CN112611968A - 基于决策树的相量测量次同步振荡检测方法 - Google Patents

基于决策树的相量测量次同步振荡检测方法 Download PDF

Info

Publication number
CN112611968A
CN112611968A CN202011242495.0A CN202011242495A CN112611968A CN 112611968 A CN112611968 A CN 112611968A CN 202011242495 A CN202011242495 A CN 202011242495A CN 112611968 A CN112611968 A CN 112611968A
Authority
CN
China
Prior art keywords
subsynchronous oscillation
data
oscillation
subsynchronous
decision tree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011242495.0A
Other languages
English (en)
Inventor
劳永钊
曾顺奇
周小光
亓源
刘灏
毕天姝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Guangzhou Power Supply Bureau of Guangdong Power Grid Co Ltd
Original Assignee
North China Electric Power University
Guangzhou Power Supply Bureau of Guangdong Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University, Guangzhou Power Supply Bureau of Guangdong Power Grid Co Ltd filed Critical North China Electric Power University
Priority to CN202011242495.0A priority Critical patent/CN112611968A/zh
Publication of CN112611968A publication Critical patent/CN112611968A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/14Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本发明公开了属于电力系统测试技术领域的一种基于决策树的相量测量次同步振荡检测方法。基于决策树算法从PMU历史数据中预先离线学习次同步振荡阈值,以实现在线的次同步振荡快速检测。通过改变标签给定的判据,可以自适应地调整次同步振荡检测阈值以满足实际需求。对检测出的含有次同步振荡的数据,基于FFT频谱分析,计算出次同步振荡的频率和幅值以实现及时告警。该方法能够快速、准确地检测次同步振荡,在用FFT确定次同步振荡参数之前,排除了占比较多的非次同步振荡数据,从而明显减少了FFT分析的计算量,并能根据实际需求自适应调整阈值,因此采用基于决策树的PMU测量相量次同步振荡检测方法具有十分显著的优点。

Description

基于决策树的相量测量次同步振荡检测方法
技术领域
本发明属于电力系统测试技术领域,特别涉及一种基于决策树的相量测量次同步振荡检测方法。
背景技术
大力发展新能源是我国保障能源安全、应对气候变化的重要举措。近年来,电力系统次同步振荡的发生受到广泛关注。由于新能源发电和高压直流输电技术的快速发展,电网中安装了大量的电力电子装置,产生了大量的次/超同步间谐波分量。一些间谐波与发电机轴系固有频率互补,产生次同步振荡,严重威胁电力系统的安全稳定运行。例如,2015年,中国西部某新能源汇集地区发生严重次同步振荡事件,并波及多个电压等级,导致3台660MW发电机跳闸,造成大量电力损失。到目前为止,该地区次同步振荡已经发生了150余次。电力系统次同步振荡的实时检测对电网安全稳定运行至关重要。
轴系扭振保护利用转子的机械转速信号,广泛应用于现场次同步振荡检测中,但不能用于实时检测和告警。同步相量测量单元(Phasor Measurement Units,PMU)具有同步性、快速性和准确性,为电力系统扰动的在线检测提供了良好的数据基础。
基于同步相量测量,利用快速傅里叶变换(FFT)方法,可以得到次同步分量在频域内的频率和幅值,从而检测出次同步振荡事件并发出告警信号。由于现场数据量大,在用FFT确定次同步振荡参数之前,需要根据现场数据分布特点设置一定的阈值对次同步振荡进行检测,以实现更有针对性的FFT分析,减少计算量。决策树(DT)作为一种有效的机器学习算法,它的自动学习可以有效区分次同步振荡和非次同步振荡数据。近年来,机器学习等人工智能方法在电力系统扰动识别、负荷预测等方面得到了广泛的应用。这种方法避免了对复杂物理模型的研究,可以直接从数据中获取信息进行学习,从而次同步振荡阈值的自适应设置、实时检测和及时告警成为可能。因此本发明基于机器学习方法中的决策树算法,利用PMU测量相量数据,提出了一种次同步振荡检测方法。
发明内容
本发明的目的是提供一种基于决策树的相量测量次同步振荡检测方法,其特征在于,包括:
对次同步振荡与非次同步振荡的PMU相量测量数据,按照一定的窗长,进行特征提取,把每个数据窗中的数据表示为特征空间中的一维特征向量;
基于次同步振荡频率分量幅值大而显著的特点,利用FFT方法确定每个特征向量的标签为次同步振荡或非次同步振荡;其中,次同步振荡的标签值为+1;非次同步振荡的标签值为-1;
基于有标签的特征向量数据,训练决策树分类器;对于新输入类型未知的PMU的实时数据,按照同样的方法进行特征提取,并将所提特征向量输入至决策树分类器,实现次同步振荡的检测识别。
所述对次同步振荡与非次同步振荡的PMU相量测量数据,按照一定的窗长,进行特征提取,把每个数据窗中的数据表示为特征空间中的一维特征向量,该一维特征向量包括:
取历史和/或仿真的PMU电流相量的幅值数据作为训练数据;将训练数据按照一定的窗长进行划分;
对于一定长度的数据窗P中的PMU数据,获取上包络线上的数据点,形成集合A,获取下包络线上的数据点,形成集合B;将数据窗P中的第i个数据点加入到集合A或B中的判据为:
A:P(i)≥P(i-1)and P(i)≥P(i+1)
B:P(i)≤P(i-1)and P(i)≤P(i+1),
构造特征F,表征PMU数据的波动幅度,以区分次同步振荡和非次同步振荡,其表达式如下:
Figure BDA0002768887330000031
式中,
Figure BDA0002768887330000032
Figure BDA0002768887330000033
分别为集合A、B和P中所有幅值数据的平均值,γ是一个常数。
所述利用FFT方法确定每个特征向量的标签为次同步振荡或非次同步振荡包括:
对一定窗长的PMU电流幅值历史数据进行快速傅里叶变换(FFT)频谱分析,得到其频域;对于频域为5-45Hz中每个次同步频率分量,计算其幅值百分比;
根据次同步振荡频率分量幅值大而显著的特性,将某个频域对应的特征向量标记为“次同步振荡”的判据是:
在该频域中,有一个以上次同步频率分量的幅值百分比超过K%;或有一个以上次同步频率分量,其幅值超过同一频域中所有频率分量幅值平均值的M倍;
如果以上两者有一个为真,则相应特征向量被标记为“次同步振荡”;
调整K和M的值,以改变次同步振荡识别的阈值;若降低次同步振荡的漏检率,则需适当地降低K和M的值,从而得到更多的疑似次同步振荡数据;若降低次同步振荡的误检率,则需增加K和M的值,使得“次同步振荡”标签的给定更加谨慎;
