CN112614081A - 干涉图去噪的方法 - Google Patents
干涉图去噪的方法 Download PDFInfo
- Publication number
- CN112614081A CN112614081A CN202110146306.8A CN202110146306A CN112614081A CN 112614081 A CN112614081 A CN 112614081A CN 202110146306 A CN202110146306 A CN 202110146306A CN 112614081 A CN112614081 A CN 112614081A
- Authority
- CN
- China
- Prior art keywords
- interferogram
- filtered
- model
- phase
- filtering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 238000001914 filtration Methods 0.000 claims abstract description 44
- 238000012549 training Methods 0.000 claims abstract description 39
- 238000007781 pre-processing Methods 0.000 claims abstract description 21
- 238000012360 testing method Methods 0.000 claims abstract description 9
- 238000012795 verification Methods 0.000 claims abstract description 7
- 238000011176 pooling Methods 0.000 claims description 15
- 238000010606 normalization Methods 0.000 claims description 11
- 230000006870 function Effects 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 7
- 238000005070 sampling Methods 0.000 claims description 7
- 230000004913 activation Effects 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 14
- 238000007476 Maximum Likelihood Methods 0.000 description 5
- 238000013527 convolutional neural network Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000011425 standardization method Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/20—Image enhancement or restoration using local operators
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10032—Satellite or aerial image; Remote sensing
- G06T2207/10044—Radar image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20172—Image enhancement details
- G06T2207/20192—Edge enhancement; Edge preservation
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Image Processing (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110146306.8A CN112614081A (zh) | 2021-02-03 | 2021-02-03 | 干涉图去噪的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110146306.8A CN112614081A (zh) | 2021-02-03 | 2021-02-03 | 干涉图去噪的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112614081A true CN112614081A (zh) | 2021-04-06 |
Family
ID=75254669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110146306.8A Pending CN112614081A (zh) | 2021-02-03 | 2021-02-03 | 干涉图去噪的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112614081A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113327205A (zh) * | 2021-06-01 | 2021-08-31 | 电子科技大学 | 基于卷积神经网络的相位去噪网络及方法 |
CN114970614A (zh) * | 2022-05-12 | 2022-08-30 | 中国科学院沈阳自动化研究所 | 一种基于自监督学习的低相干干涉信号去噪方法及系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103823219A (zh) * | 2014-03-14 | 2014-05-28 | 中国科学院电子学研究所 | 自适应迭代的非局部干涉合成孔径雷达干涉相位滤波方法 |
CN103871030A (zh) * | 2014-02-17 | 2014-06-18 | 中国科学院电子学研究所 | 一种干涉图像的滤波方法及设备 |
CN105469368A (zh) * | 2015-11-30 | 2016-04-06 | 中国人民解放军国防科学技术大学 | 一种干涉相位滤波方法 |
CN109633648A (zh) * | 2019-01-22 | 2019-04-16 | 北京航空航天大学 | 一种基于似然估计的多基线相位估计装置及方法 |
-
2021
- 2021-02-03 CN CN202110146306.8A patent/CN112614081A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103871030A (zh) * | 2014-02-17 | 2014-06-18 | 中国科学院电子学研究所 | 一种干涉图像的滤波方法及设备 |
CN103823219A (zh) * | 2014-03-14 | 2014-05-28 | 中国科学院电子学研究所 | 自适应迭代的非局部干涉合成孔径雷达干涉相位滤波方法 |
CN105469368A (zh) * | 2015-11-30 | 2016-04-06 | 中国人民解放军国防科学技术大学 | 一种干涉相位滤波方法 |
CN109633648A (zh) * | 2019-01-22 | 2019-04-16 | 北京航空航天大学 | 一种基于似然估计的多基线相位估计装置及方法 |
Non-Patent Citations (3)
Title |
---|
ALEJANDRO MESTRE-QUEREDA ET AL: "An Improved Phase Filter for Differential SAR Interferometry Based on an Iterative Method", 《IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING》, pages 1 - 15 * |
LIMING PU ET AL: "A Phase Filtering Method with Scale Recurrent Networks for InSAR", 《REMOTE SENSING》, pages 1 - 25 * |
薛海伟和冯大政: "一种新的干涉相位图局部自适应滤波方法", 《电子与信息学报》, vol. 38, no. 12, pages 3085 - 3092 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113327205A (zh) * | 2021-06-01 | 2021-08-31 | 电子科技大学 | 基于卷积神经网络的相位去噪网络及方法 |
CN113327205B (zh) * | 2021-06-01 | 2023-04-18 | 电子科技大学 | 基于卷积神经网络的相位去噪方法 |
CN114970614A (zh) * | 2022-05-12 | 2022-08-30 | 中国科学院沈阳自动化研究所 | 一种基于自监督学习的低相干干涉信号去噪方法及系统 |
CN114970614B (zh) * | 2022-05-12 | 2024-07-09 | 中国科学院沈阳自动化研究所 | 一种基于自监督学习的低相干干涉信号去噪方法及系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mandelli et al. | Seismic data interpolation through convolutional autoencoder | |
Mandelli et al. | Interpolation and denoising of seismic data using convolutional neural networks | |
Mullissa et al. | DeSpeckNet: Generalizing deep learning-based SAR image despeckling | |
Argenti et al. | A tutorial on speckle reduction in synthetic aperture radar images | |
CN107480619B (zh) | 基于eemd和排列熵的探地雷达b扫描图像的降噪方法及系统 | |
CN112614081A (zh) | 干涉图去噪的方法 | |
CN106127688A (zh) | 一种超分辨率图像重建方法及其系统 | |
Chen et al. | ARU-net: Reduction of atmospheric phase screen in SAR interferometry using attention-based deep residual U-net | |
CN114578356A (zh) | 基于深度学习的分布式散射体形变监测方法、系统及设备 | |
Li et al. | An interferometric phase noise reduction method based on modified denoising convolutional neural network | |
CN117975297B (zh) | 联合多源数据辅助的城区地表形变危险性精细识别方法 | |
CN117970332B (zh) | 一种联合光学影像的InSAR城区地表形变危险性精细识别方法 | |
CN114814840A (zh) | 含干扰合成孔径雷达图像筛选及干扰位置检测方法和系统 | |
CN117111000A (zh) | 一种基于双通道注意力残差网络的sar梳状谱干扰抑制方法 | |
Kanoun et al. | Anisotropic weighted KS-NLM filter for noise reduction in MRI | |
Kuruguntla et al. | Erratic noise attenuation using double sparsity dictionary learning method | |
CN112882026B (zh) | 一种树高反演的方法、装置、计算机存储介质及终端 | |
CN116148855B (zh) | 时序InSAR大气相位去除和形变解算的方法及系统 | |
Yan et al. | A fast non-local means filtering method for interferometric phase based on wavelet packet transform | |
Abdallah et al. | An enhanced weighted median filter for noise reduction in SAR interferograms | |
Chen et al. | SAR image despeckling by using nonlocal sparse coding model | |
Sun et al. | Overview of SAR image denoising based on transform domain | |
CN106934783B (zh) | 一种高频次遥感时间序列数据的时域重建方法 | |
CN113962897B (zh) | 基于序列遥感影像的调制传递函数补偿方法及装置 | |
Sebastianelli et al. | A speckle filter for SAR Sentinel-1 GRD data based on Residual Convolutional Neural Networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Yang Shucheng Inventor after: Huang Guoman Inventor after: Tao Liqing Inventor after: Cheng Chunquan Inventor after: Zhao Zheng Inventor after: Lu Lijun Inventor before: Yang Shucheng Inventor before: Huang Guoman Inventor before: Tao Liqing Inventor before: Cheng Chunquan Inventor before: Zhao Zheng Inventor before: Lu Lijun |
|
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20210406 |