CN112629851B - 基于数据增强方法与图像识别的海上风电机组齿轮箱故障诊断方法 - Google Patents
基于数据增强方法与图像识别的海上风电机组齿轮箱故障诊断方法 Download PDFInfo
- Publication number
- CN112629851B CN112629851B CN202011467483.8A CN202011467483A CN112629851B CN 112629851 B CN112629851 B CN 112629851B CN 202011467483 A CN202011467483 A CN 202011467483A CN 112629851 B CN112629851 B CN 112629851B
- Authority
- CN
- China
- Prior art keywords
- network
- spectrogram
- signal
- fault
- input
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 42
- 238000003745 diagnosis Methods 0.000 title claims abstract description 38
- 238000012549 training Methods 0.000 claims abstract description 34
- 238000013527 convolutional neural network Methods 0.000 claims abstract description 15
- 230000002708 enhancing effect Effects 0.000 claims abstract description 5
- 238000013528 artificial neural network Methods 0.000 claims description 10
- 238000010586 diagram Methods 0.000 claims description 10
- 238000005457 optimization Methods 0.000 claims description 9
- 238000011176 pooling Methods 0.000 claims description 7
- 238000005070 sampling Methods 0.000 claims description 7
- 238000001228 spectrum Methods 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 6
- 230000001133 acceleration Effects 0.000 claims description 5
- 238000005299 abrasion Methods 0.000 claims description 3
- 238000003491 array Methods 0.000 claims description 3
- 230000008030 elimination Effects 0.000 claims description 3
- 238000003379 elimination reaction Methods 0.000 claims description 3
- 238000011478 gradient descent method Methods 0.000 claims description 3
- 238000010606 normalization Methods 0.000 claims description 3
- 238000012216 screening Methods 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims description 3
- 230000006870 function Effects 0.000 description 11
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 238000013145 classification model Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M13/00—Testing of machine parts
- G01M13/02—Gearings; Transmission mechanisms
- G01M13/021—Gearings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M13/00—Testing of machine parts
- G01M13/02—Gearings; Transmission mechanisms
- G01M13/028—Acoustic or vibration analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/12—Classification; Matching
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Acoustics & Sound (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
Description
网络模型 | 输入层 | 输出大小 |
生成网络模型 | 16(batch-size)×(100;1) | 16(batch-size)×(84,120,1) |
判别网络模型 | 16(batch-size)×(84,120,1)与条件标签 | 标量 |
CNN网络 | 16(batch-size)×(84,120,1) | (4,1) |
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011467483.8A CN112629851B (zh) | 2020-12-11 | 2020-12-11 | 基于数据增强方法与图像识别的海上风电机组齿轮箱故障诊断方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011467483.8A CN112629851B (zh) | 2020-12-11 | 2020-12-11 | 基于数据增强方法与图像识别的海上风电机组齿轮箱故障诊断方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112629851A CN112629851A (zh) | 2021-04-09 |
CN112629851B true CN112629851B (zh) | 2022-10-25 |
Family
ID=75312884
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011467483.8A Active CN112629851B (zh) | 2020-12-11 | 2020-12-11 | 基于数据增强方法与图像识别的海上风电机组齿轮箱故障诊断方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112629851B (zh) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113191240B (zh) * | 2021-04-23 | 2022-04-08 | 石家庄铁道大学 | 轴承故障诊断的多任务深度神经网络方法及装置 |
CN113283299A (zh) * | 2021-04-27 | 2021-08-20 | 国网山东省电力公司烟台供电公司 | 基于cgan网络增强局部放电信号prpd图谱数据的方法 |
CN113723592A (zh) * | 2021-08-09 | 2021-11-30 | 国能云南新能源有限公司 | 一种基于风电齿轮箱监测系统的故障诊断方法 |
CN113537247B (zh) * | 2021-08-13 | 2023-05-16 | 重庆大学 | 一种针对换流变压器振动信号的数据增强方法 |
CN113639993B (zh) * | 2021-08-17 | 2022-06-07 | 燕山大学 | 多模态多任务卷积神经网络的齿轮箱故障诊断方法 |
CN113688919A (zh) * | 2021-08-30 | 2021-11-23 | 华北电力大学(保定) | 一种基于SeqGAN模型的风电机组健康状态评估数据集构建方法 |
CN114061948A (zh) * | 2021-11-16 | 2022-02-18 | 西安热工研究院有限公司 | 一种风力发电机组齿轮箱的故障诊断方法 |
CN114609493B (zh) * | 2022-05-09 | 2022-08-12 | 杭州兆华电子股份有限公司 | 一种信号数据增强的局部放电信号识别方法 |
CN115270326B (zh) * | 2022-07-15 | 2024-11-01 | 华能国际电力股份有限公司河北清洁能源分公司 | 一种风电机组主增速齿轮箱延长使用寿命的系统及方法 |
CN116703642A (zh) * | 2023-08-09 | 2023-09-05 | 杭州电子科技大学信息工程学院 | 基于数字孪生技术的产品制造生产线智能管理系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108710919A (zh) * | 2018-05-25 | 2018-10-26 | 东南大学 | 一种基于多尺度特征融合深度学习的裂缝自动化勾画方法 |
CN109785270A (zh) * | 2019-01-18 | 2019-05-21 | 四川长虹电器股份有限公司 | 一种基于gan的图像超分辨率方法 |
CN110428004A (zh) * | 2019-07-31 | 2019-11-08 | 中南大学 | 数据失衡下基于深度学习的机械零部件故障诊断方法 |
WO2020191389A1 (en) * | 2019-03-21 | 2020-09-24 | Illumina, Inc. | Training data generation for artificial intelligence-based sequencing |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108896296A (zh) * | 2018-04-18 | 2018-11-27 | 北京信息科技大学 | 一种基于卷积神经网络的风电齿轮箱故障诊断方法 |
CN111337243B (zh) * | 2020-02-27 | 2022-04-01 | 上海电力大学 | 基于acgan的风电机组行星轮齿轮箱故障诊断方法 |
-
2020
- 2020-12-11 CN CN202011467483.8A patent/CN112629851B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108710919A (zh) * | 2018-05-25 | 2018-10-26 | 东南大学 | 一种基于多尺度特征融合深度学习的裂缝自动化勾画方法 |
CN109785270A (zh) * | 2019-01-18 | 2019-05-21 | 四川长虹电器股份有限公司 | 一种基于gan的图像超分辨率方法 |
WO2020191389A1 (en) * | 2019-03-21 | 2020-09-24 | Illumina, Inc. | Training data generation for artificial intelligence-based sequencing |
WO2020191387A1 (en) * | 2019-03-21 | 2020-09-24 | Illumina, Inc. | Artificial intelligence-based base calling |
CN110428004A (zh) * | 2019-07-31 | 2019-11-08 | 中南大学 | 数据失衡下基于深度学习的机械零部件故障诊断方法 |
Non-Patent Citations (1)
Title |
---|
基于深度学习的旋转机械故障诊断研究综述;沈涛 等;《计算机测量与控制》;20200930;第28卷(第09期);第1-8页 * |
Also Published As
Publication number | Publication date |
---|---|
CN112629851A (zh) | 2021-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112629851B (zh) | 基于数据增强方法与图像识别的海上风电机组齿轮箱故障诊断方法 | |
Hasan et al. | Acoustic spectral imaging and transfer learning for reliable bearing fault diagnosis under variable speed conditions | |
CN111458142B (zh) | 基于生成对抗网络和卷积神经网络的滑动轴承故障诊断方法 | |
CN110334764B (zh) | 基于集成深度自编码器的旋转机械智能故障诊断方法 | |
CN110595780B (zh) | 基于振动灰度图像和卷积神经网络的轴承故障识别方法 | |
CN110210381B (zh) | 一种域分离自适应一维卷积神经网络智能故障诊断方法 | |
CN111275024B (zh) | 含噪声标签有限数据驱动的变工况风机滚动轴承故障诊断方法 | |
CN114358124B (zh) | 基于深度对抗卷积神经网络的旋转机械新故障诊断方法 | |
CN112418013A (zh) | 一种小样本下基于元学习的复杂工况轴承故障诊断方法 | |
CN109782603A (zh) | 旋转机械耦合故障的检测方法及监测系统 | |
CN108827605A (zh) | 一种基于改进稀疏滤波的机械故障特征自动提取方法 | |
CN115374820B (zh) | 一种基于多源子域适应网络的旋转机械跨域故障诊断方法 | |
CN114358123B (zh) | 一种基于深度对抗迁移网络的广义开放集故障诊断方法 | |
CN113505664B (zh) | 一种风电机组行星齿轮箱故障诊断方法 | |
CN114034481A (zh) | 一种轧机齿轮箱故障诊断系统及方法 | |
CN110018322B (zh) | 一种基于深度学习的转速检测方法及系统 | |
CN109029989A (zh) | 一种基于红外热成像的齿轮箱故障诊断方法 | |
CN111458144A (zh) | 一种基于卷积神经网络的风力发电机故障诊断方法 | |
CN114139598B (zh) | 基于深度代价敏感卷积网络的故障诊断方法及诊断框架 | |
CN112364706A (zh) | 一种基于类不平衡的小样本轴承故障诊断方法 | |
CN112860183A (zh) | 基于高阶矩匹配的多源蒸馏-迁移机械故障智能诊断方法 | |
Kong et al. | Untrained compound fault diagnosis for planetary gearbox based on adaptive learning VMD and DSSECNN | |
Zhang et al. | Feature-level consistency regularized semi-supervised scheme with data augmentation for intelligent fault diagnosis under small samples | |
CN112734001A (zh) | 一种基于阶次谱迁移的风电传动链智能故障诊断方法 | |
CN113758709A (zh) | 结合边缘计算和深度学习的滚动轴承故障诊断方法及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Liu Weibin Inventor after: Liu Lin Inventor after: Zhang Bin Inventor after: Zhu Chunsheng Inventor after: Tan Zhihui Inventor after: Li Weidong Inventor after: Chen Junsheng Inventor before: Zhang Bin Inventor before: Su Rong Inventor before: Liu Lin Inventor before: Zhu Chunsheng Inventor before: Li Weidong Inventor before: Yi Wei Inventor before: Chen Junsheng |
|
GR01 | Patent grant | ||
GR01 | Patent grant |