CN112619709A - Photocatalytic nano material and preparation method thereof - Google Patents

Photocatalytic nano material and preparation method thereof Download PDF

Info

Publication number
CN112619709A
CN112619709A CN202110244234.0A CN202110244234A CN112619709A CN 112619709 A CN112619709 A CN 112619709A CN 202110244234 A CN202110244234 A CN 202110244234A CN 112619709 A CN112619709 A CN 112619709A
Authority
CN
China
Prior art keywords
metal
organic framework
halide perovskite
product
framework material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110244234.0A
Other languages
Chinese (zh)
Other versions
CN112619709B (en
Inventor
刘琪瑶
李艳蔷
李玉华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University
Original Assignee
Beijing Sijiantong Technology & Development Co ltd
Hubei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Sijiantong Technology & Development Co ltd, Hubei University filed Critical Beijing Sijiantong Technology & Development Co ltd
Priority to CN202110244234.0A priority Critical patent/CN112619709B/en
Publication of CN112619709A publication Critical patent/CN112619709A/en
Application granted granted Critical
Publication of CN112619709B publication Critical patent/CN112619709B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • B01J2531/26Zinc

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明提出了一种混合带隙卤化物钙钛矿纳米材料,其包括金属有机框架材料、以及卤化物钙钛矿纳米粒子;所述卤化物钙钛矿纳米粒子内嵌在所述金属有机框架材料的孔道内;所述金属有机框架材料为金属过渡离子与有机配体形成的多孔性晶体材料;所述卤化物钙钛矿纳米粒子的带隙从外到内逐渐减小;所述钙钛矿纳米粒子的表层为FAPbBr3,内核处为FAPbI3。上述光催化纳米材料,明显改善卤化物钙钛矿纳米粒子的水汽稳定性;可以高效吸收利用不同能量的太阳光,具有较高的“光‑化学能”转换效率。该光催化技术在环境污染领域,尤其是CO2的光催化处理具有很大的应用前景。本发明还公开其制备方法。

Figure 202110244234

The present invention proposes a mixed band gap halide perovskite nanomaterial, which comprises a metal organic framework material and a halide perovskite nanoparticle; the halide perovskite nanoparticle is embedded in the metal organic framework in the pores of the material; the metal-organic framework material is a porous crystal material formed by metal transition ions and organic ligands; the band gap of the halide perovskite nanoparticles gradually decreases from the outside to the inside; the perovskite The surface layer of the mineral nanoparticles is FAPbBr 3 , and the inner core is FAPbI 3 . The above-mentioned photocatalytic nanomaterials can significantly improve the water vapor stability of halide perovskite nanoparticles; they can efficiently absorb and utilize sunlight of different energies, and have high "photo-chemical energy" conversion efficiency. This photocatalytic technology has great application prospects in the field of environmental pollution, especially the photocatalytic treatment of CO . The invention also discloses its preparation method.

Figure 202110244234

Description

光催化纳米材料及其制备方法Photocatalytic nanomaterial and preparation method thereof

技术领域technical field

本发明属于CO2光催化技术领域,具体涉及一种光催化纳米材料及其制备方法。The invention belongs to the technical field of CO 2 photocatalysis, and in particular relates to a photocatalytic nanomaterial and a preparation method thereof.

背景技术Background technique

在全球变暖越来越被广泛关注的同时,CO2的减排成为一个热点话,因为它关系到人类生活环境的未来和命运,直接光驱动二氧化碳减排高附加值使用高效催化剂的化学原料或燃料就是其中之一令人着迷的技术。在人工光合作用中过程中,一个至关重要的挑战是设计的高效和低成本催化剂和光敏剂。在这种背景下,一系列半导体纳米晶体作为光敏剂一直被人们追求,因为它们的消光系数大,热力学可灵活调节以及粒子调节下的光学特性大小。卤化物钙钛矿作为一种新型的光电功能材料在太阳能电池、发光二极管、光电探测器和光电催化等诸多领域,都有广泛的研究,取得了显著的研究进展。由于其成本低廉、合成方法简单等诸多优点,钙钛矿在光催化二氧化碳还原领域也具有非常广阔的应用前景。At the same time that global warming is more and more widely concerned, CO 2 emission reduction has become a hot topic, because it is related to the future and destiny of human living environment, direct light-driven carbon dioxide emission reduction, high value-added chemical raw materials using high-efficiency catalysts Or fuel is one of those fascinating technologies. During artificial photosynthesis, a crucial challenge is to design efficient and low-cost catalysts and photosensitizers. In this context, a series of semiconductor nanocrystals have been pursued as photosensitizers because of their large extinction coefficients, flexible thermodynamic tuning, and particle-tuned optical properties. As a new type of optoelectronic functional materials, halide perovskites have been widely studied in many fields such as solar cells, light-emitting diodes, photodetectors, and photocatalysis, and have made significant research progress. Due to its low cost and simple synthesis method, perovskites also have very broad application prospects in the field of photocatalytic carbon dioxide reduction.

但是,光催化材料的稳定性和“光-化学能”转换效率成为一个急待解决的问题。However, the stability and "photo-chemical energy" conversion efficiency of photocatalytic materials have become an urgent problem to be solved.

发明内容SUMMARY OF THE INVENTION

本发明提供了一种新的光催化纳米材料。The present invention provides a new photocatalytic nanomaterial.

一种光催化纳米材料,包括金属有机框架材料、以及卤化物钙钛矿纳米粒子;所述卤化物钙钛矿纳米粒子内嵌在所述金属有机框架材料的孔道内;A photocatalytic nanomaterial, comprising a metal organic framework material and halide perovskite nanoparticles; the halide perovskite nanoparticles are embedded in the pores of the metal organic framework material;

所述金属有机框架材料为金属过渡离子与有机配体形成的多孔性晶体材料;The metal-organic framework material is a porous crystalline material formed by metal transition ions and organic ligands;

所述卤化物钙钛矿纳米粒子的带隙从外到内逐渐减小;优选的所述钙钛矿纳米粒子的表层为FAPbBr3,内核处为FAPbI3The band gap of the halide perovskite nanoparticles gradually decreases from the outside to the inside; preferably, the surface layer of the perovskite nanoparticles is FAPbBr 3 , and the inner core is FAPbI 3 .

上述光催化纳米材料,将卤化物钙钛矿纳米粒子内嵌在在所述金属有机框架材料的孔道内,故而明显改善卤化物钙钛矿纳米粒子的水汽稳定性;所述卤化物钙钛矿纳米粒子的带隙从外到内逐渐减小,可以高效吸收利用不同能量的太阳光,具有较高的“光-化学能”转换效率。In the above photocatalytic nanomaterials, the halide perovskite nanoparticles are embedded in the pores of the metal organic framework material, so the water vapor stability of the halide perovskite nanoparticles is significantly improved; the halide perovskite nanoparticles The band gap of the nanoparticle gradually decreases from the outside to the inside, which can efficiently absorb and utilize sunlight of different energies, and has a high "photo-chemical energy" conversion efficiency.

在其中一个具体实施方式中,所述卤化物钙钛矿纳米粒子的化学通式为FAPb(I1- xBrx)3,其中,0≤x≤1。In one specific embodiment, the general chemical formula of the halide perovskite nanoparticles is FAPb(I 1- x Br x ) 3 , wherein 0≤x≤1.

在其中一个具体实施方式中,所述过渡金属离子为锌离子, 所述有机配体为卟啉类有机物或咪唑类有机物。In one specific embodiment, the transition metal ion is a zinc ion, and the organic ligand is a porphyrin-based organic compound or an imidazole-based organic compound.

本发明还提供了一种光催化纳米材料的制备方法。The invention also provides a preparation method of the photocatalytic nanomaterial.

一种光催化纳米材料的制备方法,包括如下步骤:A preparation method of a photocatalytic nanomaterial, comprising the following steps:

制备金属有机框架材料MOFs;Preparation of metal organic framework material MOFs;

在所述金属有机框架材料上加载PbI2,得到第一产物PbI2@MOFs;Loading PbI 2 on the metal-organic framework material to obtain the first product PbI 2 @MOFs;

将所述第一产物PbI2@MOFs;与FAI反应,得到第二产物FAPbI3@MOFs;The first product PbI 2 @MOFs; react with FAI to obtain the second product FAPbI 3 @MOFs;

将所述第二产物FAPbI3@MOFs与FABr进行离子交换处理,得到混合带隙的FAPb(I1-xBrx)3@MOFs钙钛矿纳米材料。The second product FAPbI 3 @MOFs is subjected to ion exchange treatment with FABr to obtain FAPb(I 1-x Br x ) 3 @MOFs perovskite nanomaterials with mixed band gaps.

上述制备方法,获得的光催化纳米材料,明显改善卤化物钙钛矿纳米粒子的水汽稳定性;可以高效吸收利用不同能量的太阳光,具有较高的“光-化学能”转换效率。The photocatalytic nanomaterial obtained by the above preparation method can significantly improve the water vapor stability of the halide perovskite nanoparticles; it can efficiently absorb and utilize sunlight of different energies, and has a high "photo-chemical energy" conversion efficiency.

在其中一个具体实施方式中,将所述第二产物与FABr进行离子交换处理的步骤包括:将所述第二产物浸泡在FABr溶液中。In one specific embodiment, the step of performing ion exchange treatment on the second product and FABr includes: soaking the second product in a FABr solution.

在其中一个具体实施方式中,所述FABr溶液为FABr的异丙醇溶液;所述FABr的浓度为18g/L-22g/L。In one specific embodiment, the FABr solution is an isopropanol solution of FABr; the concentration of the FABr is 18g/L-22g/L.

