CN112598797B - 核电厂复杂多源异构数据同化的方法、系统、介质及设备 - Google Patents

核电厂复杂多源异构数据同化的方法、系统、介质及设备 Download PDF

Info

Publication number
CN112598797B
CN112598797B CN202011424971.0A CN202011424971A CN112598797B CN 112598797 B CN112598797 B CN 112598797B CN 202011424971 A CN202011424971 A CN 202011424971A CN 112598797 B CN112598797 B CN 112598797B
Authority
CN
China
Prior art keywords
monitoring
data
point
triangle
interpolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011424971.0A
Other languages
English (en)
Other versions
CN112598797A (zh
Inventor
涂红兵
陈卫华
罗亚林
王云福
侯斌
林加镇
刘鹤敏
程灿文
李云飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China General Nuclear Power Corp
China Nuclear Power Engineering Co Ltd
CGN Power Co Ltd
Shenzhen China Guangdong Nuclear Engineering Design Co Ltd
Original Assignee
China General Nuclear Power Corp
China Nuclear Power Engineering Co Ltd
CGN Power Co Ltd
Shenzhen China Guangdong Nuclear Engineering Design Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China General Nuclear Power Corp, China Nuclear Power Engineering Co Ltd, CGN Power Co Ltd, Shenzhen China Guangdong Nuclear Engineering Design Co Ltd filed Critical China General Nuclear Power Corp
Priority to CN202011424971.0A priority Critical patent/CN112598797B/zh
Publication of CN112598797A publication Critical patent/CN112598797A/zh
Application granted granted Critical
Publication of CN112598797B publication Critical patent/CN112598797B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/25Fusion techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Business, Economics & Management (AREA)
  • Mathematical Optimization (AREA)
  • Evolutionary Biology (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Primary Health Care (AREA)
  • Operations Research (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • General Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • Marketing (AREA)
  • Probability & Statistics with Applications (AREA)
  • Artificial Intelligence (AREA)
  • Algebra (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Databases & Information Systems (AREA)
  • Evolutionary Computation (AREA)
  • Computer Graphics (AREA)
  • Geometry (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

本发明公开了一种核电厂复杂多源异构数据同化的方法、系统、介质及设备,该方法包括以下步骤:S1:对指定区域内离散的多个监测点位进行Delaunay三角剖分,得到Delaunay三角网;S2:对指定区域进行时空网格划分,获得多个监测点位的坐标值;S3:采用三角形内插值法,根据三角形各监测点位以及插值点位的坐标值,计算插值点位到三角形各监测点位的权重;S4:根据某一时刻下三角形各监测点位的辐射应急监测数据以及权重,通过数据融合算法获得融合后的插值点位的监测数据。本发明能够综合分析多种辐射应急监测数据,对核事故后果评价结果进行快速可靠的数据同化,从而做出更准确的预测,向决策者提供实际可行的核应急决策技术支持。