当需要降低次同步振荡漏检率时,如果在线检测时设置了阈值参数K=α和M=β,那么在历史数据的标签确定过程中,应适当降低K和M的值,使分类器在在线检测识别次同步振荡时更倾向于给出“次同步振荡”的判断;
当需要降低次同步振荡误检率时,如果在线检测时设置了阈值参数K=α和M=β,那么在历史数据的标签确定过程中,应适当提高K和M的值,使分类器在在线检测识别次同步振荡时更倾向于给出“非次同步振荡”的判断;
确定K和M后,对所有训练特征向量样本进行标记,如果样本标记为“次同步振荡”,则标签值y为“+1”;如果样本标记为“非次同步振荡”,则标签值y为“-1”。
所述基于有标签的特征向量数据,训练决策树分类器,对于新输入的类型未知的PMU实时数据,按照同样的方法进行特征提取,并将所提特征向量输入至决策树分类器,实现次同步振荡的快速检测识别,步骤如下:
1)利用基于大量历史PMU电流相量幅值数据所获得的有标记特征向量样本,预先离线训练决策树分类器,从而得到“次同步振荡”和“非次同步振荡”的区分阈值;
2)对于新输入的实时PMU数据,按照与训练数据相同的数据窗长度进行特征提取,获得无标记的特征向量;
3)将无标记的特征向量输入决策树分类器,由决策树判定其类别为“次同步振荡”或“非次同步振荡”,给予相应的标签;
4)对于决策树标记为“次同步振荡”的新特征向量,将相应的PMU测量幅值数据予以保留。对这些数据进行FFT频谱分析,得到次同步振荡的具体频率和振幅;当振荡的频率接近发电机组轴系扭振频率、振荡振幅较大或振荡持续时间较长时,适时发出告警信号。
本发明的有益效果是本发明基于决策树算法从PMU历史数据中预先离线学习次同步振荡阈值,以实现在线的次同步振荡快速检测。通过改变标签给定的判据,可以自适应地调整次同步振荡检测阈值以满足实际需求。对检测出的含有次同步振荡的数据,基于FFT频谱分析,计算出次同步振荡的频率和幅值以实现及时告警。该方法能够快速、准确地检测次同步振荡,在用FFT确定次同步振荡参数之前,排除了占比较多的非次同步振荡数据,从而明显减少了FFT分析的计算量,并能根据实际需求自适应调整阈值,因此采用基于决策树的PMU测量相量次同步振荡检测方法具有十分显著的优点。本发明能够快速、准确地检测次同步振荡,从而用于进一步的次同步振荡告警。
附图说明
图1为基于决策树的PMU相量测量次同步振荡检测的流程图;
图2为次同步振荡与非次同步振荡的特征数值对比图;
图3为次同步振荡阈值调整思路示意图。
具体实施方式
本发明提供一种基于决策树的相量测量次同步振荡检测方法,下面结合实施例和附图,对本发明进行清楚、完整地描述。
决策树算法是一种可用于分类的机器学习算法,为有监督学习算法。给定有标签的训练样本集:D={(x1,y1),(x2,y2),…,(xb,yb)},yi={-1,+1},xi为a维向量,反映a个特征的取值;yi为标签,代表类别为正类或负类;b为样本数目。基本思路是基于训练集D在样本空间找到一个分类边界,将不同类别的样本点分开。
本发明以PMU相量数据为基础,通过构造特征向量对决策树分类器进行训练,得到次同步振荡数据与非次同步振荡之间的阈值。对于新的PMU数据,提取相同的特征并输入决策树分类器,以快速筛选出可能具有次同步振荡的数据。
决策树算法基于树形结构确定类别,其模型包括一个根节点、几个内部节点和几个叶节点。叶节点输出分类结果,其他节点根据某一特征划分子节点。
每个特征向量样本FV=(x,y)构成训练样本集D,对于每个FV中的某个连续特征F,其n个取值由小到大排列,表示为{F1,F2,…,Fn}。设置分割点t,样本集D根据F上的值分成Dt -和Dt +两个子集,包括值不大于t的样本和值大于t的样本。
对特征F,考虑n-1个划分点,形成集合TF
Figure BDA0002768887330000051
引入信息增益,用来衡量划分点的效果,其表达式为:
Figure BDA0002768887330000061
式中,|Dt λ|和|D|是样本集Dt λ和D中的样本数,Ent(D)是D的信息熵,用于度量样本集合的纯度,其表达式为:
Figure BDA0002768887330000062
其中,集合D中第k类样本的比例为pk,且有k=1,2,…,|u|。
根据信息增益的表达式,需要寻找最佳t以使Gain(D,F)最大化,从而实现两类样本的最有效划分。
如图1所示,为本发明实施例提供的一种基于决策树的PMU测量相量次同步振荡检测方法,主要包括如下步骤:
步骤1、对次同步振荡与非次同步振荡的PMU测量相量数据,按照一定的窗长,进行特征提取,把每个数据窗中的数据表示为特征空间中的一维特征向量。
本步骤的优选实施方式如下:
1)取历史和/或仿真的PMU电流相量的幅值数据作为训练数据;将训练数据按照一定的窗长进行划分。
2)对于一定长度的数据窗P中的PMU数据,获取上包络线上的数据点,形成集合A,获取下包络线上的数据点,形成集合B。将数据窗P中的某个数据点加入到集合A或B中的判据为:
A:P(i)≥P(i-1)and P(i)≥P(i+1)
B:P(i)≤P(i-1)and P(i)≤P(i+1)
3)构造特征F表征PMU数据的波动幅度,以区分次同步振荡和非次同步振荡,其表达式如下:
Figure BDA0002768887330000063
式中,
Figure BDA0002768887330000071
Figure BDA0002768887330000072
分别为集合A、B和P中所有幅值数据的平均值。γ是一个常数。
步骤2、基于次同步振荡频率分量幅值较大且较显著的特点,利用FFT方法确定每个特征向量的标签:次同步振荡(标签值为+1),非次同步振荡(标签值为-1)。
本步骤的优选实施方式如下:
1)对一定窗长的PMU电流幅值历史数据进行快速傅里叶变换(FFT)频谱分析,得到其频域。对于频域中的每个次同步频率分量(5-45Hz),计算其幅值占基波的百分比(简称“幅值百分比”)。
2)根据次同步振荡频率分量幅值较大、较显著的特性,将某个频域对应的特征向量标记为“次同步振荡”的判据是:
a.在该频域中,有一个或者多个次同步频率分量的幅值百分比超过K%。
b.有一个或者多个次同步频率分量,其幅值百分比超过同一频域中所有频率分量幅值百分比平均值的M倍。
如果a、b两个事件中有一个为真,则相应特征向量被标记为“次同步振荡”。
示例性的,可以设置K=0.5,M=4。
调整K和M的值,以改变次同步振荡识别的阈值。若希望降低次同步振荡的漏检率,则需适当地降低K和M的值,从而得到更多的疑似次同步振荡数据;若希望降低次同步振荡的误检率,则需增加K和M的值,使得“次同步振荡”标签的给定更加谨慎。
当需要降低次同步振荡漏检率时,如果在线检测时设置了阈值参数K=α和M=β,那么在历史数据的标签确定过程中,应适当降低K和M的值,使分类器在在线检测识别次同步振荡时更倾向于给出“次同步振荡”的判断。
示例性的,当K=0.5,M=4时,为了保证较低的漏检率,在对用于训练的历史数据给定标签时,按照K=0.4,M=3.5确定振荡和非振荡的边界。
当需要降低次同步振荡误检率时,如果在线检测时设置了阈值参数K=α和M=β,那么在历史数据的标签确定过程中,应适当提高K和M的值,使分类器在在线检测识别次同步振荡时更倾向于给出“非次同步振荡”的判断。
示例性的,当K=0.5,M=4时,为了保证较低的误检率,在对用于训练的历史数据给定标签时,按照K=0.6,M=4.5确定振荡和非振荡的边界。
3)确定K和M后,对所有训练特征向量样本进行标记。如果样本标记为“次同步振荡”,则标签值y为“+1”;如果样本标记为“非次同步振荡”,则标签值y为“-1”。
步骤3、基于有标签的特征向量数据,训练决策树分类器;对于新输入的类型未知的PMU实时数据,按照同样的方法进行特征提取,并将所提特征向量输入至决策树分类器,实现次同步振荡的快速检测识别。
本步骤的优选实施方式如下:
1)利用基于大量历史PMU电流相量幅值数据所获得的有标记特征向量样本,预先离线训练决策树分类器,从而得到“次同步振荡”和“非次同步振荡”的区分阈值。
2)对于新输入的实时PMU数据,按照与训练数据相同的数据窗长度进行特征提取,获得无标记的特征向量。
3)将无标记的特征向量输入决策树分类器,由决策树判定其类别为“次同步振荡”或“非次同步振荡”,给予相应的标签。
4)对于决策树标记为“次同步振荡”的新特征向量,将相应的PMU测量幅值数据予以保留。对这些数据进行FFT频谱分析,得到次同步振荡的具体频率和振幅。当振荡的频率接近发电机组轴系扭振频率、振荡振幅较大或振荡持续时间较长时,适时发出告警信号。
5)取PMU历史实际数据训练决策树分类器DT,对现场PMU不同场景下的实测数据进行振荡检测试验,包括不同的日期、振荡线路、电压等级和振荡分量个数。测试的平均准确率可达90%以上,证明此种振荡检测方法具有较好的普适性。