在其中一个具体实施方式中,所述浸泡的时长为1-20min。In one of the specific embodiments, the soaking time is 1-20min.

在其中一个具体实施方式中,所述金属有机框架材料通过水热反应合成。In one of the specific embodiments, the metal organic framework material is synthesized by hydrothermal reaction.

在其中一个具体实施方式中,在所述金属有机框架材料上加载PbI2的步骤包括:将所述金属有机框架材料浸泡在PbI2溶液中一个小时以上。In one specific embodiment, the step of loading PbI 2 on the metal-organic framework material includes: soaking the metal-organic framework material in a PbI 2 solution for more than one hour.

在其中一个具体实施方式中,将所述第一产物与FAI反应的步骤包括:将所述第一产物浸泡在FAI溶液中8-12min。In one of the specific embodiments, the step of reacting the first product with FAI includes: soaking the first product in the FAI solution for 8-12 minutes.

附图说明Description of drawings

图1 为本发明的金属有机框架的结构示意图。FIG. 1 is a schematic structural diagram of the metal organic framework of the present invention.

图2为本发明的卤化物钙钛矿纳米粒子的示意图。Figure 2 is a schematic diagram of the halide perovskite nanoparticles of the present invention.

图3 为图2中的卤化物钙钛矿钙钛矿纳米粒子的带隙图。FIG. 3 is a band gap diagram of the halide perovskite perovskite nanoparticles in FIG. 2 .

图4 为本发明的光催化纳米材料的结构示意图。FIG. 4 is a schematic structural diagram of the photocatalytic nanomaterial of the present invention.

具体实施方式Detailed ways

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合具体实施方式,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施方式仅仅用以解释本发明,并不用于限定本发明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the specific embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.

除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terms used herein in the description of the present invention are for the purpose of describing specific embodiments only, and are not intended to limit the present invention. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.

一种光催化纳米材料,包括金属有机框架材料、以及卤化物钙钛矿纳米粒子;所述卤化物钙钛矿纳米粒子内嵌在所述金属有机框架材料的孔道内;A photocatalytic nanomaterial, comprising a metal organic framework material and halide perovskite nanoparticles; the halide perovskite nanoparticles are embedded in the pores of the metal organic framework material;

所述金属有机框架材料为金属过渡离子与有机配体形成的多孔性晶体材料;将可溶性金属盐与咪唑类化合物在有机溶剂中混合反应,得到金属有机框架材料,可溶性金属盐选自可溶性金属卤化物、可溶性金属硝酸盐、可溶性金属醋酸盐与可溶性金属硫酸盐中的一种或多种。The metal-organic framework material is a porous crystalline material formed by a metal transition ion and an organic ligand; a soluble metal salt and an imidazole compound are mixed and reacted in an organic solvent to obtain a metal-organic framework material, and the soluble metal salt is selected from soluble metal halide. One or more of soluble metal nitrates, soluble metal acetates and soluble metal sulfates.

如图1所示,其中11为过渡金属离子,12为有机配体。11和12通过键合形成金属有机框架。As shown in Figure 1, 11 is a transition metal ion and 12 is an organic ligand. 11 and 12 form metal organic frameworks by bonding.

所述卤化物钙钛矿纳米粒子的带隙从外到内逐渐减小;所述钙钛矿纳米粒子的表层为FAPbBr3,内核处为FAPbI3The band gap of the halide perovskite nanoparticle gradually decreases from the outside to the inside; the surface layer of the perovskite nanoparticle is FAPbBr 3 , and the inner core is FAPbI 3 .

图2为混合带隙钙钛矿纳米颗粒示意图,在其最外层21中,x=1,即只有Br,没有I;在其内核22处,x=0,即只有I,没有Br。图3为图2中的卤化物钙钛矿钙钛矿纳米粒子的带隙图。21标示的是外层带隙,22标示的是内层带隙。Figure 2 is a schematic diagram of a mixed bandgap perovskite nanoparticle. In its outermost layer 21, x=1, that is, only Br and no I; in its inner core 22, x=0, that is, only I and no Br. FIG. 3 is a band gap diagram of the halide perovskite perovskite nanoparticles in FIG. 2 . 21 denotes the outer band gap, and 22 denotes the inner band gap.

具体参见图4,图4为本发明光催化纳米材料的分子结构图。卤化物钙钛矿纳米粒子内嵌在所述金属有机框架材料的孔道内;也即金属有机框架材料包裹在卤化物钙钛矿纳米粒子的外面。这样金属有机框架材料将卤化物钙钛矿纳米粒子保护起来,提高其卤化物钙钛矿纳米粒子的水汽稳定性。所述卤化物钙钛矿纳米粒子的带隙从外到内逐渐减小,最表层为纯的FAPbBr3,带隙可达到2.3eV,最内核处为FAPbI3,带隙为1.48eV。该混合带隙FAPbI1-xBrx@ ZIF-8纳米材料可吸收更多能量范围内的太阳光Referring specifically to FIG. 4, FIG. 4 is a molecular structure diagram of the photocatalytic nanomaterial of the present invention. The halide perovskite nanoparticles are embedded in the pores of the metal organic framework material; that is, the metal organic framework material is wrapped outside the halide perovskite nanoparticles. In this way, the metal organic framework material protects the halide perovskite nanoparticles and improves the water vapor stability of the halide perovskite nanoparticles. The band gap of the halide perovskite nanoparticles gradually decreases from the outside to the inside, the outermost layer is pure FAPbBr 3 , the band gap can reach 2.3eV, and the innermost layer is FAPbI 3 , and the band gap is 1.48eV. This hybrid bandgap FAPbI 1- xBrx @ZIF-8 nanomaterial can absorb sunlight in a wider energy range

其中,金属有机框架材料,一般简写为MOFs。金属有机框架材料中的金属可以是Re、Co、Fe、Ni、Mn、Mo、W、Ru、Os、Rh、Ir、Pd、Zn、Cr、Cu等。配合物包括但不限于羧基、磷酸基、氨基等基团官能团化的配合物。配合物具体可以是聚吡啶类配合物,卟啉类配合物,咪唑类配合物、硫醇类配合物、氮杂环卡宾配合物或其它形式的配合物。Among them, metal organic framework materials are generally abbreviated as MOFs. The metal in the metal organic framework material may be Re, Co, Fe, Ni, Mn, Mo, W, Ru, Os, Rh, Ir, Pd, Zn, Cr, Cu, and the like. The complexes include, but are not limited to, complexes functionalized with carboxyl, phosphoric acid, amino and other groups. The complex may specifically be a polypyridine complex, a porphyrin complex, an imidazole complex, a thiol complex, an azacyclic carbene complex or other forms of complexes.

在其中一个实施方式中,金属有机框架材料中的过渡金属离子为锌离子, 所述有机配体为卟啉类有机物或咪唑类有机物。更优选地,金属有机框架材料为方钠石型甲基咪唑锌(ZIF-8)。In one embodiment, the transition metal ion in the metal organic framework material is a zinc ion, and the organic ligand is a porphyrin-based organic compound or an imidazole-based organic compound. More preferably, the metal organic framework material is sodalite zinc methylimidazolium (ZIF-8).

在其中一个具体实施方式中,所述卤化物钙钛矿纳米粒子的化学通式为FAPb(I1- xBrx)3,其中,0≤x≤1。随着不同位置,不同的x取值,卤化物的钙钛矿的带隙逐渐变化,从而可以吸收不同波长段的光,具有较高的“光-化学能”转换效率。In one specific embodiment, the general chemical formula of the halide perovskite nanoparticles is FAPb(I 1- x Br x ) 3 , wherein 0≤x≤1. With different positions and different x values, the band gap of the halide perovskite gradually changes, so that it can absorb light in different wavelength bands and has a high "photo-chemical energy" conversion efficiency.

上述光催化纳米材料,将卤化物钙钛矿纳米粒子内嵌在在所述金属有机框架材料的孔道内,故而明显改善卤化物钙钛矿纳米粒子的水汽稳定性;所述卤化物钙钛矿纳米粒子的带隙从外到内逐渐减小,可以高效吸收利用不同能量的太阳光,具有较高的“光-化学能”转换效率。In the above photocatalytic nanomaterials, the halide perovskite nanoparticles are embedded in the pores of the metal organic framework material, so the water vapor stability of the halide perovskite nanoparticles is significantly improved; the halide perovskite nanoparticles The band gap of the nanoparticle gradually decreases from the outside to the inside, which can efficiently absorb and utilize sunlight of different energies, and has a high "photo-chemical energy" conversion efficiency.

本发明还提供了一种光催化纳米材料的制备方法。The invention also provides a preparation method of the photocatalytic nanomaterial.

一种光催化纳米材料的制备方法,包括如下步骤:A preparation method of a photocatalytic nanomaterial, comprising the following steps:

将可溶性金属盐、金属氧化物纳米片与咪唑类化合物在有机溶剂中混合反应,得到金属有机框架材料MOFs;Mixing and reacting soluble metal salts, metal oxide nanosheets and imidazole compounds in organic solvents to obtain metal-organic framework material MOFs;

在所述金属有机框架材料上加载PbI2,得到第一产物PbI2@MOFs;Loading PbI 2 on the metal-organic framework material to obtain the first product PbI 2 @MOFs;

将所述第一产物PbI2@MOFs;与FAI反应,得到第二产物FAPbI3@MOFs;The first product PbI 2 @MOFs; react with FAI to obtain the second product FAPbI 3 @MOFs;

将所述第二产物FAPbI3@MOFs与FABr进行离子交换处理,得到混合带隙的FAPb(I1-xBrx)3@MOFs钙钛矿纳米材料。The second product FAPbI 3 @MOFs is subjected to ion exchange treatment with FABr to obtain FAPb(I 1-x Br x ) 3 @MOFs perovskite nanomaterials with mixed band gaps.

其中,将可溶性金属盐、金属氧化物纳米片与咪唑类化合物在有机溶剂中混合反应,得到金属有机框架材料;优选地,所述金属有机框架材料通过水热反应合成。Wherein, the soluble metal salt, the metal oxide nanosheet and the imidazole compound are mixed and reacted in an organic solvent to obtain a metal-organic framework material; preferably, the metal-organic framework material is synthesized by a hydrothermal reaction.

其中,加载PbI2的目的是,将PbI2引入到金属有机框架材料的孔道中。优选地,在所述金属有机框架材料上加载PbI2的步骤包括:将所述金属有机框架材料浸泡在PbI2溶液中一个小时以上。The purpose of loading PbI 2 is to introduce PbI 2 into the pores of the metal organic framework material. Preferably, the step of loading PbI 2 on the metal-organic framework material includes: soaking the metal-organic framework material in a PbI 2 solution for more than one hour.

其中,第一产物与FAI反应的目的是,内嵌在金属有机框架材料的孔道中的PbI2与FAI反应,使PbI2转变为FAPbI3;而FAPbI3依然内嵌在金属有机框架材料的孔道中。优选地,将所述第一产物与FAI反应的步骤包括:将所述第一产物浸泡在FAI溶液中8-12min。The purpose of the reaction between the first product and FAI is to react PbI 2 embedded in the pores of the metal organic framework material with FAI to convert PbI 2 into FAPbI 3 ; and FAPbI 3 is still embedded in the pores of the metal organic framework material. middle. Preferably, the step of reacting the first product with FAI includes: soaking the first product in the FAI solution for 8-12 min.

其中,离子交换处理的目的使,内嵌在金属有机框架材料的孔道中的FAPbI3纳米粒子中的碘离子与溴离子进行离子交换,即溴离子迁移进FAPbI3纳米粒子中,而原来FAPbI3纳米粒子中的碘离子部分迁移出来,也就是,部分位置的碘离子变成溴离子,表层迁移较快、离子交换较为衬底,而里层迁移较慢,离子交换不充分;从而使卤化物钙钛矿纳米粒子表层为FAPbBr3,里层为FAPbI3,介于两者之间的中间部分碘离子和溴离子的混合,只是不同区域两者各自的含量不同,导致不同区域带隙,即卤化物钙钛矿纳米粒子带隙可变。Among them, the purpose of the ion exchange treatment is that the iodide ions in the FAPbI 3 nanoparticles embedded in the pores of the metal organic framework are ion-exchanged with bromide ions, that is, the bromide ions migrate into the FAPbI 3 nanoparticles, while the original FAPbI 3 The iodide ions in the nanoparticles partially migrate out, that is, the iodide ions in some positions become bromide ions, the surface layer migrates faster and the ion exchange is more substrate, while the inner layer migrates slowly and the ion exchange is insufficient; The surface layer of perovskite nanoparticles is FAPbBr 3 , the inner layer is FAPbI 3 , and the intermediate part between the two is a mixture of iodide ions and bromide ions, but the contents of the two are different in different regions, resulting in different regions. Halide perovskite nanoparticles have variable band gaps.

优选地,将所述第二产物与FABr进行离子交换处理的步骤包括:将所述第二产物浸泡在FABr溶液中。Preferably, the step of subjecting the second product to FABr ion exchange treatment comprises: soaking the second product in a FABr solution.

更优选地,所述FABr溶液为FABr的异丙醇溶液;所述FABr的浓度为18g/L-22g/L。More preferably, the FABr solution is an isopropanol solution of FABr; the concentration of the FABr is 18g/L-22g/L.

在其中一个具体实施方式中,所述浸泡的时长为10min。In one specific embodiment, the soaking time is 10 minutes.

上述制备方法,获得的光催化纳米材料,明显改善卤化物钙钛矿纳米粒子的水汽稳定性;可以高效吸收利用不同能量的太阳光,具有较高的“光-化学能”转换效率。The photocatalytic nanomaterial obtained by the above preparation method can significantly improve the water vapor stability of the halide perovskite nanoparticles; it can efficiently absorb and utilize sunlight of different energies, and has a high "photo-chemical energy" conversion efficiency.

以下结合具体实施例对本发明作进一步的阐述。The present invention will be further elaborated below in conjunction with specific embodiments.

实施例1Example 1

合成金属有机框架材料ZIF-8:Synthetic metal organic framework material ZIF-8:

将717mg的Zn(NO3)2•6H2O(六水合硝酸锌)、180mg的H-MeIM(2-甲基咪唑)溶解于50mL的DMF中;在水热反应釜中,以5℃/min的升温速度加热至150℃后,保温24小时,后自然冷却至室温。Dissolve 717 mg of Zn(NO 3 ) 2 6H 2 O (zinc nitrate hexahydrate) and 180 mg of H-MeIM (2-methylimidazole) in 50 mL of DMF; After heating to 150°C at a heating rate of min, the solution was kept for 24 hours, and then cooled to room temperature naturally.

去除上层清液后,加入50mL氯仿,得到无色晶体颗粒。将无色晶体颗粒用DMF清洗三次后烘干,得到金属有机框架材料ZIF-8。After removing the supernatant, 50 mL of chloroform was added to obtain colorless crystal particles. The colorless crystal particles were washed three times with DMF and then dried to obtain the metal organic framework material ZIF-8.

制备第一产物:To prepare the first product:

将金属有机框架材料ZIF-8浸泡在1mmol/L的PbI2溶液中(溶剂为1:9的DMF和乙醇的混合溶剂)一小时。过滤后用DMF:乙醇=1:1的混合溶剂清洗后烘干,得到第一产物。The metal-organic framework material ZIF-8 was soaked in a 1 mmol/L PbI 2 solution (the solvent was a 1:9 mixed solvent of DMF and ethanol) for one hour. After filtering, washing with a mixed solvent of DMF:ethanol=1:1 and drying to obtain the first product.

制备第二产物:Prepare the second product:

将第一产物浸泡在10mg/mL的FAI的异丙醇溶液中,10min后,过滤并用异丙醇清洗后烘干,得到第二产物。The first product was soaked in the isopropanol solution of 10 mg/mL FAI, and after 10 min, filtered, washed with isopropanol, and dried to obtain the second product.

合成最终产物:Synthetic final product:

将第二产物浸泡在20mg/mL的FABr的异丙醇溶液中,10min后,过滤并用异丙醇清洗后烘干,得到光催化纳米材料。The second product was soaked in the isopropanol solution of 20 mg/mL FABr, after 10 min, filtered, washed with isopropanol, and dried to obtain the photocatalytic nanomaterial.

上面对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。The embodiments of the present application have been described above, but the present application is not limited to the above-mentioned specific embodiments. The above-mentioned specific embodiments are only illustrative rather than restrictive. Under the inspiration, without departing from the scope of protection of the purpose and claims of the present application, many forms can be made, which all fall within the protection of the present application.

Claims (10)

1.一种光催化纳米材料,其特征在于,包括金属有机框架材料、以及卤化物钙钛矿纳米粒子;所述卤化物钙钛矿纳米粒子内嵌在所述金属有机框架材料的孔道内;1. a photocatalytic nanomaterial, is characterized in that, comprises metal organic framework material and halide perovskite nanoparticle; Described halide perovskite nanoparticle is embedded in the pore of described metal organic framework material; 所述金属有机框架材料为金属过渡离子与有机配体形成的多孔性晶体材料;The metal-organic framework material is a porous crystalline material formed by metal transition ions and organic ligands; 所述卤化物钙钛矿纳米粒子的带隙从外到内逐渐减小;The band gap of the halide perovskite nanoparticles gradually decreases from the outside to the inside; 所述卤化物钙钛矿纳米粒子的化学通式为FAPb(I1-xBrx)3,其中,0≤x≤1;The chemical formula of the halide perovskite nanoparticles is FAPb(I 1-x Br x ) 3 , wherein 0≤x≤1; 所述卤化物钙钛矿纳米粒子的带隙范围为1.48eV-2.3eV 。The band gaps of the halide perovskite nanoparticles range from 1.48 eV to 2.3 eV. 2.根据权利要求1所述的光催化纳米材料,其特征在于,所述钙钛矿纳米粒子的表层为FAPbBr3,内核处为FAPbI32 . The photocatalytic nanomaterial according to claim 1 , wherein the surface layer of the perovskite nanoparticles is FAPbBr 3 , and the inner core is FAPbI 3 . 3 . 3.根据权利要求1所述的光催化纳米材料,其特征在于,所述过渡金属离子为锌离子、铁离子、铜离子、钴离子中的一种,所述有机配体为卟啉类有机物或咪唑类有机物。3. photocatalytic nanomaterial according to claim 1, is characterized in that, described transition metal ion is a kind of in zinc ion, iron ion, copper ion, cobalt ion, and described organic ligand is porphyrin organic matter or imidazole organics. 4.根据权利要求1所述的光催化纳米材料,其特征在于,所述金属有机框架材料为ZIF-8。4. The photocatalytic nanomaterial according to claim 1, wherein the metal organic framework material is ZIF-8. 5.一种光催化纳米材料的制备方法,其特征在于,包括如下步骤:5. a preparation method of photocatalytic nanomaterial, is characterized in that, comprises the steps: 制备金属有机框架材料;Preparation of metal organic framework materials; 在所述金属有机框架材料上加载PbI2,得到第一产物Loading PbI 2 on the metal organic framework material to obtain the first product 将所述第一产物;与FAI反应,得到第二产物;with the first product; react with FAI to obtain the second product; 将所述第二产物与FABr进行离子交换处理。The second product is ion-exchanged with FABr. 6.根据权利要求5所述的制备方法,其特征在于,所述金属有机物框架为可溶性金属盐与咪唑类化合物在有机溶剂中混合反应制得。6 . The preparation method according to claim 5 , wherein the metal-organic framework is prepared by mixing and reacting a soluble metal salt and an imidazole compound in an organic solvent. 7 . 7.根据权利要求5所述的制备方法,其特征在于,将所述第二产物与FABr进行离子交换处理的步骤包括:将所述第二产物浸泡在FABr溶液中。7 . The preparation method according to claim 5 , wherein the step of performing ion exchange treatment on the second product and FABr comprises: soaking the second product in a FABr solution. 8 . 8.根据权利要求7所述的制备方法,其特征在于,所述FABr溶液为FABr的异丙醇溶液;所述FABr的浓度为18g/L-22g/L;所述浸泡的时长为1-20min。8. preparation method according to claim 7, is characterized in that, described FABr solution is the isopropanol solution of FABr; The concentration of described FABr is 18g/L-22g/L; The duration of described soaking is 1- 20min. 9.根据权利要求5所述的制备方法,其特征在于,在所述金属有机框架材料上加载PbI2的步骤包括:将所述金属有机框架材料浸泡在PbI2溶液中一个小时以上。9 . The preparation method according to claim 5 , wherein the step of loading PbI 2 on the metal organic framework material comprises: soaking the metal organic framework material in a PbI 2 solution for more than one hour. 10 . 10.根据权利要求5所述的制备方法,其特征在于,将所述第一产物与FAI反应的步骤包括:将所述第一产物浸泡在FAI溶液中8-12min。10 . The preparation method according to claim 5 , wherein the step of reacting the first product with FAI comprises: soaking the first product in an FAI solution for 8-12 min. 11 .
CN202110244234.0A 2021-03-05 2021-03-05 Photocatalytic nano material and preparation method thereof Active CN112619709B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110244234.0A CN112619709B (en) 2021-03-05 2021-03-05 Photocatalytic nano material and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110244234.0A CN112619709B (en) 2021-03-05 2021-03-05 Photocatalytic nano material and preparation method thereof

Publications (2)

Publication Number Publication Date
CN112619709A true CN112619709A (en) 2021-04-09
CN112619709B CN112619709B (en) 2021-06-01

Family

ID=75297585

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110244234.0A Active CN112619709B (en) 2021-03-05 2021-03-05 Photocatalytic nano material and preparation method thereof

Country Status (1)

Country Link
CN (1) CN112619709B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113976174A (en) * 2021-10-13 2022-01-28 华南理工大学 A kind of preparation method of metal-organic framework encapsulated organic-inorganic perovskite composite photocatalytic material
WO2023028644A1 (en) * 2021-08-31 2023-03-09 The University Of Queensland A metal organic framework (mof) glass composite comprising metal halide perovskite
CN116371452A (en) * 2023-04-19 2023-07-04 上海应用技术大学 A Cs2CuBr4 Photocatalyst for Efficient Adsorption and Reduction of CO2
US12234398B2 (en) 2021-08-31 2025-02-25 The University Of Queensland Metal organic framework (MOF) glass composite comprising metal halide perovskite

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106748885A (en) * 2016-12-05 2017-05-31 天津市职业大学 A kind of perovskite solar cell production method of halogenation carbonamidine lead
CN108774511A (en) * 2018-05-31 2018-11-09 兰州大学 The preparation of full-inorganic perovskite quantum dot/mesoporous MOF-5 composite luminescent materials and application in the led
CN112133837A (en) * 2020-09-11 2020-12-25 上海黎元新能源科技有限公司 Preparation method of perovskite crystal film
CN112397650A (en) * 2020-11-16 2021-02-23 中国科学院半导体研究所 Perovskite solar cell PN junction and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106748885A (en) * 2016-12-05 2017-05-31 天津市职业大学 A kind of perovskite solar cell production method of halogenation carbonamidine lead
CN108774511A (en) * 2018-05-31 2018-11-09 兰州大学 The preparation of full-inorganic perovskite quantum dot/mesoporous MOF-5 composite luminescent materials and application in the led
CN112133837A (en) * 2020-09-11 2020-12-25 上海黎元新能源科技有限公司 Preparation method of perovskite crystal film
CN112397650A (en) * 2020-11-16 2021-02-23 中国科学院半导体研究所 Perovskite solar cell PN junction and preparation method thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MINGYANG XIN ET AL.: ""The surface-enhanced Raman scattering of all-inorganic perovskite quantum dots of CsPbBr3 encapsulated in a ZIF-8 metal–organic framework"", 《NEW J. CHEM.》 *
YINGKE RENA ET AL.: ""Improve the quality of HC(NH2)2PbIxBr3−x through iodine vacancy filling for stable mixed perovskite solar cells"", 《CHEMICAL ENGINEERING JOURNAL》 *
韩俊峰等: "《薄膜化合物太阳能电池》", 30 September 2017, 北京理工大学出版社 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023028644A1 (en) * 2021-08-31 2023-03-09 The University Of Queensland A metal organic framework (mof) glass composite comprising metal halide perovskite
AU2022335914B2 (en) * 2021-08-31 2024-05-02 Cambridge Enterprise Limited A metal organic framework (mof) glass composite comprising metal halide perovskite
US12234398B2 (en) 2021-08-31 2025-02-25 The University Of Queensland Metal organic framework (MOF) glass composite comprising metal halide perovskite
CN113976174A (en) * 2021-10-13 2022-01-28 华南理工大学 A kind of preparation method of metal-organic framework encapsulated organic-inorganic perovskite composite photocatalytic material
CN116371452A (en) * 2023-04-19 2023-07-04 上海应用技术大学 A Cs2CuBr4 Photocatalyst for Efficient Adsorption and Reduction of CO2

Also Published As

Publication number Publication date
CN112619709B (en) 2021-06-01

Similar Documents

Publication Publication Date Title
Zhang et al. Recent progress in lanthanide metal–organic frameworks and their derivatives in catalytic applications
Yuan et al. Stable metal–organic frameworks: design, synthesis, and applications
Chamanehpour et al. A hierarchical graphitic carbon nitride supported by metal–organic framework and copper nanocomposite as a novel bifunctional catalyst with long-term stability for enhanced carbon dioxide photoreduction under solar light irradiation
CN112619709A (en) Photocatalytic nano material and preparation method thereof
Sultana et al. Rational design of light induced self healed Fe based oxygen vacancy rich CeO 2 (CeO 2 NS–FeOOH/Fe 2 O 3) nanostructure materials for photocatalytic water oxidation and Cr (VI) reduction
Jiang et al. Recent research progress and challenges of MIL-88 (Fe) from synthesis to advanced oxidation process
Mubarak et al. The chemistry of MIL-125 based materials: Structure, synthesis, modification strategies and photocatalytic applications
CN107308990B (en) A kind of preparation method of TiO2/porphyrin/MOFs ultrathin heterobody
Abdelhamid Removal of carbon dioxide using zeolitic imidazolate frameworks: adsorption and conversion via catalysis
CN108745393B (en) Bismuth-bismuth oxycarbonate heterostructure photocatalytic material and preparation method thereof
Faraji et al. Enhanced photocatalytic activity by synergic action of ZIF-8 and NiFe2O4 under visible light irradiation
CN106492854A (en) Preparation of composite nano-Ag3PO4/TiO2 material with photocatalytic performance by two-step method and its method and application
Zhang et al. Recent advances in photocatalysis over metal–organic frameworks‐based materials
CN109622013B (en) Graphite-like carbon nitride- (110) crystal face bismuth vanadate Z-type heterojunction photocatalyst and preparation method and application thereof
CN110479315B (en) Porous indium sulfide/spherical molybdenum disulfide composite material and preparation method and application thereof
Zhang et al. Recent advances in the synthesis and catalytic applications of metal–organic framework/covalent organic framework composites
Hou et al. Grinding preparation of 2D/2D g-C3N4/BiOCl with oxygen vacancy heterostructure for improved visible-light-driven photocatalysis
Le et al. Rare earth element-modified MOF materials: synthesis and photocatalytic applications in environmental remediation
Yang et al. A generic and facile strategy to fabricate metal–organic framework films on TiO 2 substrates for photocatalysis
Dong et al. Recent advances in core-shell organic framework-based photocatalysts for energy conversion and environmental remediation
Tang et al. A Review of Metal–Organic Frameworks Derived Hollow‐Structured Photocatalysts: Synthesis and Applications
CN102658104A (en) Preparation method of TiO2 catalyst with photocatalytic activity under visible light
Çakar et al. MOFs-based dye-sensitized photovoltaics
CN114522731B (en) Application of ceria-metal organic framework in photocatalytic degradation of active blue 19
CN111816718B (en) A self-assembled growth method of array heterojunction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211021

Address after: 430062 368 Friendship Avenue, Wuchang District, Wuhan, Hubei.

Patentee after: Hubei University

Address before: 100083 512, 5 / F, No.9, North Fourth Ring Road West, Haidian District, Beijing

Patentee before: BEIJING SIJIANTONG TECHNOLOGY & DEVELOPMENT Co.,Ltd.

Patentee before: Hubei University