Description

核电厂复杂多源异构数据同化的方法、系统、介质及设备
技术领域
本发明涉及计算机软件技术领域,尤其涉及一种核电厂复杂多源异构数据同化的方法、系统、介质及设备。
背景技术
在发生核事故时,可通过核电厂、气象站、辐射环境自动站、移动监测车等途径获取事故泄漏的源项数据、厂区范围的气象数据,利用集成的大气扩散模型预测出污染物的时空分布,由此可以计算放射性物质的剂量,以及应采取的最优防护行动,为后续的应急智能决策提供支持。
但辐射环境自动站、移动监测车等途径获取的辐射监测数据存在时空不统一,数据离散,不便于进行数据可视化展示、数据趋势预测所需的连续数据问题。因此如何快速的融合不同频率、不同时空、不同参数的数据,快速生成污染物的时空分布,是目前的主要挑战。
发明内容
本发明要解决的技术问题在于,针对现有技术的缺陷,提供一种核电厂复杂多源异构数据同化的方法、系统、介质及设备。
本发明解决其技术问题所采用的技术方案是:构造一种核电厂复杂多源异构数据同化的方法,包括以下步骤:
S1:对指定区域内离散的多个监测点位进行Delaunay三角剖分,得到Delaunay三角网;
S2:对指定区域进行时空网格划分,获得多个监测点位的坐标值;
S3:采用三角形内插值法,根据三角形各监测点位以及插值点位的坐标值,计算插值点位到三角形各监测点位的权重;
S4:根据某一时刻下三角形各监测点位的辐射应急监测数据以及所述权重,通过数据融合算法获得融合后的插值点位的监测数据。
优选地,在本发明所述的核电厂复杂多源异构数据同化的方法中,所述步骤S1包括:
S11:将指定区域内三维空间中离散的多个监测点位映射到二维水平面上;
S12:对水平面上的多个监测点位进行Delaunay三角剖分,将多个监测点位进行连接,形成Delaunay三角网。
优选地,在本发明所述的核电厂复杂多源异构数据同化的方法中,所述步骤S1还包括:
S10:选择指定区域内三维空间中离散的存在空间相关性的多个监测点位。
优选地,在本发明所述的核电厂复杂多源异构数据同化的方法中,所述步骤S2包括:
指定时间步长和空间步长,横纵坐标轴根据空间步长,将指定区域划分成网格区域,获得指定区域内多个监测点位的横纵坐标值。
优选地,在本发明所述的核电厂复杂多源异构数据同化的方法中,所述步骤S3包括:
采用三角形内插值方法,网格点作为插值点位,确定插值点位所处的三角形,根据网格区域下插值点位和三角形各监测点位的横纵坐标,计算插值点位到三角形各监测点位的距离倒数作为所述权重,,计算公式为:
其中,Xp,Yp为插值点位为P点在网格区域下的横纵坐标;XA,YA为监测点位为A点在网格区域下的横纵坐标;XB,YB为监测点位为B点在网格区域下的横纵坐标;XC,YC为监测点位为C点在网格区域下的横纵坐标;WA,WB,WC为权重。
优选地,在本发明所述的核电厂复杂多源异构数据同化的方法中,所述步骤S4包括:
根据三角形各监测点位在某一时间步长下的辐射应急监测数据以及所述权重,进行加权调和平均计算,获得融合后的插值点位的监测数据,计算公式为:
其中,VP为插值点位P点的监测数据,VA,VB,VC为三角形各监测点位A、B、C点的辐射应急监测数据。
优选地,在本发明所述的核电厂复杂多源异构数据同化的方法中,所述方法还包括:
S5:重复执行步骤S1-S4,计算出指定区域内所有插值点位的监测数据,再反映射至三维空间中,获得该指定区域的时空数据。
优选地,在本发明所述的核电厂复杂多源异构数据同化的方法中,所述方法还包括:
步骤S6:将指定区域的时空数据输出成指定文件格式。
本发明还构造了一种核电厂复杂多源异构数据同化的系统,包括:
空间三角剖分模块,用于对指定区域内离散的多个监测点位进行Delaunay三角剖分,得到Delaunay三角网;
时空网格划分模块,用于对指定区域进行时空网格划分,获得多个监测点位的坐标值;
权重计算模块,用于采用三角形内插值法,根据三角形各监测点位以及插值点位的坐标值,计算插值点位到三角形各监测点位的权重;
融合模块,用于根据某一时刻下三角形各监测点位的辐射应急监测数据以及所述权重,通过数据融合算法获得融合后的插值点位的监测数据。
优选地,在本发明所述的核电厂复杂多源异构数据同化的系统中,所述空间三角剖分模块包括:
映射模块,用于将指定区域内三维空间中离散的多个监测点位映射到二维水平面上;
三角网模块,用于对水平面上的多个监测点位进行Delaunay三角剖分,将多个监测点位进行连接,形成Delaunay三角网。
优选地,在本发明所述的核电厂复杂多源异构数据同化的系统中,所述空间三角剖分模块还包括:
相关性选择模块,用于选择指定区域内三维空间中离散的存在空间相关性的多个监测点位。
优选地,在本发明所述的核电厂复杂多源异构数据同化的系统中,所述时空网格划分模块包括:
指定模块,用于指定时间步长和空间步长;
划分模块,用于横纵坐标轴根据空间步长,将指定区域划分成网格区域,获得指定区域内多个监测点位的横纵坐标值。
优选地,在本发明所述的核电厂复杂多源异构数据同化的系统中,所述权重计算模块包括:
三角形确定模块,用于采用三角形内插值方法,网格点作为插值点位,确定插值点位所处的三角形;
距离计算模块,用于根据网格区域下插值点位和三角形各监测点位的横纵坐标,计算插值点位到三角形各监测点位的距离倒数作为所述权重,计算公式为:
其中,Xp,Yp为插值点位为P点在网格区域下的横纵坐标;XA,YA为监测点位为A点在网格区域下的横纵坐标;XB,YB为监测点位为B点在网格区域下的横纵坐标;XC,YC为监测点位为C点在网格区域下的横纵坐标;WA,WB,WC为权重。
优选地,在本发明所述的核电厂复杂多源异构数据同化的系统中,所述根据某一时刻下三角形各监测点位的辐射应急监测数据以及所述权重,通过数据融合算法获得融合后的插值点位的监测数据,包括:
根据三角形各监测点位在某一时间步长下的辐射应急监测数据以及所述权重,进行加权调和平均计算,获得融合后的插值点位的监测数据,计算公式为:
其中,VP为插值点位P点的监测数据,VA,VB,VC为三角形各监测点位A、B、C点的辐射应急监测数据。
优选地,在本发明所述的核电厂复杂多源异构数据同化的系统中,所述系统还包括:
时空数据计算模块,用于获取指定区域内所有插值点位的监测数据,再反映射至三维空间中,获得该指定区域的时空数据。
优选地,在本发明所述的核电厂复杂多源异构数据同化的系统中,所述系统还包括:
输出模块,用于将指定区域的时空数据输出成指定文件格式。
本发明还构造了一种计算机可读介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如上述任一项所述的核电厂复杂多源异构数据同化的方法。
本发明还构造了一种电子设备,包括:
一个或多个处理器;
存储装置,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现如上述任一项所述的核电厂复杂多源异构数据同化的方法。
通过实施本发明,具有以下有益效果:
本发明所研究的核电厂复杂多源异构数据同化方法能够综合分析多种辐射应急监测数据,对核事故后果评价结果进行快速可靠的数据同化,从而做出更准确的预测,向决策者提供实际可行的核应急决策技术支持,对短期内采取紧急防护行动、减轻核事故放射性后果具有重要意义。
并且,本发明采用一种新的样本选择方法,只采用具有空间相关性的监测点位的监测数据作为计算的输入值,可减少计算复杂度,提升计算效率。
本发明还采用了一种新的插值计算方法,采用计算点与相关点的距离倒数作为权重,加权调和平均值作为插值结果,取代了根据经验进行人工设置权重的过程,提高了估值的准确性。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明核电厂复杂多源异构数据同化的方法流程示意图;
图2是本发明Delaunay三角网的示意图;
图3是本发明核电厂复杂多源异构数据同化的系统模块图。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
需要说明的是,附图中所示的流程图仅是示例性说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解,而有的操作/步骤可以合并或部分合并,因此实际执行的顺序有可能根据实际情况改变。
附图中所示的方框图仅仅是功能实体,不一定必须与物理上独立的实体相对应。即,可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。
第一实施例,本发明构造了一种核电厂复杂多源异构数据同化的方法,适用于在指定区域内离散的多个监测点位,并且多个监测点位监测的数据存在时空不统一,数据离散,不便于进行数据可视化展示、数据趋势预测所需的连续数据问题,该方法包括以下步骤:
步骤S1:对指定区域内离散的多个监测点位进行Delaunay三角剖分,得到Delaunay三角网;
步骤S2:对指定区域进行时空网格划分,获得多个监测点位的坐标值;
步骤S3:采用三角形内插值法,根据三角形各监测点位以及插值点位的坐标值,计算插值点位到三角形各监测点位的权重;
步骤S4:根据某一时刻下三角形各监测点位的辐射应急监测数据以及所述权重,通过数据融合算法获得融合后的插值点位的监测数据。
在本实施例中,所述步骤S1包括:
步骤S11:将指定区域内三维空间中离散的多个监测点位映射到二维水平面上,如图2所示。其中,由于多个监测点位在指定区域三维空间中存在高度不统一的问题,因此将定区域内三维空间中离散的多个监测点位映射到二维水平面上,可解决高度不统一的问题。
步骤S12:对水平面上的多个监测点位进行Delaunay三角剖分,将多个监测点位进行连接,形成Delaunay三角网,如图2所示。具体地,每一个三角形的外接圆圆内不能存在点集内的其它任何一点,采用逐点插入法逐步生成Delaunay三角网。
并且,在一些实施例中,步骤S11之前还包括步骤S10:选择指定区域内三维空间中离散的存在空间相关性的多个监测点位,空间相关性是指多个监测点位监测到的数据在该指定区域内存在相互依赖性。相应地,步骤S11为:将指定区域内三维空间中离散的存在空间相关性的多个监测点位映射到二维水平面上。
在本实施例中,所述步骤S2包括:指定时间步长和空间步长,横纵坐标轴根据空间步长,将指定区域划分成网格区域,获得指定区域内多个监测点位的横纵坐标值,该横纵坐标轴均代表空间。
在本实施例中,所述步骤S3包括:采用三角形内插值方法,网格点作为插值点位,确定插值点位所处的三角形,根据网格区域下插值点位和三角形各监测点位的横纵坐标,计算插值点位到三角形各监测点位的距离倒数作为所述权重。
在一些实施例中,例如三角形各监测点位为A、B、C,插值点位为P,P点到三角形各监测点位为A、B、C的权重(WA、WB、WC)分别为:
其中,Xp,Yp为插值点位为P点在网格区域下的横纵坐标;XA,YA为监测点位为A点在网格区域下的横纵坐标;XB,YB为监测点位为B点在网格区域下的横纵坐标;XC,YC为监测点位为C点在网格区域下的横纵坐标;WA,WB,WC为权重。
在本实施例中,所述步骤S4包括:根据三角形各监测点位在某一时间步长下的辐射应急监测数据以及上述权重(WA、WB、WC),进行加权调和平均计算,获得融合后的插值点位的监测数据。
在一些实施例中,插值点位P点的监测数据可由所在三角形各监测点位A、B、C点的辐射应急监测数据进行加权调和平均计算求得,计算公式为:
其中,VP为插值点位P点的监测数据,VA,VB,VC分别表示三角形各监测点位A、B、C点的辐射应急监测数据。
在本实施例中,所述方法还包括:步骤S5:重复执行步骤S1-S4,计算出指定区域内所有插值点位的监测数据,即计算所有网格点的监测数据,再反映射至三维空间中,从而获得该指定区域的时空数据,完成数据同化,可以做出更准确的预测。
在本实施例中,所述方法还包括:步骤S6:将指定区域的时空数据输出成指定文件格式。
通过实施本发明,具有以下有益效果:
本发明所研究的核电厂复杂多源异构数据同化方法能够综合分析多种辐射应急监测数据,对核事故后果评价结果进行快速可靠的数据同化,从而做出更准确的预测,向决策者提供实际可行的核应急决策技术支持,对短期内采取紧急防护行动、减轻核事故放射性后果具有重要意义。
并且,本发明采用一种新的样本选择方法,只采用具有空间相关性的监测点位的监测数据作为计算的输入值,可减少计算复杂度,提升计算效率。
本发明还采用了一种新的插值计算方法,采用计算点与相关点的距离倒数作为权重,加权调和平均值作为插值结果,取代了根据经验进行人工设置权重的过程,提高了估值的准确性。
第二实施例,如图3所示,本发明还构造了一种核电厂复杂多源异构数据同化的系统,包括:
空间三角剖分模块,用于对指定区域内离散的多个监测点位进行Delaunay三角剖分,得到Delaunay三角网;
时空网格划分模块,用于对指定区域进行时空网格划分,获得多个监测点位的坐标值;
权重计算模块,用于采用三角形内插值法,根据三角形各监测点位以及插值点位的坐标值,计算插值点位到三角形各监测点位的权重;
融合模块,用于根据某一时刻下三角形各监测点位的辐射应急监测数据以及所述权重,通过数据融合算法获得融合后的插值点位的监测数据。
在本实施例中,所述空间三角剖分模块包括:
映射模块,用于将指定区域内三维空间中离散的多个监测点位映射到二维水平面上,如图2所示。其中,由于多个监测点位在指定区域三维空间中存在高度不统一的问题,因此将定区域内三维空间中离散的多个监测点位映射到二维水平面上,可解决高度不统一的问题。
三角网模块,用于对水平面上的多个监测点位进行Delaunay三角剖分,将多个监测点位进行连接,形成Delaunay三角网,如图2所示。具体地,每一个三角形的外接圆圆内不能存在点集内的其它任何一点,采用逐点插入法逐步生成Delaunay三角网。
并且在一些实施例中,所述空间三角剖分模块还包括:
相关性选择模块,用于选择指定区域内三维空间中离散的存在空间相关性的多个监测点位,空间相关性是指多个监测点位监测到的数据在该指定区域内存在相互依赖性。相应地,映射模块,用于将指定区域内三维空间中离散的存在空间相关性的多个监测点位映射到二维水平面上。
在本实施例中,所述时空网格划分模块包括:
指定模块,用于指定时间步长和空间步长;
划分模块,用于横纵坐标轴根据空间步长,将指定区域划分成网格区域,获得指定区域内多个监测点位的横纵坐标值,该横纵坐标轴均代表空间。
在本实施例中,所述权重计算模块包括:
三角形确定模块,用于采用三角形内插值方法,网格点作为插值点位,确定插值点位所处的三角形;
距离计算模块,用于根据网格区域下插值点位和三角形各监测点位的横纵坐标,计算插值点位到三角形各监测点位的距离倒数作为所述权重。
在一些实施例中,例如三角形各监测点位为A、B、C,插值点位为P,P点到三角形各监测点位为A、B、C的权重(WA、WB、WC)分别为:
其中,Xp,Yp为插值点位为P点在网格区域下的横纵坐标;XA,YA为监测点位为A点在网格区域下的横纵坐标;XB,YB为监测点位为B点在网格区域下的横纵坐标;XC,YC为监测点位为C点在网格区域下的横纵坐标;WA,WB,WC为权重。
在本实施例中,所述融合模块,用于根据某一时刻下三角形各监测点位的辐射应急监测数据以及所述权重,通过数据融合算法获得融合后的插值点位的监测数据,包括:
根据三角形各监测点位在某一时间步长下的辐射应急监测数据以及所述权重(WA、WB、WC),进行加权调和平均计算,获得融合后的插值点位的监测数据。
在一些实施例中,插值点位P点的监测数据可由所在三角形各监测点位A、B、C点的辐射应急监测数据进行加权调和平均计算求得,计算公式为:
其中,VP为插值点位P点的监测数据,VA,VB,VC分别表示三角形各监测点位A、B、C点的辐射应急监测数据。
在本实施例中,所述系统还包括:时空数据计算模块,用于获取指定区域内所有插值点位的监测数据,即计算所有网格点的监测数据,再反映射至三维空间中,获得该指定区域的时空数据,完成数据同化,可以做出更准确的预测。
在本实施例中,所述系统还包括:输出模块,用于将指定区域的时空数据输出成指定文件格式。
第三实施例,本发明还构造了一种计算机可读介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如第一实施例所述的核电厂复杂多源异构数据同化的方法。
第四实施例,本发明还构造了一种电子设备,包括:一个或多个处理器;存储装置,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现如第一实施例所述的核电厂复杂多源异构数据同化的方法。
可以理解的,以上实施例仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制;应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,可以对上述技术特点进行自由组合,还可以做出若干变形和改进,这些都属于本发明的保护范围;因此,凡跟本发明权利要求范围所做的等同变换与修饰,均应属于本发明权利要求的涵盖范围。

Claims (18)

1.一种核电厂复杂多源异构数据同化的方法,其特征在于,包括以下步骤:
S1:对指定区域内离散的多个监测点位进行Delaunay三角剖分,得到Delaunay三角网;
S2:对指定区域进行时空网格划分,获得多个监测点位的坐标值;
S3:采用三角形内插值法,根据三角形各监测点位以及插值点位的坐标值,计算插值点位到三角形各监测点位的距离倒数作为权重;
S4:根据某一时刻下三角形各监测点位的辐射应急监测数据以及所述权重,通过数据融合算法获得融合后的插值点位的监测数据。
2.根据权利要求1所述的核电厂复杂多源异构数据同化的方法,其特征在于,所述步骤S1包括:
S11:将指定区域内三维空间中离散的多个监测点位映射到二维水平面上;
S12:对水平面上的多个监测点位进行Delaunay三角剖分,将多个监测点位进行连接,形成Delaunay三角网。
3.根据权利要求2所述的核电厂复杂多源异构数据同化的方法,其特征在于,所述步骤S1还包括:
S10:选择指定区域内三维空间中离散的存在空间相关性的多个监测点位。
4.根据权利要求1所述的核电厂复杂多源异构数据同化的方法,其特征在于,所述步骤S2包括:
指定时间步长和空间步长,横纵坐标轴根据空间步长,将指定区域划分成网格区域,获得指定区域内多个监测点位的横纵坐标值。
5.根据权利要求4所述的核电厂复杂多源异构数据同化的方法,其特征在于,所述步骤S3包括:
采用三角形内插值方法,网格点作为插值点位,确定插值点位所处的三角形,根据网格区域下插值点位和三角形各监测点位的横纵坐标,计算插值点位到三角形各监测点位的距离倒数作为所述权重,计算公式为:
其中,Xp,Yp为插值点位为P点在网格区域下的横纵坐标;XA,YA为监测点位为A点在网格区域下的横纵坐标;XB,YB为监测点位为B点在网格区域下的横纵坐标;XC,YC为监测点位为C点在网格区域下的横纵坐标;WA,WB,WC为权重。
6.根据权利要求4所述的核电厂复杂多源异构数据同化的方法,其特征在于,所述步骤S4包括:
根据三角形各监测点位在某一时间步长下的辐射应急监测数据以及所述权重,进行加权调和平均计算,获得融合后的插值点位的监测数据,计算公式为:
其中,VP为插值点位P点的监测数据,VA,VB,VC为三角形各监测点位A、B、C点的辐射应急监测数据。
7.根据权利要求2所述的核电厂复杂多源异构数据同化的方法,其特征在于,所述方法还包括:
S5:重复执行步骤S1-S4,计算出指定区域内所有插值点位的监测数据,再反映射至三维空间中,获得该指定区域的时空数据。
8.根据权利要求7所述的核电厂复杂多源异构数据同化的方法,其特征在于,所述方法还包括:
步骤S6:将指定区域的时空数据输出成指定文件格式。
9.一种核电厂复杂多源异构数据同化的系统,其特征在于,包括:
空间三角剖分模块,用于对指定区域内离散的多个监测点位进行Delaunay三角剖分,得到Delaunay三角网;
时空网格划分模块,用于对指定区域进行时空网格划分,获得多个监测点位的坐标值;
权重计算模块,用于采用三角形内插值法,根据三角形各监测点位以及插值点位的坐标值,计算插值点位到三角形各监测点位的距离倒数作为权重;
融合模块,用于根据某一时刻下三角形各监测点位的辐射应急监测数据以及所述权重,通过数据融合算法获得融合后的插值点位的监测数据。
10.根据权利要求9所述的核电厂复杂多源异构数据同化的系统,其特征在于,所述空间三角剖分模块包括:
映射模块,用于将指定区域内三维空间中离散的多个监测点位映射到二维水平面上;
三角网模块,用于对水平面上的多个监测点位进行Delaunay三角剖分,将多个监测点位进行连接,形成Delaunay三角网。
11.根据权利要求10所述的核电厂复杂多源异构数据同化的系统,其特征在于,所述空间三角剖分模块还包括:
相关性选择模块,用于选择指定区域内三维空间中离散的存在空间相关性的多个监测点位。
12.根据权利要求9所述的核电厂复杂多源异构数据同化的系统,其特征在于,所述时空网格划分模块包括:
指定模块,用于指定时间步长和空间步长;
划分模块,用于横纵坐标轴根据空间步长,将指定区域划分成网格区域,获得指定区域内多个监测点位的横纵坐标值。
13.根据权利要求12所述的核电厂复杂多源异构数据同化的系统,其特征在于,所述权重计算模块包括:
三角形确定模块,用于采用三角形内插值方法,网格点作为插值点位,确定插值点位所处的三角形;
距离计算模块,用于根据网格区域下插值点位和三角形各监测点位的横纵坐标,计算插值点位到三角形各监测点位的距离倒数作为所述权重,计算公式为:
其中,Xp,Yp为插值点位为P点在网格区域下的横纵坐标;XA,YA为监测点位为A点在网格区域下的横纵坐标;XB,YB为监测点位为B点在网格区域下的横纵坐标;XC,YC为监测点位为C点在网格区域下的横纵坐标;WA,WB,WC为权重。
14.根据权利要求12所述的核电厂复杂多源异构数据同化的系统,其特征在于,所述根据某一时刻下三角形各监测点位的辐射应急监测数据以及所述权重,通过数据融合算法获得融合后的插值点位的监测数据,包括:
根据三角形各监测点位在某一时间步长下的辐射应急监测数据以及所述权重,进行加权调和平均计算,获得融合后的插值点位的监测数据,计算公式为:
其中,VP为插值点位P点的监测数据,VA,VB,VC为三角形各监测点位A、B、C点的辐射应急监测数据。
15.根据权利要求10所述的核电厂复杂多源异构数据同化的系统,其特征在于,所述系统还包括:
时空数据计算模块,用于获取指定区域内所有插值点位的监测数据,再反映射至三维空间中,获得该指定区域的时空数据。
16.根据权利要求15所述的核电厂复杂多源异构数据同化的系统,其特征在于,所述系统还包括:
输出模块,用于将指定区域的时空数据输出成指定文件格式。
17.一种计算机可读介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1-8任一项所述的核电厂复杂多源异构数据同化的方法。
18.一种电子设备,其特征在于,包括:
一个或多个处理器;
存储装置,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现如权利要求1-8任一项所述的核电厂复杂多源异构数据同化的方法。
CN202011424971.0A 2020-12-08 2020-12-08 核电厂复杂多源异构数据同化的方法、系统、介质及设备 Active CN112598797B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011424971.0A CN112598797B (zh) 2020-12-08 2020-12-08 核电厂复杂多源异构数据同化的方法、系统、介质及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011424971.0A CN112598797B (zh) 2020-12-08 2020-12-08 核电厂复杂多源异构数据同化的方法、系统、介质及设备

Publications (2)

Publication Number Publication Date
CN112598797A CN112598797A (zh) 2021-04-02
CN112598797B true CN112598797B (zh) 2024-03-12

Family

ID=75191157

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011424971.0A Active CN112598797B (zh) 2020-12-08 2020-12-08 核电厂复杂多源异构数据同化的方法、系统、介质及设备

Country Status (1)

Country Link
CN (1) CN112598797B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113609445A (zh) * 2021-08-03 2021-11-05 中冀建勘集团有限公司 多源异构监测数据处理方法、终端设备及可读存储介质
CN116578825A (zh) * 2022-12-28 2023-08-11 上海勘测设计研究院有限公司 气象预测误差修正方法、装置、介质及电子设备
CN117969769B (zh) * 2024-03-29 2024-05-31 山东昆仲信息科技有限公司 基于传感技术的大气污染物含量监测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011133265A (ja) * 2009-12-22 2011-07-07 Chugoku Electric Power Co Inc:The 環境データ補間方法、環境データ補間装置、プログラム、及び太陽光発電量算出システム
CN104102845A (zh) * 2014-07-24 2014-10-15 北京坤成科技有限公司 尺度自适应的插值方法及尺度自适应的插值系统
CN108038567A (zh) * 2017-12-01 2018-05-15 安徽中科超安科技有限公司 基于移动定位与辐射监测数据的核电站区域应急疏散系统
CN111310349A (zh) * 2020-02-25 2020-06-19 山东大学 适用于离散元计算信息连续化展示的数据处理分析方法
CN111858712A (zh) * 2020-07-20 2020-10-30 上海仪电(集团)有限公司中央研究院 原位水质巡检数据时空分析与异常检测方法和系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8214779B2 (en) * 2010-11-15 2012-07-03 International Business Machines Corporation Making a discrete spatial correlation continuous
US10627380B2 (en) * 2017-02-08 2020-04-21 International Business Machines Corporation Multi-source data assimilation for three-dimensional environmental monitoring

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011133265A (ja) * 2009-12-22 2011-07-07 Chugoku Electric Power Co Inc:The 環境データ補間方法、環境データ補間装置、プログラム、及び太陽光発電量算出システム
CN104102845A (zh) * 2014-07-24 2014-10-15 北京坤成科技有限公司 尺度自适应的插值方法及尺度自适应的插值系统
CN108038567A (zh) * 2017-12-01 2018-05-15 安徽中科超安科技有限公司 基于移动定位与辐射监测数据的核电站区域应急疏散系统
CN111310349A (zh) * 2020-02-25 2020-06-19 山东大学 适用于离散元计算信息连续化展示的数据处理分析方法
CN111858712A (zh) * 2020-07-20 2020-10-30 上海仪电(集团)有限公司中央研究院 原位水质巡检数据时空分析与异常检测方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于三角剖分的空间数据插值方法;陈玲侠;张军利;;自动化与仪器仪表(第10期);35-36 *

Also Published As

Publication number Publication date
CN112598797A (zh) 2021-04-02

Similar Documents

Publication Publication Date Title
CN112598797B (zh) 核电厂复杂多源异构数据同化的方法、系统、介质及设备
CN110232471A (zh) 一种降水传感网节点布局优化方法及装置
CN107885913B (zh) 辐射场屏蔽方案可行性判别方法、装置、计算机设备及存储介质
CN111884207B (zh) 基于电气距离的电网拓扑结构可视化方法、系统及介质
CN110232198A (zh) 一种污染浓度的计算方法、计算装置及终端
CN116030202A (zh) 一种三维图像重建方法、装置、电子设备及存储介质
CN106658538B (zh) 一种基于泰森多边形的手机基站信号覆盖范围模拟方法
CN113420458A (zh) 一种风场数据精细化处理方法、装置、终端及介质
US20220034713A1 (en) Method and device for real-time measuring sunlight on buildings
CN106780633A (zh) 一种图像校正方法、装置及双目视觉系统
CN107797132B (zh) 一种三维辐射场剂量的反演方法
CN113392365A (zh) 一种高分辨率气象网格数据的生成方法及系统
CN110717592A (zh) 一种计算光伏电站地表辐照度空间分布的方法
CN108052755B (zh) 基于完全随机森林的矢量空间计算强度预测方法及系统
CN109740234B (zh) 一种家居布局3d碰撞检测方法及系统
CN111884254B (zh) 基于双重随机模拟的分布式光伏消纳接入方法及装置
CN110942007B (zh) 手部骨骼参数确定方法、装置、电子设备和存储介质
CN114238842A (zh) 一种建筑接收太阳辐射能的计算方法和系统
CN113393152A (zh) 一种光伏组件排布地块确定方法及装置
CN117789131B (zh) 一种风险监测方法、装置、设备和存储介质
CN107103090B (zh) 栅格数据局部奇异性迭代分析方法及装置
Montenegro et al. Implementation in ALBERTA of an automatic tetrahedral mesh generator
CN109241584A (zh) 一种核电站三维剂量场模拟系统及其方法
CN116740289B (zh) 输电线路模型的生成方法、装置、电子设备和存储介质
CN117668958B (zh) 一种海岸线分形维数自动计算方法、系统及设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant