CN112613505A - 一种基于深度学习的细胞微核识别、定位和计数方法 - Google Patents
一种基于深度学习的细胞微核识别、定位和计数方法 Download PDFInfo
- Publication number
- CN112613505A CN112613505A CN202011508857.6A CN202011508857A CN112613505A CN 112613505 A CN112613505 A CN 112613505A CN 202011508857 A CN202011508857 A CN 202011508857A CN 112613505 A CN112613505 A CN 112613505A
- Authority
- CN
- China
- Prior art keywords
- micronucleus
- cell
- deep learning
- positioning
- identification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000013135 deep learning Methods 0.000 title claims abstract description 38
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000011176 pooling Methods 0.000 claims abstract description 17
- 238000000605 extraction Methods 0.000 claims abstract description 12
- 238000010606 normalization Methods 0.000 claims abstract description 10
- 238000013507 mapping Methods 0.000 claims abstract description 9
- 230000001629 suppression Effects 0.000 claims abstract description 6
- 210000004027 cell Anatomy 0.000 claims description 67
- 238000000879 optical micrograph Methods 0.000 claims description 13
- 230000004807 localization Effects 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 5
- 238000012549 training Methods 0.000 claims description 5
- 210000000805 cytoplasm Anatomy 0.000 claims description 4
- 238000011478 gradient descent method Methods 0.000 claims description 3
- 238000001514 detection method Methods 0.000 abstract description 25
- 230000008569 process Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 9
- 230000001413 cellular effect Effects 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 210000004940 nucleus Anatomy 0.000 description 3
- 210000003855 cell nucleus Anatomy 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 231100000025 genetic toxicology Toxicity 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003181 biological factor Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000191 radiation effect Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/24—Aligning, centring, orientation detection or correction of the image
- G06V10/245—Aligning, centring, orientation detection or correction of the image by locating a pattern; Special marks for positioning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/04—Recognition of patterns in DNA microarrays
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011508857.6A CN112613505B (zh) | 2020-12-18 | 2020-12-18 | 一种基于深度学习的细胞微核识别、定位和计数方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011508857.6A CN112613505B (zh) | 2020-12-18 | 2020-12-18 | 一种基于深度学习的细胞微核识别、定位和计数方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112613505A true CN112613505A (zh) | 2021-04-06 |
CN112613505B CN112613505B (zh) | 2024-08-09 |
Family
ID=75240762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011508857.6A Active CN112613505B (zh) | 2020-12-18 | 2020-12-18 | 一种基于深度学习的细胞微核识别、定位和计数方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112613505B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113723535A (zh) * | 2021-09-02 | 2021-11-30 | 北京大学 | 基于CycleGAN深度学习的细胞微核组学图像处理方法及存储介质 |
CN114418995A (zh) * | 2022-01-19 | 2022-04-29 | 生态环境部长江流域生态环境监督管理局生态环境监测与科学研究中心 | 一种基于显微镜图像的级联藻类细胞统计方法 |
CN117253229A (zh) * | 2023-11-17 | 2023-12-19 | 浙江大学海南研究院 | 基于深度学习的海洋贻贝微核细胞识别与计数方法及应用 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130101199A1 (en) * | 2009-06-02 | 2013-04-25 | Ge Healthcare Uk Limited | Image analysis |
CN106780466A (zh) * | 2016-12-21 | 2017-05-31 | 广西师范大学 | 一种基于卷积神经网络的宫颈细胞图像识别方法 |
US20170169567A1 (en) * | 2014-05-23 | 2017-06-15 | Ventana Medical Systems, Inc. | Systems and methods for detection of structures and/or patterns in images |
US9934364B1 (en) * | 2017-02-28 | 2018-04-03 | Anixa Diagnostics Corporation | Methods for using artificial neural network analysis on flow cytometry data for cancer diagnosis |
CN108510012A (zh) * | 2018-05-04 | 2018-09-07 | 四川大学 | 一种基于多尺度特征图的目标快速检测方法 |
CN109145941A (zh) * | 2018-07-03 | 2019-01-04 | 怀光智能科技(武汉)有限公司 | 一种非规则宫颈细胞团图像分类方法及系统 |
US20190156481A1 (en) * | 2017-11-17 | 2019-05-23 | Sysmex Corporation | Image analysis method, apparatus, program, and learned deep learning algorithm |
CN110728200A (zh) * | 2019-09-23 | 2020-01-24 | 武汉大学 | 一种基于深度学习的实时行人检测方法及系统 |
CN111444844A (zh) * | 2020-03-26 | 2020-07-24 | 苏州腾辉达网络科技有限公司 | 一种基于变分自编码器的液基细胞人工智能检测方法 |
JP2020166711A (ja) * | 2019-03-29 | 2020-10-08 | 東レ株式会社 | 計数装置、計数方法、計数プログラムおよび記録媒体 |
CN112036298A (zh) * | 2020-08-28 | 2020-12-04 | 复旦大学附属华山医院北院 | 一种基于双段区块卷积神经网络的细胞检测方法 |
-
2020
- 2020-12-18 CN CN202011508857.6A patent/CN112613505B/zh active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130101199A1 (en) * | 2009-06-02 | 2013-04-25 | Ge Healthcare Uk Limited | Image analysis |
US20170169567A1 (en) * | 2014-05-23 | 2017-06-15 | Ventana Medical Systems, Inc. | Systems and methods for detection of structures and/or patterns in images |
CN106780466A (zh) * | 2016-12-21 | 2017-05-31 | 广西师范大学 | 一种基于卷积神经网络的宫颈细胞图像识别方法 |
US9934364B1 (en) * | 2017-02-28 | 2018-04-03 | Anixa Diagnostics Corporation | Methods for using artificial neural network analysis on flow cytometry data for cancer diagnosis |
US20190156481A1 (en) * | 2017-11-17 | 2019-05-23 | Sysmex Corporation | Image analysis method, apparatus, program, and learned deep learning algorithm |
CN108510012A (zh) * | 2018-05-04 | 2018-09-07 | 四川大学 | 一种基于多尺度特征图的目标快速检测方法 |
CN109145941A (zh) * | 2018-07-03 | 2019-01-04 | 怀光智能科技(武汉)有限公司 | 一种非规则宫颈细胞团图像分类方法及系统 |
JP2020166711A (ja) * | 2019-03-29 | 2020-10-08 | 東レ株式会社 | 計数装置、計数方法、計数プログラムおよび記録媒体 |
CN110728200A (zh) * | 2019-09-23 | 2020-01-24 | 武汉大学 | 一种基于深度学习的实时行人检测方法及系统 |
CN111444844A (zh) * | 2020-03-26 | 2020-07-24 | 苏州腾辉达网络科技有限公司 | 一种基于变分自编码器的液基细胞人工智能检测方法 |
CN112036298A (zh) * | 2020-08-28 | 2020-12-04 | 复旦大学附属华山医院北院 | 一种基于双段区块卷积神经网络的细胞检测方法 |
Non-Patent Citations (3)
Title |
---|
HSING-HAO SU等: "Automatic Detection Method for Cancer Cell Nucleus Image Based on Deep-Learning Analysis and Color Layer Signature Analysis Algorithm", 《SENSORS》, vol. 20, no. 16, 31 August 2020 (2020-08-31), pages 4409 * |
IHOR PALIY等: "Micro Nucleus Detection in Human Lymphocytes Using Convolutional Neural Network", 《ARTIFICIAL NEURAL NETWORKS-ICANN 2010, PART I》, 30 September 2010 (2010-09-30), pages 521 - 530, XP019152402 * |
陈新 等: "《机械结构动态设计理论方法及应用》", 30 September 1997, 机械工业出版社, pages: 237 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113723535A (zh) * | 2021-09-02 | 2021-11-30 | 北京大学 | 基于CycleGAN深度学习的细胞微核组学图像处理方法及存储介质 |
CN114418995A (zh) * | 2022-01-19 | 2022-04-29 | 生态环境部长江流域生态环境监督管理局生态环境监测与科学研究中心 | 一种基于显微镜图像的级联藻类细胞统计方法 |
CN117253229A (zh) * | 2023-11-17 | 2023-12-19 | 浙江大学海南研究院 | 基于深度学习的海洋贻贝微核细胞识别与计数方法及应用 |
Also Published As
Publication number | Publication date |
---|---|
CN112613505B (zh) | 2024-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12229959B2 (en) | Systems and methods for determining cell number count in automated stereology z-stack images | |
CN109523520B (zh) | 一种基于深度学习的染色体自动计数方法 | |
CN112699876B (zh) | 一种用于集气站多类型仪表自动读数方法 | |
CN108564085B (zh) | 一种自动读取指针式仪表读数的方法 | |
CN112613505B (zh) | 一种基于深度学习的细胞微核识别、定位和计数方法 | |
CN109977780A (zh) | 一种基于深度学习算法的硅藻的检测与识别方法 | |
CN108596046A (zh) | 一种基于深度学习的细胞检测计数方法及系统 | |
CN111179273A (zh) | 一种基于深度学习的白细胞核质自动分割方法及系统 | |
CN112819821B (zh) | 一种细胞核图像检测方法 | |
CN103518224A (zh) | 用于分析微生物生长的方法和软件 | |
CN109858428B (zh) | 基于机器学习和深度学习的ana荧光片自动识别方法 | |
CN118967672B (zh) | 一种工业缺陷检测方法、系统、装置和存储介质 | |
CN112365497A (zh) | 基于TridentNet和Cascade-RCNN结构的高速目标检测方法和系统 | |
CN109191467B (zh) | 一种细胞自噬表型的预测方法及装置 | |
CN111652883B (zh) | 基于深度学习的玻璃表面缺陷检测方法 | |
CN117152152B (zh) | 检测试剂盒的生产管理系统及方法 | |
CN113313109A (zh) | 一种荧光免疫层析试纸的半定量分析方法 | |
CN113313678A (zh) | 一种基于多尺度特征融合的精子形态学自动分析方法 | |
CN115909006A (zh) | 基于卷积Transformer的乳腺组织图像分类方法及系统 | |
CN116152498A (zh) | 基于数据驱动的金属表面缺陷语义分割网络与训练方法 | |
CN112071423B (zh) | 一种基于机器学习的免疫层析浓度检测方法及系统 | |
CN116559111A (zh) | 一种基于高光谱成像技术的高粱品种识别方法 | |
CN119559637A (zh) | 基于特征工程的免疫印迹数据分类系统 | |
Mir et al. | Forecasting Anthracnose Severity Levels in Mango Leaf using Hybrid Models | |
CN114863426B (zh) | 一种目标特征注意力与金字塔相耦合的微小目标检测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20220119 Address after: 230000 106-306, building 2, mingpan Animation Industrial Park, the intersection of Jingui road and Haitang Road, high tech Zone, Hefei, Anhui Province Applicant after: Hefei Maixin Biotechnology Co.,Ltd. Address before: Room 102-302, building 6, mingpan Animation Industrial Park, intersection of Jingui road and Haitang Road, Hefei hi tech Development Zone, Hefei City, Anhui Province 230000 Applicant before: Anhui danmusi Biotechnology Co.,Ltd. |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20250326 Address after: 230000 Xingyuan Community Service Center, High tech Zone, Hefei City, Anhui Province, China. Mingpan Animation Industry Park, Building 2, Intersection of Jingui Road and Haitang Road, No. 106-306 Patentee after: Hefei Shengliyou Information Technology Co.,Ltd. Country or region after: China Address before: 230000 106-306, building 2, mingpan Animation Industrial Park, the intersection of Jingui road and Haitang Road, high tech Zone, Hefei, Anhui Province Patentee before: Hefei Maixin Biotechnology Co.,Ltd. Country or region before: China |
|
TR01 | Transfer of patent right |