根据决策树算法的原理,基于在振荡、非振荡状态下电流相量幅值数据所具有的共性特征,对历史、仿真的PMU数据提取出的特征向量FV和其类别标签值y之间的函数关系进行学习,预先训练分类器,可以用于对实时输入的数据作有无次同步振荡的判定,具有合理性和可行性。以此为理论依据,可实现对于次同步振荡快速、准确地检测识别,并能基于此结果对较危险的振荡进行有针对性的深入分析,做出合适的反应措施。
实施例
为了说明本发明实施例上述方案的效果,还通过实验进行了验证,
1、特征提取和标签给定
取中国西部某新能源汇集地区多个不同振荡和非振荡场景下的PMU电流相量幅值现场数据,包括不同的日期、振荡线路、电压等级和振荡分量个数。PMU上送频率为100Hz,特征提取的数据窗长和数据窗的滑动步长均为1秒(含100个数据点)。当特征向量被标记时,阈值参数设置为:K=0.5,M=4。根据此参数设置,从PMU数据中提取了1450个有标记的特征向量,其中807个标注为“次同步振荡”,643个标注为“非次同步振荡”。当γ=6.0时,这些向量的特征F的值如图2所示。实线分割的左、右部分分别对应于振荡特征向量、非振荡特征向量。
从图2可以直观地看出,所提特征F可以有效地区分大多数标记为“次同步振荡”和“非次同步振荡”的样本,振荡时数值较大,非振荡时数值较小,数值差异从整体上看较为明显。同时也有少数样本对特征F的值产生混淆,这将导致决策树分类器的漏检或误检。
对这些出现混淆的数据分析表明,这些数据中包含的振荡分量的幅值百分比相对较低,振荡相对而言危害性较小。因此,作为表征电流幅值波动程度的特征F,其值较难超过设定的阈值。
2、次同步振荡检测。
利用对PMU现场数据进行特征提取和标签给定获得的1450个特征向量,形成训练样本集来训练决策树分类器。为了验证分类器的有效性,取与训练样本来自不同振荡和非振荡场景的PMU数据,包括不同的日期、振荡线路、电压等级和振荡分量个数。然后进行特征提取,构建测试样本集,并使用参数K=0.5和M=4得到正确的标签。将测试样本相量交予决策树分类器进行次同步振荡检测,将分类结果与利用FFT获得的正确标签进行对比,多个场景下的准确率结果如表1所示。
表1不同场景下的分类准确率
Figure BDA0002768887330000101
从表1可以看出,该方法能够有效地检测出大部分次同步振荡的数据,并且能够可靠地对大多数的非次同步振荡数据进行分类。该方法在FFT频谱分析之前进行,对次同步振荡进行快速检测和筛选,可以有效减少FFT的下一步工作量。
3、次同步振荡阈值调整
利用前述的训练样本集,对次同步振荡阈值进行适当调整,使分类器更好地满足实际的分类要求,调整思路如图3所示,包括降低次同步振荡的漏检率和误检率。并利用前述测试样本集,验证两种调整方法的效果。
为降低漏检率,决策树训练时,设置参数K=0.4,M=3.5,使得次同步振荡在特征F上的阈值降低。将决策树对测试样本的分类结果与其按照K=0.5和M=4进行FFT获得的标签进行对比,在各种场景下的准确率结果见表2。
表2不同场景下的分类准确率(训练时降低阈值)
Figure BDA0002768887330000111
为降低误检率,决策树训练时,设置参数K=0.6,M=4.5,使得次同步振荡在特征F上的阈值升高。将决策树对测试样本的分类结果与其按照K=0.5和M=4进行FFT获得的标签进行对比,在各种场景下的准确率结果见表3。
表3不同场景下的分类准确率(训练时升高阈值)
Figure BDA0002768887330000112
Figure BDA0002768887330000121
由表1、表2、表3对比可知,当次同步振荡训练阈值低于检测阈值时,“次同步振荡”类的分类准确率将提高。即当降低漏检率更重要时,以误检率的小幅增加为代价,换取漏检率的降低。同理,当次同步振荡训练阈值高于检测阈值时,“非次同步振荡”类的分类准确率将提高。即当降低误检率更重要时,以漏检率的小幅增加为代价,换取误检率的降低。综上所述,次同步振荡阈值及相应的决策树分类器的调整可以有效地引导分类器按一定方向改进。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例可以通过软件实现,也可以借助软件加必要的通用硬件平台的方式来实现。基于这样的理解,上述实施例的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。

Claims (4)

1.一种基于决策树的相量测量次同步振荡检测方法,其特征在于,包括:
对次同步振荡与非次同步振荡的PMU相量测量数据,按照一定的窗长,进行特征提取,把每个数据窗中的数据表示为特征空间中的一维特征向量;
基于次同步振荡频率分量幅值大而显著的特点,利用FFT方法确定每个特征向量的标签为次同步振荡或非次同步振荡;其中,次同步振荡的标签值为+1;非次同步振荡的标签值为-1;
基于有标签的特征向量数据,训练决策树分类器;对于新输入类型未知的PMU的实时数据,按照同样的方法进行特征提取,并将所提特征向量输入至决策树分类器,实现次同步振荡的检测识别。
2.根据权利要求1所述的基于决策树的相量测量次同步振荡检测方法,其特征在于,所述对次同步振荡与非次同步振荡的PMU相量测量数据,按照一定的窗长,进行特征提取,把每个数据窗中的数据表示为特征空间中的一维特征向量,该一维特征向量包括:
取历史和/或仿真的PMU电流相量的幅值数据作为训练数据;将训练数据按照一定的窗长进行划分;
对于一定长度的数据窗P中的PMU数据,获取上包络线上的数据点,形成集合A,获取下包络线上的数据点,形成集合B;将数据窗P中的第i个数据点加入到集合A或B中的判据为:
A:P(i)≥P(i-1)and P(i)≥P(i+1)
B:P(i)≤P(i-1)and P(i)≤P(i+1),
构造特征F,表征PMU数据的波动幅度,以区分次同步振荡和非次同步振荡,其表达式如下:
Figure FDA0002768887320000011
式中,
Figure FDA0002768887320000021
Figure FDA0002768887320000022
分别为集合A、B和P中所有幅值数据的平均值,γ是一个常数。
3.根据权利要求1所述的基于决策树的相量测量次同步振荡检测方法,其特征在于,所述利用FFT方法确定每个特征向量的标签为次同步振荡或非次同步振荡包括:
(1)对一定窗长的PMU电流幅值历史数据进行快速傅里叶变换(FFT)频谱分析,得到其频域;对于频域为5-45Hz中每个次同步频率分量,计算其幅值百分比;
(2)根据次同步振荡频率分量幅值大而显著的特性,将某个频域对应的特征向量标记为“次同步振荡”的判据是:
在该频域中,有一个以上的次同步频率分量,其幅值百分比超过K%;或有一个以上的次同步频率分量,其幅值超过同一频域中所有频率分量幅值平均值的M倍;
如果以上两者有一个为真,则相应特征向量被标记为“次同步振荡”;
(3)调整K和M的值,以改变次同步振荡识别的阈值;若降低次同步振荡的漏检率,则需适当地降低K和M的值,从而得到更多的疑似次同步振荡数据;若降低次同步振荡的误检率,则需增加K和M的值,使得“次同步振荡”标签的给定更加谨慎;
当需要降低次同步振荡漏检率时,如果在线检测时设置了阈值参数K=α和M=β,那么在历史数据的标签确定过程中,应适当降低K和M的值,使分类器在在线检测识别次同步振荡时更倾向于给出“次同步振荡”的判断;
当需要降低次同步振荡误检率时,如果在线检测时设置了阈值参数K=α和M=β,那么在历史数据的标签确定过程中,应适当提高K和M的值,使分类器在在线检测识别次同步振荡时更倾向于给出“非次同步振荡”的判断;
(4)对所有训练特征向量样本进行标记,在确定K和M后,如果样本标记为“次同步振荡”,则标签值y为“+1”;如果样本标记为“非次同步振荡”,则标签值y为“-1”。
4.根据权利要求1所述的基于决策树的相量测量次同步振荡检测方法,其特征在于,所述基于有标签的特征向量数据,训练决策树分类器,对于新输入的类型未知的PMU实时数据,按照同样的方法进行特征提取,并将所提特征向量输入至决策树分类器,实现次同步振荡的快速检测识别,步骤如下:
1)利用基于大量历史PMU电流相量幅值数据所获得的有标记特征向量样本,预先离线训练决策树分类器,从而得到“次同步振荡”和“非次同步振荡”的区分阈值;
2)对于新输入的实时PMU数据,按照与训练数据相同的数据窗长度进行特征提取,获得无标记的特征向量;
3)将无标记的特征向量输入决策树分类器,由决策树判定其类别为“次同步振荡”或“非次同步振荡”,给予相应的标签;
4)对于决策树标记为“次同步振荡”的新特征向量,将相应的PMU测量幅值数据予以保留;对这些数据进行FFT频谱分析,得到次同步振荡的具体频率和振幅;当振荡的频率接近发电机组轴系扭振频率、振荡振幅较大或振荡持续时间较长时,适时发出告警信号。
CN202011242495.0A 2020-11-09 2020-11-09 基于决策树的相量测量次同步振荡检测方法 Pending CN112611968A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011242495.0A CN112611968A (zh) 2020-11-09 2020-11-09 基于决策树的相量测量次同步振荡检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011242495.0A CN112611968A (zh) 2020-11-09 2020-11-09 基于决策树的相量测量次同步振荡检测方法

Publications (1)

Publication Number Publication Date
CN112611968A true CN112611968A (zh) 2021-04-06

Family

ID=75224590

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011242495.0A Pending CN112611968A (zh) 2020-11-09 2020-11-09 基于决策树的相量测量次同步振荡检测方法

Country Status (1)

Country Link
CN (1) CN112611968A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102593831A (zh) * 2012-03-14 2012-07-18 东北电网有限公司 电力系统次同步振荡事件在线检测系统的实现方法
US20190027935A1 (en) * 2016-01-26 2019-01-24 General Electric Technology Gmbh Oscillations in electrical power networks
CN111398679A (zh) * 2020-03-09 2020-07-10 华北电力大学 基于pmu测量相量的次同步振荡识别与告警方法
CN111413578A (zh) * 2019-05-29 2020-07-14 中国电力工程顾问集团华北电力设计院有限公司 一种次同步振荡的实时监测预警方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102593831A (zh) * 2012-03-14 2012-07-18 东北电网有限公司 电力系统次同步振荡事件在线检测系统的实现方法
US20190027935A1 (en) * 2016-01-26 2019-01-24 General Electric Technology Gmbh Oscillations in electrical power networks
CN111413578A (zh) * 2019-05-29 2020-07-14 中国电力工程顾问集团华北电力设计院有限公司 一种次同步振荡的实时监测预警方法
CN111398679A (zh) * 2020-03-09 2020-07-10 华北电力大学 基于pmu测量相量的次同步振荡识别与告警方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘树伟 等: "基于多维度功率振幅寻优的次同步振荡控制策略研究", 水力发电, vol. 44, no. 06, pages 98 - 102 *

Similar Documents

Publication Publication Date Title
Ahmad et al. Autoencoder-based condition monitoring and anomaly detection method for rotating machines
US11656263B2 (en) Effective feature set-based high impedance fault detection
Li et al. Health condition monitoring and early fault diagnosis of bearings using SDF and intrinsic characteristic-scale decomposition
CN111398679B (zh) 基于pmu测量相量的次同步振荡识别与告警方法
CN110994604B (zh) 基于lstm-dnn模型的电力系统暂态稳定评估方法
CN110222765B (zh) 一种永磁同步电机健康状态监测方法及系统
CN110417005B (zh) 结合深度学习和仿真计算的暂态稳定严重故障筛选方法
CN112200038B (zh) 一种基于cnn的电力系统振荡类型的快速辨识方法
CN112991579B (zh) 一种基于生成对抗网络的直升机动部件异常检测方法
CN112116262A (zh) 一种风力发电机组设备健康度的评价方法
Bonavolontà et al. A PSO-MMA method for the parameters estimation of interarea oscillations in electrical grids
CN112952830B (zh) 一种故障后电力系统暂态稳定预测方法
CN112834224A (zh) 一种核电汽轮发电机健康状态评估方法及系统
Chen et al. Fault anomaly detection of synchronous machine winding based on isolation forest and impulse frequency response analysis
CN115128345B (zh) 一种基于谐波监测的电网安全预警方法及系统
Karpilow et al. Detection of bad PMU data using machine learning techniques
CN117365869A (zh) 一种风电机组桨叶扫塔故障的自适应预警策略设计方法
CN111639583A (zh) 一种电网电能质量扰动的识别方法及系统
CN107147143B (zh) 一种风机连锁脱网故障早期预警模型建立方法
CN113237619A (zh) 变转速旋转机械振动的故障预警方法、装置、设备以及存储介质
CN112611968A (zh) 基于决策树的相量测量次同步振荡检测方法
CN109001556B (zh) 一种类强迫超低频振荡的判别方法及系统
CN116413553A (zh) 一种小电流接地故障的快速选线方法
CN115688015A (zh) 基于非侵入式负荷监测的电压暂降类别识别方法及设备
CN107454084A (zh) 基于杂交带的最近邻入侵检测算法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination