CN112613338A - 基于rgb图像融合特征的小麦叶层氮含量估测方法 - Google Patents
基于rgb图像融合特征的小麦叶层氮含量估测方法 Download PDFInfo
- Publication number
- CN112613338A CN112613338A CN202011303935.9A CN202011303935A CN112613338A CN 112613338 A CN112613338 A CN 112613338A CN 202011303935 A CN202011303935 A CN 202011303935A CN 112613338 A CN112613338 A CN 112613338A
- Authority
- CN
- China
- Prior art keywords
- wheat
- layer
- rgb image
- nitrogen content
- multiplied
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 title claims abstract description 158
- 241000209140 Triticum Species 0.000 title claims abstract description 148
- 235000021307 Triticum Nutrition 0.000 title claims abstract description 122
- 229910052757 nitrogen Inorganic materials 0.000 title claims abstract description 79
- 230000004927 fusion Effects 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 title claims abstract description 46
- 238000013527 convolutional neural network Methods 0.000 claims abstract description 15
- 238000005457 optimization Methods 0.000 claims abstract description 6
- 239000002245 particle Substances 0.000 claims abstract description 6
- 238000007781 pre-processing Methods 0.000 claims abstract description 5
- 238000012360 testing method Methods 0.000 claims description 29
- 238000012545 processing Methods 0.000 claims description 27
- 238000011049 filling Methods 0.000 claims description 21
- 238000000354 decomposition reaction Methods 0.000 claims description 20
- 238000005070 sampling Methods 0.000 claims description 19
- 238000011282 treatment Methods 0.000 claims description 17
- 238000011176 pooling Methods 0.000 claims description 14
- 238000004364 calculation method Methods 0.000 claims description 10
- 238000012937 correction Methods 0.000 claims description 9
- 238000000605 extraction Methods 0.000 claims description 8
- 238000010586 diagram Methods 0.000 claims description 6
- 238000001035 drying Methods 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 6
- 239000011159 matrix material Substances 0.000 claims description 6
- 238000005259 measurement Methods 0.000 claims description 6
- 238000010606 normalization Methods 0.000 claims description 6
- 238000012795 verification Methods 0.000 claims description 6
- 230000001066 destructive effect Effects 0.000 claims description 5
- 238000007637 random forest analysis Methods 0.000 claims description 5
- 238000004422 calculation algorithm Methods 0.000 claims description 4
- 238000004140 cleaning Methods 0.000 claims description 4
- 238000005520 cutting process Methods 0.000 claims description 4
- 238000005303 weighing Methods 0.000 claims description 4
- 238000007696 Kjeldahl method Methods 0.000 claims description 3
- 210000000056 organ Anatomy 0.000 claims description 3
- 230000009467 reduction Effects 0.000 claims description 3
- 230000004044 response Effects 0.000 claims description 3
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 claims description 3
- 230000000007 visual effect Effects 0.000 claims description 3
- 102000004190 Enzymes Human genes 0.000 claims description 2
- 108090000790 Enzymes Proteins 0.000 claims description 2
- 238000012886 linear function Methods 0.000 claims description 2
- 238000012544 monitoring process Methods 0.000 description 10
- 230000006870 function Effects 0.000 description 5
- 238000013459 approach Methods 0.000 description 2
- 235000013339 cereals Nutrition 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 235000016709 nutrition Nutrition 0.000 description 2
- 230000035764 nutrition Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 238000012271 agricultural production Methods 0.000 description 1
- 230000009418 agronomic effect Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000012272 crop production Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000004720 fertilization Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 239000000618 nitrogen fertilizer Substances 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
- G06V20/188—Vegetation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2411—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
- G06F18/253—Fusion techniques of extracted features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/004—Artificial life, i.e. computing arrangements simulating life
- G06N3/006—Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/56—Extraction of image or video features relating to colour
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N2021/1793—Remote sensing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N2021/8466—Investigation of vegetal material, e.g. leaves, plants, fruits
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Multimedia (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Pathology (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Immunology (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biophysics (AREA)
- Software Systems (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- Computing Systems (AREA)
- Image Processing (AREA)
Abstract
Description
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011303935.9A CN112613338B (zh) | 2020-11-19 | 2020-11-19 | 基于rgb图像融合特征的小麦叶层氮含量估测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011303935.9A CN112613338B (zh) | 2020-11-19 | 2020-11-19 | 基于rgb图像融合特征的小麦叶层氮含量估测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112613338A true CN112613338A (zh) | 2021-04-06 |
CN112613338B CN112613338B (zh) | 2023-11-24 |
Family
ID=75225946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011303935.9A Active CN112613338B (zh) | 2020-11-19 | 2020-11-19 | 基于rgb图像融合特征的小麦叶层氮含量估测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112613338B (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113390795A (zh) * | 2021-04-29 | 2021-09-14 | 北京农业信息技术研究中心 | 基于冠层成像光谱的茶叶鲜叶质量无损监测方法及装置 |
CN114663788A (zh) * | 2022-03-29 | 2022-06-24 | 浙江奥脉特智能科技有限公司 | 一种基于Yolo V5的电塔缺陷检测方法及系统 |
CN115546621A (zh) * | 2022-11-28 | 2022-12-30 | 浙江托普云农科技股份有限公司 | 一种作物长势分析方法、装置及应用 |
WO2024019632A1 (ru) * | 2022-07-22 | 2024-01-25 | Публичное Акционерное Общество "Сбербанк России" | Устройство и способ определения урожайности сельскохозяйственных культур |
WO2024085780A1 (ru) * | 2022-10-17 | 2024-04-25 | Публичное Акционерное Общество "Сбербанк России" | Устройство и способ определения видов сельскохозяйственных культур |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130044919A1 (en) * | 2010-05-24 | 2013-02-21 | Board Of Trustees Of The University Of Arkansas | System and method of in-season nitrogen measurement and fertilization of non-leguminous crops from digital image analysis |
CN107220967A (zh) * | 2017-05-08 | 2017-09-29 | 新疆农业大学 | 一种草地土壤退化评价方法 |
CN110069895A (zh) * | 2019-05-20 | 2019-07-30 | 中国水利水电科学研究院 | 冬小麦含氮量全生育时段光谱监测模型建立方法 |
CN110874617A (zh) * | 2019-11-26 | 2020-03-10 | 南京农业大学 | 一种冬小麦叶片氮含量估算模型的建立方法 |
-
2020
- 2020-11-19 CN CN202011303935.9A patent/CN112613338B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130044919A1 (en) * | 2010-05-24 | 2013-02-21 | Board Of Trustees Of The University Of Arkansas | System and method of in-season nitrogen measurement and fertilization of non-leguminous crops from digital image analysis |
CN107220967A (zh) * | 2017-05-08 | 2017-09-29 | 新疆农业大学 | 一种草地土壤退化评价方法 |
CN110069895A (zh) * | 2019-05-20 | 2019-07-30 | 中国水利水电科学研究院 | 冬小麦含氮量全生育时段光谱监测模型建立方法 |
CN110874617A (zh) * | 2019-11-26 | 2020-03-10 | 南京农业大学 | 一种冬小麦叶片氮含量估算模型的建立方法 |
Non-Patent Citations (2)
Title |
---|
崔日鲜;刘亚东;付金东;: "基于机器学习和可见光光谱的冬小麦叶片氮积累量估算", 光谱学与光谱分析, no. 06, pages 207 - 212 * |
罗建军;杨红云;路艳;易文龙;孙爱珍;: "基于遗传算法优化的BP神经网络进行水稻氮素营养诊断", 中国农业科技导报, no. 08, pages 89 - 98 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113390795A (zh) * | 2021-04-29 | 2021-09-14 | 北京农业信息技术研究中心 | 基于冠层成像光谱的茶叶鲜叶质量无损监测方法及装置 |
CN114663788A (zh) * | 2022-03-29 | 2022-06-24 | 浙江奥脉特智能科技有限公司 | 一种基于Yolo V5的电塔缺陷检测方法及系统 |
WO2024019632A1 (ru) * | 2022-07-22 | 2024-01-25 | Публичное Акционерное Общество "Сбербанк России" | Устройство и способ определения урожайности сельскохозяйственных культур |
WO2024085780A1 (ru) * | 2022-10-17 | 2024-04-25 | Публичное Акционерное Общество "Сбербанк России" | Устройство и способ определения видов сельскохозяйственных культур |
CN115546621A (zh) * | 2022-11-28 | 2022-12-30 | 浙江托普云农科技股份有限公司 | 一种作物长势分析方法、装置及应用 |
CN115546621B (zh) * | 2022-11-28 | 2023-02-28 | 浙江托普云农科技股份有限公司 | 一种作物长势分析方法、装置及应用 |
Also Published As
Publication number | Publication date |
---|---|
CN112613338B (zh) | 2023-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112613338B (zh) | 基于rgb图像融合特征的小麦叶层氮含量估测方法 | |
Huang et al. | Phenotypic techniques and applications in fruit trees: a review | |
CN110222475A (zh) | 一种基于无人机多光谱遥感反演冬小麦植株含水率的方法 | |
CN112345458A (zh) | 一种基于无人机多光谱影像的小麦产量估测方法 | |
CN112418188A (zh) | 基于无人机视觉的农作物生长全程数字化评估方法 | |
CN113221765B (zh) | 一种基于数字相机影像有效像元的植被物候期提取方法 | |
CN112147078B (zh) | 一种农作物表型信息多源遥感监测方法 | |
CN114926748A (zh) | Sentinel-1/2微波与光学多光谱影像结合的大豆遥感识别方法 | |
Xu et al. | Classification method of cultivated land based on UAV visible light remote sensing | |
CN111161362A (zh) | 一种茶树生长状态光谱影像鉴别方法 | |
CN115187865B (zh) | 基于地物光谱的无人机影像近红外波段模拟方法、介质 | |
CN112557307B (zh) | 天空地一体化湖库水质监测融合数据方法 | |
CN114140695B (zh) | 一种基于无人机多光谱遥感的茶树氮素诊断及品质指标测定的预测方法和系统 | |
CN112528912A (zh) | 基于边缘计算的作物生长监测嵌入式系统及方法 | |
CN114612794A (zh) | 一种细碎化农业区土地覆被与种植结构的遥感识别方法 | |
CN112418073B (zh) | 一种基于无人机图像融合特征的小麦植株氮含量估测方法 | |
CN116561509A (zh) | 顾及植被类型的城市植被地上生物量精确反演方法及系统 | |
Qu et al. | A fast and efficient approach to estimate wild blueberry yield using machine learning with drone photography: Flight altitude, sampling method and model effects | |
CN115019205B (zh) | 一种基于无人机多光谱影像的油菜花期spad和lai估测方法 | |
CN115690781A (zh) | 一种基于多光谱图像的果树病害识别方法及系统 | |
CN114842360A (zh) | 一种牧区旱情识别方法、系统及管理平台 | |
CN111860038B (zh) | 一种农作物前端识别装置及方法 | |
Hosseini et al. | Nitrogen estimation in sugarcane fields from aerial digital images using artificial neural network. | |
Swaminathan et al. | Early estimation of nitrogen stress and uptake in cotton based on spectral and morphological features extracted from UAV multispectral images | |
CN112966579B (zh) | 一种基于无人机遥感的大面积油茶林快速估产方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Address after: 210043 Jiangsu Nanjing Qixia District Bagua Zhou street Jiangsu Qixia modern agriculture industrial park Nanjing Agricultural University modern horticulture industry science and Technology Innovation Center Applicant after: NANJING AGRICULTURAL University Address before: Weigang Xuanwu District of Nanjing Jiangsu province 210095 No. 1 Applicant before: NANJING AGRICULTURAL University |
|
CB02 | Change of applicant information | ||
CB03 | Change of inventor or designer information |
Inventor after: Zhu Yan Inventor after: Zhang Yu Inventor after: Yang Baohua Inventor after: Yao Xia Inventor after: Ma Jifeng Inventor after: Zheng Hengbiao Inventor after: Cao Weixing Inventor after: Tian Yongchao Inventor after: Cheng Tao Inventor after: Qiu Xiaolei Inventor before: Zhu Yan Inventor before: Zhang Yu Inventor before: Yang Baohua Inventor before: Yao Xia Inventor before: Ma Jifeng Inventor before: Zheng Hengbiao Inventor before: Cao Weixing Inventor before: Tian Yongchao Inventor before: Cheng Tao Inventor before: Qiu Xiaolei |
|
CB03 | Change of inventor or designer information | ||
GR01 | Patent grant | ||
GR01 | Patent grant |