CN112619708B - 一种基于卟啉功能化碳纳米管的分子印迹聚合物及其制备方法和应用 - Google Patents

一种基于卟啉功能化碳纳米管的分子印迹聚合物及其制备方法和应用 Download PDF

Info

Publication number
CN112619708B
CN112619708B CN202011467786.XA CN202011467786A CN112619708B CN 112619708 B CN112619708 B CN 112619708B CN 202011467786 A CN202011467786 A CN 202011467786A CN 112619708 B CN112619708 B CN 112619708B
Authority
CN
China
Prior art keywords
porphyrin
functionalized carbon
molecularly imprinted
imprinted polymer
polymer based
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011467786.XA
Other languages
English (en)
Other versions
CN112619708A (zh
Inventor
高瑞霞
王超峰
宋慧佳
高路瑶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202011467786.XA priority Critical patent/CN112619708B/zh
Publication of CN112619708A publication Critical patent/CN112619708A/zh
Application granted granted Critical
Publication of CN112619708B publication Critical patent/CN112619708B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1825Ligands comprising condensed ring systems, e.g. acridine, carbazole
    • B01J31/183Ligands comprising condensed ring systems, e.g. acridine, carbazole with more than one complexing nitrogen atom, e.g. phenanthroline
    • B01J35/39
    • B01J35/61
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种基于卟啉功能化碳纳米管的分子印迹聚合物及其制备方法和应用,属于纳米材料制备技术领域。本发明采用卟啉‑金属配合物功能化碳纳米管复合材料作为基底材料,以多巴胺为功能单体和交联剂,方法简单,条件温和,印迹层均匀。此外,该方法制备的分子印迹聚合物具有较高的选择性,较大的吸附量,较强的可见光催化去除模板分子的性能,以及优异的稳定性和重复利用性,可用于光电转换、光催化、电催化、吸附以及分离等领域。

Description

一种基于卟啉功能化碳纳米管的分子印迹聚合物及其制备方 法和应用
技术领域
本发明属于纳米材料制备技术领域,具体涉及一种基于卟啉功能化碳纳米管的分子印迹聚合物及其制备方法和应用。
背景技术
随着工业和城市的迅猛发展,水污染日益加重,许多国家和地区都面临着水资源短缺的危机,特别是水体中有机污染物的治理更是亟待解决的难题。相对于常用的物理方法和生物方法,光催化降解技术以其广谱适用性和对有毒有机物的敏感性,为有机废水处理提供了一条新的、有工业化实际应用价值的途径。但是污水中有机污染物的光降解不具有选择性,因此,对于水体中浓度低又急需去除的有机污染物的去除依旧是当前迫切解决的难题。
分子印迹技术是一种构筑具有特异性识别位点的分子印迹聚合物(MIPs)的方法。MIPs可以识别一种或一类与模板分子大小、形状以及化学功能相同或相近的分子,其具有特异选择性。MIPs还具有制备简单、成本低、物理化学性能稳定、选择性高等优点。但是,在制备MIPs的过程中往往需要大量的有机试剂把模板分子从聚合物中洗脱去除。该过程不仅需要消耗大量的有机试剂,且需要花费较长的时间以及产生二次污染。
卟啉是一类刚性大环共轭结构的化合物,易金属化和环上修饰,具有优异的光电性能、吸附性能、可见光催化性能,在自然界生化系统中发挥着重要的作用。当前,基于卟啉分子材料的分子印迹聚合物及其可见光光催化去除模板分子还未见报道。
发明内容
为了克服上述现有技术的缺点,本发明的目的在于提供一种基于卟啉功能化碳纳米管的分子印迹聚合物及其制备方法和应用,该制备方法简单,催化降解模板分子性能可调,经该方法制得的分子印迹材料稳定性强、比表面积大、选择性高、光催化性能优良,从而能够应用于环境特别是水体中有机污染物的选择性分离、富集以及光催化去除。
为了达到上述目的,本发明采用以下技术方案予以实现:
本发明公开了一种基于卟啉功能化碳纳米管的分子印迹聚合物的制备方法,包括以下步骤:
1)将罗丹明6G的水溶液加入到卟啉-金属配合物功能化碳纳米管复合材料中,超声混匀后进行预吸附处理,得到混合体系;
2)将多巴胺加入步骤1)制得的混合体系中,然后加入Tris-HCl缓冲溶液,超声处理,得到均匀的分散液;
3)对步骤2)制得的分散液进行磁力搅拌反应,反应结束后,离心分离,得到固态产物;
4)将步骤3)制得的固态产物洗涤、干燥,然后用去离子水进行分散,并用光源在可见光下照射,得到光照后的固态产物;
5)将光照后的固态产物洗涤、干燥,制得基于卟啉功能化碳纳米管的分子印迹聚合物。
优选地,步骤1)中,罗丹明6G水溶液的浓度为0.005~0.05mmol·L-1,且罗丹明6G水溶液与卟啉-金属配合物功能化碳纳米管复合材料的用量比为10mL:(15~150)mg。
优选地,步骤1)中,预吸附处理时间为0.5~3小时。
优选地,步骤2)中,按照每mL罗丹明6G的水溶液加入3.0~12.0mg的用量比例加入多巴胺。
优选地,步骤2)中,Tris-HCl缓冲溶液的浓度为10mmol·L-1,pH值为7.5~8.5,体积为所加罗丹明6G水溶液的3倍。
优选地,步骤1)和2)中,超声功率为100~150W,超声温度为16~28℃,超声时间10~60min。
优选地,步骤3)中,磁力搅拌的转速为200~600转/分钟,搅拌时间为4~12h。
优选地,步骤4)中,光源波长范围为400~780nm。
本发明还公开了采用上述的制备方法制得的基于卟啉功能化碳纳米管的分子印迹聚合物。
本发明还公开了上述的基于卟啉功能化碳纳米管的分子印迹聚合物作为光催化吸附剂的应用,该基于卟啉-金属配合物功能化碳纳米管复合材料的分子印迹聚合物对罗丹明6G的吸附量为22~65mg·g-1
优选地,能够扩展至对污水中罗丹明6G检测、富集、分离及其去除,光电转换和光催化等方面的应用。
与现有技术相比,本发明具有以下有益效果:
本发明公开的基于卟啉功能化碳纳米管的分子印迹聚合物的制备方法,在室温下,通过多巴胺(DA)的一步自聚反应,在卟啉-金属配合物功能化碳纳米管复合材料(MWCNTs@TCPP-Sn,MPT)表面形成印迹有罗丹明6G(Rh6G)的聚多巴胺印迹层,然后可见光照射下去除模板分子Rh6G得到分子印迹聚合物。采用卟啉-金属配合物功能化碳纳米管复合材料作为基底材料,既具有较大的比表面积有利于较高量的模板分子印迹,又具有优异的可见光光催化性能有利于模板分子的快速去除。此外,本发明以多巴胺为功能单体和交联剂,可与模板和基底表面具有较强的非共价相互作用和良好的水分散性。另外,采用固定模板法表面分子印迹技术,使得制得的分子印迹聚合物对特定的模板分子具有特异的选择性。该制备方法操作简单,原料廉价易得。
进一步地,通过调节TCPP与MWCNTs的比例,DA的投料量,DA的聚合时间等可以控制模板分子的光去除速率。
经过本发明制备的基于卟啉功能化碳纳米管的分子印迹聚合物(MPT@PDA-MIP),具有较高的特异选择性和重复利用性,经过实验验证,重复利用八次后仍保持较高的稳定性和选择性。
从应用角度考虑,由于MPT@PDA-MIP中有大量的空穴,该空穴在尺寸,形状以及空间化学等方面与模板分子Rh6G完全匹配,因此可以与环境以及溶液中Rh6G特异性结合,从而起到分离纯化以及去除的目的,经实验验证其对罗丹明6G的吸附量为22~65mg·g-1,因而能够在对水中罗丹明6G检测、富集、分离及其去除,光电转换和光催化等方面广泛应用。
附图说明
图1为MPT@PDA-MIP的透射电子显微镜照片;
图2为MPT@PDA-MIP的紫外-可见吸收光谱;
图3为MPT@PDA-MIP的Zeta电位数据。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面结合附图对本发明做进一步详细描述:
本发明提供一种基于卟啉功能化碳纳米管的分子印迹聚合物的制备方法,采用卟啉-金属配合物功能化碳纳米管复合材料作为基底材料,以多巴胺为功能单体和交联剂,采用固定模板法表面分子印迹技术,通过调节碳纳米管与卟啉的比例,DA的投料量,DA的聚合时间等可以制得模板分子光去除速率可控的基于卟啉功能化碳纳米管的分子印迹聚合物。
具体地,一种基于卟啉功能化碳纳米管的分子印迹聚合物的制备方法,包括以下步骤:
1)将罗丹明6G(Rh6G)的水溶液加入到卟啉-金属配合物功能化碳纳米管复合材料(MPT)中,超声混匀,并预吸附;
2)将DA加入步骤1)制得的混合物中,然后加入Tris-HCl缓冲溶液,超声处理,得到均匀的分散液;
3)室温下,对所述分散液进行磁力搅拌,反应结束后,离心分离,得到固态产物;
4)将所述固态产物洗涤、干燥,然后用去离子水分散,并用光源在可见光下照射;
5)光照结束后,将步骤4)中光照后的固态产物洗涤、干燥,即制得基于卟啉功能化碳纳米管的分子印迹聚合物(MPT@PDA-MIP)。
其中,本发明所述卟啉-金属配合物功能化碳纳米管复合材料(MWCNTs@TCPP-Sn,MPT)的制备方法详见申请号为201910328908.8的专利中所记载的方法。即:通过一步溶剂热反应,将5,10,15,20-四(4-羧基苯基)卟啉(TCPP)与Sn2+在多壁碳纳米管(MWCNTs)表面进行配位自组装,得到活性位点分布均匀的卟啉-金属配合物(MWCNTs@TCPP-Sn)功能化碳纳米管复合材料。
具体地制备步骤,包括:
1)将无水SnCl2和5,10,15,20-四(4-羧基苯基)卟啉溶于无水乙醇与N,N-二甲基甲酰胺的混合溶剂中,得到混合溶液;
2)将碳纳米管加入步骤1)制得的混合溶液中,超声处理,得到均匀的分散液;
3)对分散液进行溶剂热反应,反应温度为80~150℃,反应时间为20~48h,反应结束后自然冷却至室温,离心分离,得到固态产物;
4)将固态产物洗涤、干燥,制得层厚可控的卟啉-金属配合物功能化碳纳米管复合材料。
其中,所述层厚可控指碳纳米管表面的卟啉-金属配合物壳层的厚度可控。
实施例1
一种基于卟啉功能化碳纳米管的分子印迹聚合物的制备方法,包括以下步骤:
1)将Rh6G的水溶液(0.005mmol·L-1,10mL)加入到MPT(15mg)中,超声混匀,超声功率100W,超声温度16℃,超声时间10min,并预吸附30min;
2)将DA(30mg)加入步骤1)制得的混合物中,然后加入30mL Tris-HCl(10mmol·L-1,pH=7.5)缓冲溶液,超声处理(超声功率100W,超声温度16℃,超声时间10min),得到均匀的分散液;
3)室温下,对所述分散液进行磁力搅拌(200转/分钟),反应4h,反应结束后,离心分离,得到固态产物;
4)将所述固态产物洗涤、干燥,然后用去离子水分散,用氙灯光源在可见光下照射(400-780nm);
5)光照结束后,将步骤4)中光照后的固态产物洗涤、干燥,即制得MPT@PDA-MIP。
实施例2
一种基于卟啉功能化碳纳米管的分子印迹聚合物的制备方法,包括以下步骤:
1)将Rh6G的水溶液(0.01mmol·L-1,10mL)加入到MPT(15mg)中,超声混匀,超声功率120W,超声温度20℃,超声时间20min,并预吸附50min;
2)将DA(90mg)加入步骤1)制得的混合物中,然后加入30mL Tris-HCl(10mmol·L-1,pH=8.5)缓冲溶液,超声处理(超声功率120W,超声温度20℃,超声时间20min),得到均匀的分散液;
3)室温下,对所述分散液进行磁力搅拌(400转/分钟),反应8h,反应结束后,离心分离,得到固态产物;
4)将所述固态产物洗涤、干燥,然后用去离子水分散,用氙灯光源在可见光下照射(400-780nm);
5)光照结束后,将步骤4)中光照后的固态产物洗涤、干燥,即制得MPT@PDA-MIP。
实施例3
一种基于卟啉功能化碳纳米管的分子印迹聚合物的制备方法,包括以下步骤:
1)将Rh6G的水溶液(0.015mmol·L-1,10mL)加入到MPT(25mg)中,超声混匀超声功率150W,超声温度28℃,超声时间30min,并预吸附60min;
2)将DA(120mg)加入步骤1)制得的混合物中,然后加入30mL Tris-HCl(10mmol·L-1,pH=8.0)缓冲溶液,超声处理(超声功率150W,超声温度28℃,超声时间30min),得到均匀的分散液;
3)室温下,对所述分散液进行磁力搅拌(600转/分钟),反应10h,反应结束后,离心分离,得到固态产物;
4)将所述固态产物洗涤、干燥,然后用去离子水分散,用氙灯光源在可见光下照射(400-780nm);
5)光照结束后,将步骤4)中光照后的固态产物洗涤、干燥,即制得MPT@PDA-MIP。
实施例4
一种基于卟啉功能化碳纳米管的分子印迹聚合物的制备方法,包括以下步骤:
1)将Rh6G的水溶液(0.03mmol·L-1,10mL)加入到MPT(45mg)中,超声混匀,超声功率150W,超声温度28℃,超声时间40min,并预吸附90min;
2)将DA(120mg)加入步骤1)制得的混合物中,然后加入30mL Tris-HCl(10mmol·L-1,pH=8.5)缓冲溶液,超声处理(超声功率150W,超声温度28℃,超声时间40min),得到均匀的分散液;
3)室温下,对所述分散液进行磁力搅拌(400转/分钟),反应10h,反应结束后,离心分离,得到固态产物;
4)将所述固态产物洗涤、干燥,然后用去离子水分散,用氙灯光源在可见光下照射(400-780nm);
5)光照结束后,将步骤4)中光照后的固态产物洗涤、干燥,即制得MPT@PDA-MIP。
实施例5
一种基于卟啉功能化碳纳米管的分子印迹聚合物的制备方法,包括以下步骤:
1)将Rh6G的水溶液(0.02mmol·L-1,10mL)加入到MPT(30mg)中,超声混匀,超声功率150W,超声温度28℃,超声时间30min,并预吸附60min;
2)将DA(100mg)加入步骤1)制得的混合物中,然后加入30mL Tris-HCl(10mmol·L-1,pH=8.0)缓冲溶液,超声处理(超声功率150W,超声温度28℃,超声时间30min),得到均匀的分散液;
3)室温下,对所述分散液进行磁力搅拌(400转/分钟),反应8h,反应结束后,离心分离,得到固态产物;
4)将所述固态产物洗涤、干燥,然后用去离子水分散,用氙灯光源在可见光下照射(400-780nm);
5)光照结束后,将步骤4)中光照后的固态产物洗涤、干燥,即制得MPT@PDA-MIP。
实施例6
一种基于卟啉功能化碳纳米管的分子印迹聚合物的制备方法,包括以下步骤:
1)将Rh6G的水溶液(0.05mmol·L-1,10mL)加入到MPT(150mg)中,超声混匀,超声功率150W,超声温度28℃,超声时间60min,并预吸附180min;
2)将DA(120mg)加入步骤1)制得的混合物中,然后加入30mL Tris-HCl(10mmol·L-1,pH=8.5)缓冲溶液,超声处理(超声功率150W,超声温度28℃,超声时间60min),得到均匀的分散液;
3)室温下,对所述分散液进行磁力搅拌(600转/分钟),反应12h,反应结束后,离心分离,得到固态产物;
4)将所述固态产物洗涤、干燥,然后用去离子水分散,用氙灯光源在可见光下照射(400-780nm);
5)光照结束后,将步骤4)中光照后的固态产物洗涤、干燥,即制得MPT@PDA-MIP。
以实施例2制得的MPT@PDA-MIP为实验例,本发明采用透射电子显微镜(TEM)、紫外-可见吸收光谱(UV-Vis)、Zeta电位对MPT@PDA-MIP进行表征如下:
(1)形貌表征
采用JEM-F200(HR)型透射电子显微镜观察制备的MPT@PDA-MIP的形貌,结果如图1所示。从图1可以看出,所制备的MPT@PDA-MIP印迹层均匀,碳纳米管外壳层包覆均匀明显。
(2)光学光谱表征
采用Shimadzu UV-1800紫外-可见吸收光谱仪表征所制备纳米复合材料的光谱学性质,其光谱曲线如图2所示,从图中可以看出,相较于原料卟啉TCPP,DA以及基底材料MPT,所制备的分子印迹材料的吸收峰都发生了明显的红移,表明MPT@PDA-MIP的形成。
(3)表面电位表征
采用Malvern Nano-ZS90 Zeta电位分析仪表征所制备的纳米复合材料的表面电位,其结果如图3所示。从图中可以看出,相较于碳纳米管(MWCNTs)较强的正电性,由于每个TCPP分子带有四个负电性的羧基,故MPT的电性发生了明显的反转。而DA表现为正电性,在MPT表面印迹上DA后。所制备的分子印迹材料负电性会降低,表明MPT@PDA-MIP的成功制备。
由于本发明制得的MPT@PDA-MIP中具有大量的在尺寸,形状以及空间化学等方面与模板分子Rh6G完全匹配的空穴,而基底材料又具有较大的比表面积,因而能够选择性吸附分离大量的Rh6G。此外,基底材料MPT在可见光光照下能够产生高活性的活性氧物种,具有优异的光催化性能。因此,在可将光光照下能够催化Rh6G分解,重新生成MPT@PDA-MIP,以此能够实现重复利用的目的。
以下,具体的考察了MPT@PDA-MIP(实施例2所得)对于Rh6G吸附,光催化去除以及重复利用性。
称取MPT@PDA-MIP 5.0mg,分散于20mL Rh6G的水溶液(0.05mmol·L-1)中,室温下振荡60min后,过滤,分离。用紫外-可见分光光度计检测吸附前后Rh6G水溶液的吸光度,计算吸附量。
通过计算,MPT@PDA-MIP对Rh6G水溶液的吸附量为42.5mg·g-1,由此说明其对Rh6G具有良好的吸附性能。
然后,将上述分离得到的特异性吸附有Rh6G的MPT@PDA-MIP,重新分散在20mL去离子水中,进行光照催化吸附的Rh6G分子分解,达到去除的目的。重复上述吸附,光催化去除的过程,发现八个循环后,MPT@PDA-MIP对Rh6G的吸附量仍保持在95%以上,说明本发明制备的MPT@PDA-MIP具有优异的稳定性和重复利用性。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (8)

1.一种基于卟啉功能化碳纳米管的分子印迹聚合物的制备方法,其特征在于,包括以下步骤:
1)将罗丹明6G的水溶液加入到卟啉-金属配合物功能化碳纳米管复合材料中,超声混匀后进行预吸附处理,得到混合体系;
其中,罗丹明6G水溶液的浓度为0.005~0.05 mmol·L-1,且罗丹明6G水溶液与卟啉-金属配合物功能化碳纳米管复合材料的用量比为10mL:(15~150)mg;
所述卟啉-金属配合物功能化碳纳米管复合材料是通过一步溶剂热反应,将5, 10,15, 20-四(4-羧基苯基)卟啉与Sn2+在多壁碳纳米管表面进行配位自组装,得到活性位点分布均匀的卟啉-金属配合物功能化碳纳米管复合材料;
2)将多巴胺加入步骤1)制得的混合体系中,然后加入缓冲溶液进行超声处理,得到均匀的分散液;
按照每mL罗丹明6G的水溶液加入3.0~12.0 mg的用量比例加入多巴胺;
3)对步骤2)制得的分散液进行磁力搅拌反应,反应结束后,离心分离,得到固态产物;
4)将步骤3)制得的固态产物洗涤、干燥,然后用去离子水进行分散,并用光源在可见光下照射,得到光照后的固态产物;
5)将光照后的固态产物洗涤、干燥,制得基于卟啉功能化碳纳米管的分子印迹聚合物。
2.根据权利要求1所述的基于卟啉功能化碳纳米管的分子印迹聚合物的制备方法,其特征在于,步骤1)中,预吸附处理时间为0.5~3小时。
3.根据权利要求1所述的基于卟啉功能化碳纳米管的分子印迹聚合物的制备方法,其特征在于,步骤2)中,缓冲溶液采用浓度为10mmol·L-1的Tris-HCl缓冲溶液,且pH值为7.5~8.5,体积为所加罗丹明6G水溶液的3倍。
4.根据权利要求1所述的基于卟啉功能化碳纳米管的分子印迹聚合物的制备方法,其特征在于,步骤1)和2)中,超声功率为100~150 W,超声温度为16~28 ℃,超声时间10~60min。
5.根据权利要求1所述的基于卟啉功能化碳纳米管的分子印迹聚合物的制备方法,其特征在于,步骤3)中,磁力搅拌的转速为200~600转/分钟,搅拌时间为4~12h。
6.根据权利要求1所述的基于卟啉功能化碳纳米管的分子印迹聚合物的制备方法,其特征在于,步骤4)中,光源波长范围为400~780nm。
7.采用权利要求1~6中任意一项所述的制备方法制得的基于卟啉功能化碳纳米管的分子印迹聚合物。
8.权利要求7所述的基于卟啉功能化碳纳米管的分子印迹聚合物作为光催化吸附剂的应用,其特征在于,该基于卟啉功能化碳纳米管的分子印迹聚合物对罗丹明6G的吸附量为22~65 mg·g-1
CN202011467786.XA 2020-12-14 2020-12-14 一种基于卟啉功能化碳纳米管的分子印迹聚合物及其制备方法和应用 Active CN112619708B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011467786.XA CN112619708B (zh) 2020-12-14 2020-12-14 一种基于卟啉功能化碳纳米管的分子印迹聚合物及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011467786.XA CN112619708B (zh) 2020-12-14 2020-12-14 一种基于卟啉功能化碳纳米管的分子印迹聚合物及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN112619708A CN112619708A (zh) 2021-04-09
CN112619708B true CN112619708B (zh) 2021-12-28

Family

ID=75312967

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011467786.XA Active CN112619708B (zh) 2020-12-14 2020-12-14 一种基于卟啉功能化碳纳米管的分子印迹聚合物及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112619708B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115518692B (zh) * 2022-10-31 2023-06-20 西安交通大学 一种光沉积金属银的基于卟啉-二氧化钛的分子印迹聚合物及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102284284B (zh) * 2011-06-03 2013-02-27 南昌航空大学 一种直接法制备具有可见光响应的分子印迹型TiO2/WO3复合光催化剂的方法
CN103611520B (zh) * 2013-12-06 2015-09-09 江南大学 一种在可见光下具有高催化降解活性的分子印迹-掺杂TiO2的制法
CN104072762B (zh) * 2014-06-13 2016-06-08 西安交通大学 一种表面聚多巴胺修饰的磁性碳纳米管的制备方法
CN110078055B (zh) * 2019-04-23 2020-10-27 西安交通大学 一种层厚可控的卟啉-金属配合物功能化碳纳米管复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN112619708A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
Xiong et al. Adsorption of tetracycline antibiotics from aqueous solutions on nanocomposite multi-walled carbon nanotube functionalized MIL-53 (Fe) as new adsorbent
Zhao et al. Self-assembled gels of Fe-chitosan/montmorillonite nanosheets: Dye degradation by the synergistic effect of adsorption and photo-Fenton reaction
Tan et al. A new MOFs/polymer hybrid membrane: MIL-68 (Al)/PVDF, fabrication and application in high-efficient removal of p-nitrophenol and methylene blue
Naeem et al. Synthesis and characterization of graphene oxide sheets integrated with gold nanoparticles and their applications to adsorptive removal and catalytic reduction of water contaminants
Cheng et al. Surface imprinted polymer on a metal-organic framework for rapid and highly selective adsorption of sulfamethoxazole in environmental samples
CN104923166B (zh) 一种微孔Fe‑N‑MOF材料及其制备方法和应用
Cheng et al. Enhanced adsorption performance of UiO-66 via modification with functional groups and integration into hydrogels
Chen et al. Facile preparation of a remarkable MOF adsorbent for Au (III) selective separation from wastewater: Adsorption, regeneration and mechanism
Li et al. Hollow C, N-TiO2@ C surface molecularly imprinted microspheres with visible light photocatalytic regeneration availability for targeted degradation of sulfadiazine
Lu et al. NMP-induced surface self-corrosion-assisted rapid spin-coating method for synthesizing imprinted heterojunction photocatalyst anchored membrane towards high-efficiency selective degradation tetracycline
Kanmaz et al. Rhodamine B and murexide retention onto sulfonated poly (ether ether ketone)(sPEEK)
Gu et al. Porphyrin-based metal–organic frameworks loaded with Ag nanoparticles and their nanofibrous filters for the photocatalytic reduction of Cr (VI)
CN110523398B (zh) 一种碳纳米片层负载TiO2分子印迹材料及其制备方法和应用
Hao et al. Tunable synthesis of Pd/COF-LZU1 for efficient catalysis in nitrophenol reduction
Sun et al. Preparation of SiO2@ ZIF-67/CNTs and research on its adsorption performance at low-temperature
Zhu et al. Highly catalytic and durable nanocellulose fibers-based nanoporous membrane film for efficient organic pollutant degradation
Zhao et al. Boosting the adsorption and removal of dye from water by COOH-functionalized carbon nanotubes
CN112619708B (zh) 一种基于卟啉功能化碳纳米管的分子印迹聚合物及其制备方法和应用
Duan et al. Preparation of Cu2O-Fe3O4@ carbon nanocomposites derived from natural polymer hydrogel template for organic pollutants degradation
Wu et al. Accelerating the design of multilevel/hierarchical imprinted membranes for selective separation applications: A biomass-activated carbon/GO-based loading system
Han et al. l-Cysteine functionalized NH2-MIL-53 (Al) for Pb2+ and Ni2+ removal from aqueous solution
Wang et al. Preparation of egg white@ zeolitic imidazolate framework-8@ polyacrylic acid aerogel and its adsorption properties for organic dyes
Pan et al. FeOOH imprinted nanorods based on boronate affinity surface imprinting for the separation of shikimic acid
Liu et al. A general and programmable preparation of α-MnO2/GO/CS aerogels used for efficient degradation of MB in wastewater
Ge et al. Open/closed cage silsesquioxane-based thioamide-bridged hybrid networks with unexpected adsorption abilities and selectivity for Au (III)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant