
US5922183A (en) * | 1997-06-23 | 1999-07-13 | Eic Laboratories, Inc. | Metal oxide matrix biosensors |
WO1999041263A1 (en) * | 1998-02-16 | 1999-08-19 | Ea Technology Limited | Electrochemical processes, and compounds, and electrodes therewith |
CN101395473A (en) * | 2006-03-20 | 2009-03-25 | 因韦尔尼斯医药瑞士股份有限公司 | Water-soluble conjugates for electrochemical detection |
CN101418022A (en) * | 2008-11-21 | 2009-04-29 | 浙江大学 | Method for preparing ferrocenyl cyclic amine compound sensing material and use |
CN101988913A (en) * | 2009-08-05 | 2011-03-23 | 西北师范大学 | Testing method for transfer of hydroquinone electrons on biological film |
WO2013142994A1 (en) * | 2012-03-30 | 2013-10-03 | Valorisation-Recherche, Limited Partnership | Redox-active ionic liquids |
CN104459124A (en) * | 2014-12-04 | 2015-03-25 | 济南大学 | Preparation method and application of electrochemical immunosensor based on HS-beta-CD-Ag-GOD conjugate |
CN106198522A (en) * | 2016-07-05 | 2016-12-07 | 河南城建学院 | A kind of fast detection kit for copper ions and detection method thereof |
CN111248924A (en) * | 2019-06-24 | 2020-06-09 | 深圳硅基传感科技有限公司 | Working electrode of glucose monitoring probe and manufacturing method thereof |
CN110927236A (en) * | 2019-12-09 | 2020-03-27 | 新疆天业(集团)有限公司 | Method for detecting lead ion content of industrial wastewater based on electrochemical sensor |
Non-Patent Citations (4)
Title |
---|
Synthesis and characterisation of a Cd(II) complex with a chiral framework;Wei Liu 等;《JOURNAL OF CHEMICAL RESEARCH》;20120928;606-609 * |
两种二茂铁巯基化合物的合成表征及其修饰金电极电化学性质的研究;杨梅等;《分析科学学报》;20080831(第04期);373-376 * |
二茂铁修饰碳糊电极示差脉冲伏安法测定槲皮素;顾玲等;《理化检验(化学分册)》;20131231(第03期);266-269,273 * |
新的双二茂铁配体的电化学性质研究;张海燕等;《河南科学》;20051231(第06期);807-809 * |
Also Published As
Publication number | Publication date |
---|---|
CN112630283A (en) | 2021-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kimura et al. | Silver ion-selective electrodes using π-coordinate calix [4] arene derivatives as soft neutral carriers | |
CN110596082B (en) | A probe for detecting trace uranyl ions and a portable ECL detector based thereon | |
Mokhtari et al. | Investigation of ionizable nano-baskets of calix [4]-1, 2-crown-3 by differential pulse voltammetry | |
Chailap et al. | Optical and electrochemical properties of heteroditopic ion receptors derived from crown ether-based calix [4] arene with amido-anthraquinone pendants | |
CN112630283B (en) | Application of (E, E)-1,1′-bis(2-pyridylvinyl)ferrocene as an electrochemical sensor | |
CN103242327A (en) | P-N-methyl cyclopentaldehyde rhodamine 6G pH fluorescence molecular probe as well as preparation method and use thereof | |
Kim et al. | Functional polyterthiophene-appended uranyl-salophen complex: Electropolymerization and ion-selective response for monohydrogen phosphate | |
CN108912182B (en) | A kind of aluminum, chromium ion multi-channel response probe and its synthesis method and application | |
CN108997401B (en) | Fluorescent probe for detecting lead ions and preparation method thereof | |
Ramki et al. | A novel electrochemical platform based on indenoindole for selective detection of Cu2+ ions in punica granatum fruit juice | |
CN1087744C (en) | Ruthenium (II) polypyridine match and its preparing process | |
CN107235962B (en) | A kind of enhanced fluorescence probe, preparation method and application based on naphthalimide | |
CN104263354A (en) | Relay-type multifunctional fluorescent probe, and preparation method and application thereof | |
CN110305659A (en) | A kind of aggregation-induced luminescent compound and its preparation method and application | |
CN113899797B (en) | Electrochemical probe for detecting fluoride ions | |
CN108084231A (en) | A kind of material containing iridium complex phosphorescence and preparation and the application in beryllium ion detection | |
Zeng et al. | Novel bis (phenylselenoalkoxy) calix [4] arene molecular tweezer receptors as sensors for ion-selective electrodes | |
CN103242328A (en) | p-N-methyl acetamidophenyl rhodamine 6G pH fluorescence molecular probe as well as preparation method and use thereof | |
CN115181094B (en) | Pyridine-substituted coumarin derivative, preparation method thereof and application of pyridine-substituted coumarin derivative in preparation of pH fluorescent probe | |
CN115181098B (en) | Mitochondria-targeted AIE (AIE) type hypochlorous acid fluorescent probe as well as preparation method and application thereof | |
KR100952958B1 (en) | Synthesis Method and Novel Recognition of Novel Chromic Receptors Linked to Calix [6] Arenes with Bipyridine Metal Complexes | |
Lee et al. | Synthesis of azo-functionalized calix [4] arenes and its application to chloride-selective electrode as ionophores | |
CN116425995B (en) | A metal-organic framework material and its ligands and applications | |
CN110845505A (en) | Perylene diimide derivatives and electrical impedance-based differential detection pyridine derivatives sensor and preparation method and application thereof | |
CN114249691B (en) | A kind of naphthalimide-enhanced mercury ion fluorescence probe, preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20241028 Address after: 467000 No. 36 Xinglong Road, Shilong District, Pingdingshan City, Henan Province Patentee after: Pingdingshan Aipu Chemical Co.,Ltd. Country or region after: China Address before: 467036 Henan College of urban construction, Xincheng District, Pingdingshan City, Henan Province Patentee before: Henan University of Urban Construction Country or region before: China |
|
TR01 | Transfer of patent right |