CN112597814A - 一种基于改进的Openpose课堂多人异常行为及口罩佩戴检测方法 - Google Patents
一种基于改进的Openpose课堂多人异常行为及口罩佩戴检测方法 Download PDFInfo
- Publication number
- CN112597814A CN112597814A CN202011413525.XA CN202011413525A CN112597814A CN 112597814 A CN112597814 A CN 112597814A CN 202011413525 A CN202011413525 A CN 202011413525A CN 112597814 A CN112597814 A CN 112597814A
- Authority
- CN
- China
- Prior art keywords
- student
- abnormal
- state
- classroom
- class
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 206010000117 Abnormal behaviour Diseases 0.000 title claims abstract description 54
- 238000001514 detection method Methods 0.000 title claims abstract description 52
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims description 83
- 230000002159 abnormal effect Effects 0.000 claims description 69
- 230000006399 behavior Effects 0.000 claims description 26
- 230000008569 process Effects 0.000 claims description 19
- 230000000694 effects Effects 0.000 claims description 16
- 239000013598 vector Substances 0.000 claims description 16
- 210000000707 wrist Anatomy 0.000 claims description 15
- 230000000276 sedentary effect Effects 0.000 claims description 10
- 238000004458 analytical method Methods 0.000 claims description 9
- 210000003128 head Anatomy 0.000 claims description 8
- 230000036541 health Effects 0.000 claims description 7
- 229910000831 Steel Inorganic materials 0.000 claims description 6
- 230000005856 abnormality Effects 0.000 claims description 6
- 239000010959 steel Substances 0.000 claims description 6
- 230000008859 change Effects 0.000 claims description 5
- 230000009467 reduction Effects 0.000 claims description 5
- 238000012360 testing method Methods 0.000 claims description 5
- 230000006872 improvement Effects 0.000 claims description 4
- 238000005457 optimization Methods 0.000 claims description 4
- 230000003321 amplification Effects 0.000 claims description 3
- 238000003064 k means clustering Methods 0.000 claims description 3
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 3
- 230000005236 sound signal Effects 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 24
- 230000036544 posture Effects 0.000 description 17
- 210000003414 extremity Anatomy 0.000 description 15
- 238000011156 evaluation Methods 0.000 description 12
- 238000012545 processing Methods 0.000 description 11
- 239000011159 matrix material Substances 0.000 description 9
- 208000037170 Delayed Emergence from Anesthesia Diseases 0.000 description 8
- 238000012544 monitoring process Methods 0.000 description 8
- 238000012549 training Methods 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000007547 defect Effects 0.000 description 4
- 238000011176 pooling Methods 0.000 description 4
- 238000013473 artificial intelligence Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000010606 normalization Methods 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000036760 body temperature Effects 0.000 description 2
- 238000013527 convolutional neural network Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000012800 visualization Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000012850 discrimination method Methods 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000005802 health problem Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001303 quality assessment method Methods 0.000 description 1
- 238000013441 quality evaluation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000013526 transfer learning Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/20—Movements or behaviour, e.g. gesture recognition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/23—Clustering techniques
- G06F18/232—Non-hierarchical techniques
- G06F18/2321—Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
- G06F18/23213—Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/10—Services
- G06Q50/20—Education
- G06Q50/205—Education administration or guidance
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B21/00—Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
- G08B21/18—Status alarms
- G08B21/24—Reminder alarms, e.g. anti-loss alarms
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Tourism & Hospitality (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Strategic Management (AREA)
- Artificial Intelligence (AREA)
- Educational Technology (AREA)
- Educational Administration (AREA)
- Biomedical Technology (AREA)
- Emergency Management (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Psychiatry (AREA)
- Social Psychology (AREA)
- Human Computer Interaction (AREA)
- Multimedia (AREA)
- Probability & Statistics with Applications (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Biology (AREA)
- Economics (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- General Business, Economics & Management (AREA)
- Image Analysis (AREA)
Abstract
本发明公开了一种基于改进的Openpose课堂多人异常行为及口罩佩戴检测方法,该方法利用改进的Openpose对学生姿势中各个关节点的所在位置及位置关系,以及融入FPN的SSD口罩检测算法,检测出课堂异常行为学生,并及时提醒学生参与课堂以及反馈结果至老师,课后进行教学改革和总结,该方法利用改进的Openpose模型、多人口罩检测模型以及智能健康模块,不仅能够检测出学生上课异常行为及时反馈给老师并且能够提醒学生投入课堂,此外还可以对久坐的学生发出进行起身活动的提醒。
Description
技术领域
本发明涉及一种基于改进的Openpose课堂多人异常行为及口罩佩戴检测方法技术领域,具体为一种基于改进的Openpose课堂多人异常行为及口罩佩戴检测方法。
背景技术
人工智能相关领域可谓是近些年新兴科技中的翘楚。随着对其研究的不断深入,人工智能技术的应用方向也变得越来越广泛。其中一个重要的应用方向就是对人体姿势的检测,它在行为检测、视频捕捉和计算机图形学等领域都有着广阔的应用范围和丰富的应用价值。
在传统教学中,对于教学行为的评价通常基于人力分析,其评价结果较为主观,且需要经过较长时间的统计分析,不能通过实时反馈来动态调整课堂行为。如果授课老师能够在课堂上实时了解学生注意力状况,便能及时调整教学方式,提高教学效果。而现有的教室监控系统中多数围绕对学生的出勤情况进行监控,很少涉及到对学生的课堂参与度的多方面信息进行分析,从而不能够全面掌握学生的学习状态。
一种带有智能实时监控功能的课堂效果鉴别装置(CN210662060U),该专利公开了一种课堂监控方法。该方法的不足之处是:该方法花了较大的成本却仅停留于采集课堂监控视频这一层次,并没有做更深层次的课堂教学质量评估。此外,摄像头移动过程中涉及的噪声和视觉影响在一定程度上会影响教学质量。
教学课情监控方法(CN108109445A),该专利公开了一种课堂教学质量评估方法。该方法的不足之处是:学生违规检测模块用于按照固定的时间间隔,统计室内的学生违规情况,缺少实时性。
此外,随着现代社会的飞速发展,学生的学习压力也随之增大,很多学生到达教室后都整天坐在课桌前学习,除了喝水、吃饭和上洗手间很少站立起来,久坐引起的健康问题日益突出。
因此针对学生有必要设计一款提醒装置,通过凳子上配备的压力传感器进行识别、桌上的震动模块进行提醒,使学生有意识主动站立活动,有效解决久坐对身体带来的不利影响。
同时在疫情大背景下,课堂上学生的口罩佩戴问题是保证课堂安全的重要因素。学校也要求学生在上课过程中佩戴口罩,而市场上没有一款专门检测学生上课时是否佩戴口罩的设备,传统方法中需要靠人工判断学生课堂中的口罩佩戴情况。针对于现有的口罩识别的方案,在基于《迁移学习与RetinaNet的口罩佩戴检测的方法》一文中,提到了通过利用RetinaNet网络,来对复杂环境下佩戴口罩的人脸和未佩戴口罩的人脸进行识别检测。运用RetinaNet网络,虽然可以提供较快的识别速度,但是该方法准确度较低,且可行性未知。
一种体温监控协助监察系统(CN211124084U),该专利公开了一种佩戴口罩的检测方法。该方法的不足之处为:仅对被系统识别为体温异常的群体进行口罩佩戴检测,检测对象不全面且准确率较低。
一种人员佩戴口罩情况的监测方法以及装置(CN109101923A),该专利公开了一种人员佩戴口罩的检测方法。该方法的不足之处为:在追求快速检测的同时并没有实现准确性。例如,口罩的正面是深色的,对着外面;该方法并不能判断人员是否正确佩戴口罩。
因此,亟待一种改进的技术来解决现有技术中所存在的这一问题。
发明内容
本发明的目的在于提供一种基于改进的Openpose课堂多人异常行为及口罩佩戴检测方法,该方法利用改进的Openpose对学生姿势中各个关节点的所在位置及位置关系,以及融入FPN的SSD口罩检测算法,检测出课堂异常行为学生,并及时提醒学生参与课堂以及反馈结果至老师,课后进行教学改革和总结,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:一种基于改进的Openpose课堂多人异常行为及口罩佩戴检测方法,其特征在于:包括以下步骤:
S1、通过教室前端和后端的摄像头,以一定初始帧率持续拍摄获取学生上课时的图像;
S2、课堂考勤阶段,摄像头正常检测教室,通过识别每个人的面部来判断该名同学是否佩戴口罩,一旦发现有学生未佩戴口罩,便记录该名同学的位置,将信息反馈给老师;
S3、判断异常行为方法:识别出测试图像的每帧图片的关键点并对其编号、连线;挑选出上半身中左右眼睛,左右耳朵,鼻子,脖子,左右手腕,左右手肘,左右肩膀共12个关键点进行不同帧照片之间对比比较,根据关键点的坐标超出一定阈值或关键点之间的距离和连线的角度超过一定阈值将异常状态具体划分为:状态1:主要定义为长时间保持一个姿势不动时;状态2:主要定义为学生的主体躯干部分前后/左右摆动幅度较大;状态3:主要定义为左右张望;状态4:主要定义为长时间低头,以一般情况为例,初始时,系统将会每隔 5秒对图像进行对比检测,若各连线数值未达到异常情况将判定为正常上课状态,若关键点间位置关系出现错误、关键点连线之间的距离达到阈值将提高检测频率至每隔1秒进行对比检测;
S4、课堂上课阶段,摄像头上装有信号发射器并持续检测学生有无异常行为,一旦发现有学生出现异常,发射器内的红外遥控发射/接收芯片经过内部运算,输出相应的信号,然后驱动无线发射模块发射信号给讲台上语音模块和教师端服务器;
S5、在学生课桌底面安装一个振动模块,此震动模块由一个信号接收器、一个振动发生器、一个语音模块、一个近距离定向声音采集器、两个固定安装座构成,振动模块主体上分为A、B两面,B面安装时与课桌底面相接触,A面用于传声,当振动模块的信号接收器接收到学生的异常上课信号时,无线发射模块将接收到的信号送入红外遥控发射/接收芯片,经过处理以后送到输出端子,从而控制振动模块工作,振动模块便产生数秒的振动,提醒学生认真上课,当震动模块中的信号接收器收到系统发送的久坐提醒信号时,便会启动语音模块来提醒学生外出活动,两种提醒方式的优先级为:震动提醒优先于语音提醒,即高优先级的提醒方式不产生作用时,再继续采取下一等级的提醒方式;
S6、摄像头同时检测学生上课时的口罩佩戴问题,一旦检测出某学生拿掉口罩或口罩佩戴不规范,系统会自动调整摄像头的焦距,锁定该学生并把这帧图像保存,同时标记该学生为上课行为异常;
S7、在桌面上安装一个薄膜式压力传感器,以此来辅助检测学生的课堂行为姿态,在排除物品压力干扰后,若学生产生压力的区域的平均压力值超出一定的阈值范围,即可进入疑似异常状态;系统会自动调整摄像头的焦距或调用后摄像头,来重点观察此学生的行为姿态,直至其恢复为正常状态或被判定为异常状态;
S8、震动模块中含有近距离定向声音采集器,以此来辅助检测学生的课堂行为,在排除噪音干扰后,若检测到该区域有学生交谈的声音,即可进入疑似异常状态;系统会自动调整摄像头的焦距或者调用后摄像头,来重点观察该区域的学生的课堂行为,直至其恢复为正常状态或被判定为异常状态;
S9、智能健康模块安装完成以后,可进行系统初始化,包括定时器、中断等初始化,中断程序用来设置久坐时间门限,信号接收器接收由总控系统传输的控制信号,当凳子上的压力传感器达到预定的阈值时,即判断为检测到学生进入坐姿,开始启动计时器,当计时达到设定时长门限时,将通过震动模块进行震动提醒,若震动提醒过程中检测到学生起立,则视为报警取消,对定时器进行清零操作,然后返回到常规状态;若学生状态无变化,则进入语音报警状态,提醒久坐者起立舒缓身体;
S10、在讲台放置一语音模块,当摄像头检测到学生异常时,信号发射器发出信号,语音模块上的蓝牙模块接收到此信号,通过功率放大板控制扬声器发出声音,提醒老师该学生出现异常;
S11、引入搜索和优化识别策略,若某一学生经常出现某疑似异常行为状态的确诊,则下一次异常识别中,减少判定异常行为姿态所需要持续的时间,优先判断是否为某课堂异常状态,进而提高分析的效率;
S12、每堂课后对被判定为异常行为的学生视频流进行评定,是否正常行为被识别为异常行为,以及异常行为是否未被识别出,并在课后随机抽取一小段视频流,重新检测以判断准确率。
优选的,所述S3中对于在图片中提取到的12个人体结构坐标点,即图片中人的眼睛肩部等位置,将这12个坐标点用点阵向量表示: A=((x1,y1),...,(x12,y12))。
优选的,所述S3中状态1:当学生面部五个关键点存在两个或以上关键点丢失且左右手腕和左右手肘共四个关键点在连续二十次识别的帧图像中位置变化小于一定阈值,即定义为异常状态1。状态2:当学生左右手腕及左肩或右肩关键点位置在连续二十次识别的帧图像中变化超过一定阈值,即定义为异常状态2。状态3:当学生面部的左侧或右侧眼睛和耳朵这两个关键点在连续五次识别的帧图像中均丢失即定义为状态3。状态4:当学生的在连续十五次识别的帧图像面部五个关键点中任意关键点的位置低于阈值时,则定义为异常状态4。此外,如果同时发生超过一半学生存在异常,则不作记录,该情况可能为课堂写作业阶段。
优选的,所述S7-S8中将压力传感器所判断的状态设定为疑似异常状态Ⅰ,将定向声音采集器所判断的状态设定为疑似异常状态Ⅱ,当学生被判定进入上述两个疑似异常状态的任意一个时,系统便会自动将摄像头聚焦于该学生或该片区域,直至疑似异常状态解除或者被判定为课堂异常,产生相应的震动提醒并将异常数据反馈到教师端。
优选的,所述S8中声音采集器主要由线圈、磁钢、外壳组成,当接受到声波信号时,声波产生的力量作用在振膜上,引起振膜振动,带动音圈做相应振动,音圈在磁钢中运动,产生电动势,声音信号转变成电信号传输给下一级系统进行分析。
优选的,所述S1中图像的选取方法包括帧消减方法和K-Means聚类算法提取关键帧的方法。
与现有技术相比,本发明的有益效果是:
本发明设计了一种基于改进的Openpose的课堂多人异常行为及口罩佩戴检测方法,该方法利用改进的Openpose模型、多人口罩检测模型以及智能健康模块,不仅能够检测出学生上课异常行为及时反馈给老师并且能够提醒学生投入课堂,此外还可以对久坐的学生发出进行起身活动的提醒。
附图说明
图1是本发明实施例提供的Openpose模型的输入图;
图2是本发明实施例提供的Openpose模型的可视化流程图;
图3是本发明实施例提供的匈牙利算法的实现示意图
图4是本发明实施例提供的ROI层后加GAP的示意图;
图5是本发明实施例提供的特征图加权后的CAM示意图;
图6是本发明实施例提供的K-means原理图;
图7是发明实施例提供的残差网络的模型结构图;
图8发明实施例提供的加入残差网络的识别效果图;
图9是发明实施例提供的FPN特征金字塔模型结构图;
图10发明实施例提供的FPN自顶向下和横向连接模型结构图;
图11本发明实施例提供的FPN中P2~P5参数示意图;
图12是本发明实施例提供的FPN加入到ResNet18网络的实验效果表;
图13是本发明实施例提供的口罩检测方法的示意图;
图14是本发明实施例提供的检测到未佩戴口罩学生的示例图;
图15是本发明实施例提供的改进的Openpose模型的结构优化示意图;
图16是本发明实施例提供的学生东张西望的异常行为示例图;
图17是本发明实施例提供的学生低头的异常行为示例图;
图18是本发明实施例提供的学生躯干摆动幅度过大的异常行为示例图;
图19是本发明实施例提供的学生在12张帧图片手部关键点的活动轨迹图;
图20是本发明实施例提供的自适应软阈值残差块结构图;
图21是本发明实施例提供的几种异常行为判断方法的判断结果图;
图22是发明实施例提供的课桌底部的振动模块装置示意图;
图23是本发明实施例提供的课桌桌面下安装薄膜压力传感器的装置示意图
图24是本发明实施例提供的凳子底部的智能健康模块的装置示意图;
图25是本发明实施例提供的讲台上的语音提示集成模块的装置示意图;
图26是本发明实施例提供的检测系统的主要工作流程图;
图27是本发明实施例提供的凳子底部的智能健康模块的工作流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1-27,本发明提供一种技术方案:一种基于改进的Openpose课堂多人异常行为及口罩佩戴检测方法,包括以下步骤:
S1、通过教室前端和后端的摄像头,以一定初始帧率持续拍摄获取学生上课时的图像;
S2、课堂考勤阶段,摄像头正常检测教室,通过识别每个人的面部来判断该名同学是否佩戴口罩,一旦发现有学生未佩戴口罩,便记录该名同学的位置,将信息反馈给老师;
S3、判断异常行为方法:识别出测试图像的每帧图片的关键点并对其编号、连线;挑选出上半身中左右眼睛,左右耳朵,鼻子,脖子,左右手腕,左右手肘,左右肩膀共12个关键点进行不同帧照片之间对比比较,根据关键点的坐标超出一定阈值或关键点之间的距离和连线的角度超过一定阈值将异常状态具体划分为:状态1:主要定义为长时间保持一个姿势不动时;状态2:主要定义为学生的主体躯干部分前后/左右摆动幅度较大;状态3:主要定义为左右张望;状态4:主要定义为长时间低头,以一般情况为例,初始时,系统将会每隔 5秒对图像进行对比检测,若各连线数值未达到异常情况将判定为正常上课状态,若关键点间位置关系出现错误、关键点连线之间的距离达到阈值将提高检测频率至每隔1秒进行对比检测;
S4、课堂上课阶段,摄像头上装有信号发射器并持续检测学生有无异常行为,一旦发现有学生出现异常,发射器内的红外遥控发射/接收芯片经过内部运算,输出相应的信号,然后驱动无线发射模块发射信号给讲台上语音模块和教师端服务器;
S5、在学生课桌底面安装一个振动模块,此震动模块由一个信号接收器、一个振动发生器、一个语音模块、一个近距离定向声音采集器、两个固定安装座构成,振动模块主体上分为A、B两面,B面安装时与课桌底面相接触,A面用于传声,当振动模块的信号接收器接收到学生的异常上课信号时,无线发射模块将接收到的信号送入红外遥控发射/接收芯片,经过处理以后送到输出端子,从而控制振动模块工作,振动模块便产生数秒的振动,提醒学生认真上课,当震动模块中的信号接收器收到系统发送的久坐提醒信号时,便会启动语音模块来提醒学生外出活动,两种提醒方式的优先级为:震动提醒优先于语音提醒,即高优先级的提醒方式不产生作用时,再继续采取下一等级的提醒方式;
S6、摄像头同时检测学生上课时的口罩佩戴问题,一旦检测出某学生拿掉口罩或口罩佩戴不规范,系统会自动调整摄像头的焦距,锁定该学生并把这帧图像保存,同时标记该学生为上课行为异常;
S7、在桌面上安装一个薄膜式压力传感器,以此来辅助检测学生的课堂行为姿态,在排除物品压力干扰后,若学生产生压力的区域的平均压力值超出一定的阈值范围,即可进入疑似异常状态;系统会自动调整摄像头的焦距或调用后摄像头,来重点观察此学生的行为姿态,直至其恢复为正常状态或被判定为异常状态;
S8、震动模块中含有近距离定向声音采集器,以此来辅助检测学生的课堂行为,在排除噪音干扰后,若检测到该区域有学生交谈的声音,即可进入疑似异常状态;系统会自动调整摄像头的焦距或者调用后摄像头,来重点观察该区域的学生的课堂行为,直至其恢复为正常状态或被判定为异常状态;
S9、智能健康模块安装完成以后,可进行系统初始化,包括定时器、中断等初始化,中断程序用来设置久坐时间门限,信号接收器接收由总控系统传输的控制信号,当凳子上的压力传感器达到预定的阈值时,即判断为检测到学生进入坐姿,开始启动计时器,当计时达到设定时长门限时,将通过震动模块进行震动提醒,若震动提醒过程中检测到学生起立,则视为报警取消,对定时器进行清零操作,然后返回到常规状态;若学生状态无变化,则进入语音报警状态,提醒久坐者起立舒缓身体;
S10、在讲台放置一语音模块,内部和外部结构如图20所示,当摄像头检测到学生异常时,信号发射器发出信号,语音模块上的蓝牙模块接收到此信号,通过功率放大板控制扬声器发出声音,提醒老师该学生出现异常;
S11、引入搜索和优化识别策略,若某一学生经常出现某疑似异常行为状态的确诊,则下一次异常识别中,减少判定异常行为姿态所需要持续的时间,优先判断是否为某课堂异常状态,进而提高分析的效率;
S12、每堂课后对被判定为异常行为的学生视频流进行评定,是否正常行为被识别为异常行为,以及异常行为是否未被识别出,并在课后随机抽取一小段视频流,重新检测以判断准确率。
由于现代课堂存在着教室空间小、学生人数多、学生分布密集等不利因素,摄像头拍摄视频可能出现遮挡、模糊等不利因素,现拟定:
安装在教室后端的摄像头B:
当前端摄像头A所拍摄画面被遮挡时,可自动调用安装在教室后端的摄像头B来辅助判断学生的课堂行为姿态。
Openpose模型本质上是一种双并行卷积网络模型。它同时使用两个卷积网络,一个卷积网络从图像中定位人体关键部位的位置,另一个卷积网络则用于连接候选关键部位组成肢体,再将这两个卷积网络的结果汇总进行姿势组装,完成对图像中人体姿势的检测。
先使用一个卷积网络初步提取图像特征,再分别输入至双并行卷积网络中进行后续处理,等同于将双并行卷积网络较底层的部分合并为一个卷积网络,以节约计算资源。
图1展示了OpenOpose模型的检测流程,图2是该流程的可视化。首先,使用VGG-19网络提取输入图像的底层特征,如图2(a)所示是其中第五层卷积层的输出;然后,底层特征分别输入到两个并行卷积网络中,其中一个网络使用非极大值抑制算法(Non-maximumsuppression)生成置信度图,用于人体关键部位的定位,如图2(b)所示,是该过程中肩膀和手肘部位的置信热力图;另一个网络使用局部区域亲和矢量场算法,提供关键部位之间的连接方式以组成肢体,如图2(c)所示,是该过程中左小腿的检测效果;之后,汇总这两个卷积网络的处理结果,采用匈牙利算法(Hungarian algorithm),进行姿势组装,最终输出待测图像中的人体姿势,如图2(d)、(e)所示,分别是姿势组装示意图和最终检测结果。
Openpose模型的主要算法包括:
1)局部区域亲和算法
局部区域亲和算法的作用是计算候选关键部位相互连接组成候选肢体的置信度。
首先,如公式(1)所示,计算图像上某一点p在肢体c上的置信向量 Ac(p)。如果点p在肢体c上,则Ac(p)就等于肢体c的单位方向向量v,否则为零向量。公式(2)和(3)是判断点p是否在肢体c上的公式,若均成立则点p 在肢体c上,否则不在。
之后,就可用公式(4)得出肢体c的置信度Ec,它是计算关键部位j1、j2 之间连线上所有点的置信向量的定积分得来的。
2)匈牙利算法
因为图像上有多个人的情况,从这些候选部件可以定义为一个很大的可能肢体结合,通过上面的积分公式,计算每一个候选肢体得到的分数。因此, Openpose模型采用最大二分图匹配法找出可能的姿势组装方案,再寻找其中候选肢体置信度总和最大的方案。
匈牙利算法就是Openpose模型用于完成最大二分图匹配的算法。假设现有三种关键部位,它们的可能连接方式如图3所示。匈牙利算法计算过程如下:
首先,由于最大二分图匹配法不允许多边共用一个节点的情况(即一个肩膀不可能连接两个手肘),所以有两个约束条件,如公式(5)、(6)。
公式(5)含义为:设使用表示部位1类第n个关键部位与部位2类第m个关键部位具有连接的可能性,则对于任意的部位1类第n个关键部位,所有与此关键部位相连的部位2类关键部位的置信度之和必须不超过1,否则代表与此关键部位相连的部位2类关键部位超过了1个,这种连接方式是违规的。公式(6)同样也是对部位2类第m个关键部位的约束。
最后,将所有满足约束条件的可能连接方式,使用公式(7)找出最大的积分和,则其所对应的的连接方式就是最可能的连接方式,就找到了某一条肢体两端所对应的关键部位,对其他关键部位重复以上步骤,最后将共用的同一个关键部位的肢体组装在一起,就实现了多人姿势的检测。
应用改进的Openpose模型进行考试多人异常行为检测,包括:
1.解决目标检测算法中遮挡问题
(a)使用GAP和CAM代替后几层全连接层
针对需检测物体被其他物体遮挡导致的漏检问题可以从特征角度对深度学习检测器进行改进。
卷积神经网络对图像目标的某些特征比较敏感,在卷积特征空间中,类依赖特征对最终的分类结果起决定性作用。
于是,我们可以采用在卷积特征中对特征进行处理,即屏蔽VGG-19中建议区域的类依赖特征,产生遮挡效果。
对于某一类的CAM,其代表着在CNN中某一部分图像和特征是作为这个类的判别依据,即类的依赖部分,从而解释了模型将目标分成某一类的依据。输入图像经过一系列卷积层后得到最后一层特征图,最后一层特征图中包含丰富的空间和语意信息,而通常的网络中会选择全连接层进行图片特征图向特征向量的转换在这个转换过程中就会丢失空间信息。通过GAP(global average pooling)得到每一个特征层的均值,再将这些特征图的均值进行加权以最后一层全连接的方式求和输入给最后的SoftMax,即:
其中,ωk c为每个类别c代表的特征值k所对应的权值。
接下来说明定位卷积特征中类依赖特征的方法:输入图像经过一系列的特征提取和网络的筛选,得到建议区域。将GAP融合到已经训练好的VGG-19网络中,即在ROI Pooling层后添加GAP,固定大小的建议区域特征输入到GAP中来得到VGG-19的建议区域特征中的类依赖部分。
在训练过程中将VGG-19部分的参数固定,而将GAP部分作为一个分类器来训练。但由于GAP部分只有一层全连接层,因此会出现训练不拟合的现象,为此在GAP部分前面加入两个卷积核大小分别为3×3和1×1的卷积层进行训练。训练完成后,将各类别所属的权重提取出来并与对应的特征图加权求和后得到 CAM。CAM中高亮的部分即为特征中的类依赖特征。
(b)添加自适应软阈值的残差网络提取底层特征
软阈值处理将绝对值小于阈值的值置零,将绝对值大于阈值的值朝零方向缩小,从而滤去无用信息。所以本文参考注意力机制(Attention Mechanism) 中获取通道域注意力权重方法,原有的SENet中是对特征图的各个通道进行加权,就可以通过这种方式增强有用特征通道、削弱冗余特征通道。而软阈值残差块就是将残差模式下的SENet中的“重新加权”替换成了“软阈值化”,在残差块中添加分支以获取该阈值。具体来说,由软阈值残差块所输出的阈值,是(各个通道的特征层上每一个点的像素值相加求得的平均值)×(一组0和1之间的系数)。
通过软阈值残差块自动设置的阈值,减轻了人工设置阈值这一繁琐任务,且由实验所得,人工设置阈值需要一定的专业知识,同时使用该阈值的模型的检测精度低于使用软阈值残差块所得到的阈值的模型的检测精度。此外,软阈值残差块确保了软阈值函数的阈值为正数,而且在合适的取值范围之内,避免了输出全部为零的情况。
如图20所示,是自适应软阈值和残差块结构,在经过两层卷积得到尺寸为 W×H×C的特征图后引出一个分支获取阈值。
该分支首先进行W×H尺寸的全局平均池化,计算方法如公式(9)所示:
式中,W、H是输入特征层的宽和高;|xij|是特征图中(i,j)点对应像素点的绝对值;y是池化结果,它是一个1×1×C的向量。
随后,池化结果通过一层1×1卷积以学习阈值系数,再使用sigmoid函数对该系数进行归一化,使其位于0和1之间,此系数同样是一个1×1×C的向量。再将阈值系数与池化结果对应位置元素相乘,便可得到特征图中每个通道对应的不同阈值。
最后,根据所获得的阈值对特征图进行软阈值处理即可。
2.利用最小距离判别分析认真听课状态
根据权利要求1所述的一种基于改进的Openpose的课堂多人异常行为及口罩佩戴检测方法中步骤S3还包括:对于在图片中提取到的12个人体结构坐标点,即图片中人的眼睛肩部等位置,将这12个坐标点用点阵向量表示:
A=((x1,y1),...,(x12,y12)) (10)
对每一个被检测到的部分,将(x1,y1)作为起始点,将剩余11个点坐标,与起始点作差,再计算其余11个坐标点与起始点的角度值,得到特征矩阵:
该特征矩阵可以用来描述检测部分的形状信息。
将特征举证每一列看作图形形状的一种属性,每一列的值具有不同的量纲,则需对每一列数据进行标准化处理,得到标准特征矩阵:
标准化处理公式:
3.用熵值法对标准特征矩阵进行信息熵值评价,对熵值高的无效信息进行舍弃。
熵值法的计算方法和步骤:
1)假定需要对m个对象进行评价,评价指标体系包括n个指标。这是由m 个样本组成,用n个指标做综合评价的问题,便可以形成评价系统的初始数据矩阵:
其中xij表示第i各样本对第j项评价指标的数值。
对于特征矩阵,有3个指标,分别是x方向,y方向的坐标差以及角度值,有m个特征矩阵,则通过熵值法可以确定三个指标的权重大小。
2)数据处理——标准化处理
a)由于各指标的量纲,数量级均有差距,所以为了消除因量纲不同对评价结果的影响,需要对各指标进行标准化处理。
标准化处理公式:
其中xj为第j项指标值,xmax为第j项指标的最大值,xmin为第j项指标的最小值,x'ij为标准化值。
若所用指标是效益型指标,则选用前一个公式。
若所用指标是成本型指标,则选用后一个公式。
对于x方向坐标差以及y方向坐标差的绝对值还有角度插值,这三项项属性均是是成本型,故需采用第二种标准化处理方式。
b)计算第j项指标下第i各对象指标值的比重yij
由此,可以建立数据的比重矩阵Y={yij}m*n
3)计算指标信息熵值e和信息效用值d
a)计算第j项指标的信息熵值的公式为:
b)某项指标的信息效用价值取决于该指标的信息熵值ej与1之间的差值,它的值直接影响权重的大小,信息效用值越大,对评价的重要性就越大,权重也就越大。
dj=1-ej (18)
4)计算评价指标权重
利用熵值法估算各指标的权重,其本质是利用该指标性息的价值系数来计算,其价值系数越高,对评价的重要性就越大(或称权重越大对评价结果的贡献越大)。
第j项指标的权重为:
至此,三项指标的权重即可求得,对其得分情况进行加权,可以得到坐标差值以及角度差值之间分别的综合得分,衡量指标重要性。
该算法应用于课堂行为识别中,评价提取到的图片信息是否具有较高的有效性,信息熵值越大,信息的效用值就越低,反之则越高。
现对于三组坐标序列利用最小距离法和熵值法进行判断:
a=[12,24;5,9;20,7;14,9;2,8;16,32;8,16;17,42;62,14;34,49;12,63;20,14];代表中心序列,即用该序列来模拟给定的认真听课状态。
b1=[11,20;45,69;20,17;14,79;2,18;86,32;18,16;37,62;52,34;44,29;15,63;20,19];
b2=[17,2;54,19;23,17;18,19;12,38;46,32;38,16;27,41;52,14;36,52;19,33;26,4];
b1和b2矩阵是比较序列,即代表其他待比较图片;
通过熵值法计算得到b1关于a的特征矩阵三列对应属性权重为0.254, 0.343,0.403,总距离为26.47;b2关于a的特征矩阵三列对应属性权重为 0.240,0.451,0.310,总距离为24.18,通过对比距离可以得出b2所代表的图片比b1所代表的图片更像认真听课状态。
4.多种算法找出合适的关键帧图片
根据权利要求1所述的一种基于改进的Openpose的课堂多人异常行为及口罩佩戴检测方法中步骤S1还包括:由于本实验中改进的Openpose的采样率较高,会产生大量数据,其中也包含不少无效数据,增加了对数据进行其他处理的复杂程度,因此有必要尽可能筛除原始数据中的冗余数据和无效数据,同时提取出具有概括性的关键帧来表示原始的角色运动行为,并且能够不失真。获取关键帧最简单的做法是等间隔提取,但该方法可能导致对高速运动的的欠采样,即关键帧丢失和对低速运动的过采样,即关键帧冗余。因此,根据不同的理论方法和不同的运动特征,更复杂的算法便应运而生。本文通过以下两种算法选取合适的帧图片。
(a)帧消减方法
设定一个阈值,根据阈值并且采用四元数插值重建法对非关键帧进行消减或者直接对关键帧进行提取。使用四元数插值重建对原始序列进行还原,从而符合人体关节旋转运动的特点,使得提取的关键帧比较准确。
线性插值(Lerp)方法:
qt=Lerp(q0,q1,t)=(1-t)q0+tq1 (20)
归一化线性插值(Nlerp)方法:
球面线性插值(Spherical Linear Interpolation)方法:
θ=acos(q0·q1) (23)
(b)K-Means(K均值)聚类算法提取关键帧
算法原理:
(1)首先我们选择一些类/组,并随机初始化它们各自的中心点。中心点是与每个数据点向量长度相同的位置。这需要我们提前预知类的数量(即中心点的数量)。
(2)计算每个数据点到中心点的距离,数据点距离哪个中心点最近就划分到哪一类中。
(3)计算每一类中中心点作为新的中心点。
(4)重复以上步骤,直到每一类中心在每次迭代后变化不大为止。也可以多次随机初始化中心点,然后选择运行结果最好的一个。图6演示了K-Means 进行分类的过程:
算法步骤:
处理一段摄像头捕捉的视频流,分为正常行为和异常行为两类,学生正常行为则5秒检测一次,出现异常行为则1秒检测一次。聚类方法通过设定的阈值对帧间距进行加权,从而对各帧进行聚类,并选取各聚类的首帧为关键帧。从而能找出异常行为频发的帧数位置。
5.对四种异常状态的判定方法进行详细的说明。状态1:当学生面部五个关键点存在两个或以上关键点丢失且左右手腕和左右手肘共四个关键点在连续二十次识别的帧图像中位置变化小于一定阈值,即定义为异常状态1。状态2:当学生左右手腕及左肩或右肩关键点位置在连续二十次识别的帧图像中变化超过一定阈值,即定义为异常状态2。状态3:当学生面部的左侧或右侧眼睛和耳朵这两个关键点在连续五次识别的帧图像中均丢失即定义为状态3。状态4:当学生的在连续十五次识别的帧图像面部五个关键点中任意关键点的位置低于阈值时,则定义为异常状态4。此外,如果同时发生超过一半学生存在异常,则不作记录,该情况可能为课堂写作业阶段。
6.现将压力传感器所判断的状态设定为疑似异常状态Ⅰ,将定向声音采集器所判断的状态设定为疑似异常状态Ⅱ,当学生被判定进入上述两个疑似异常状态的任意一个时,系统便会自动将摄像头聚焦于该学生或该片区域,直至疑似异常状态解除或者被判定为课堂异常,产生相应的震动提醒并将异常数据反馈到教师端。
7.声音采集器主要由线圈、磁钢、外壳组成,当接受到声波信号时,声波产生的力量作用在振膜上,引起振膜振动,带动音圈做相应振动,音圈在磁钢中运动,产生电动势,声音信号转变成电信号传输给下一级系统进行分析。
8.通常情况下,改进型Openpose模型所检测的人体姿势均为人的全身姿势,而在一般课堂的实际运行中,不少运动并不需要检测人的全身姿势。例如在课堂检测中,动作的重点在于上半身。因此,在课堂检测系统检测时,可以仅检测上半身部分关键点,即可显著减少运算量,进一步加快检测速度,使得检测实时性更高。
多人口罩检测模型特征包括:
1.在已有的SSD模型上加上残差网络
本文使用预训练好的Resnet18作为主干网络,用于特征提取,除了第一层使用7×7的卷积外,其余4层均由残差连接单元组成。使用残差连接可以有效地解决深层网络训练的时候会出现梯度消失或梯度爆炸的问题,残差连接单元的内部结构如图7所示。
在残差连接单元中,对于输入特征向量x,输出特征向量y通过残差连接建立的计算公式为:
y=σ(f(x,{Wi})+x) (24)
其中,σ表示线性修正单元(Rectified Linera Unit,ReLU)激活函数, Wi表示权重,f(x,{Wi})表示残差映射,对于图中三层的残差连接单元,其计算方式如公式(3)所示。相加操作通过快捷连接和逐元素进行相加,相加之后再次采用ReLU激活函数进行非线性化。
f(x,{Wi})=W3σ(W2σ(W1x)) (25)
添加残差网络后的效果图如图8所示,加入残差网络后的模型识别效果优于普通VGG-19模型。
2.添加FPN“特征金字塔”网络提取底层特征
FPN使用的是图像金字塔的思想以解决物体检测场景中小尺寸物体检测困难的问题,SSD利用卷积网络的层次结构,通过网络的不同层得到了多尺度的 Feature Map(图10),该方法虽然能提高精度且基本上没有增加测试时间,但没有使用更加低层的FeatureMap,然而这些低层次的特征对于检测小物体是非常有帮助的。
针对上面这些问题,FPN采用了SSD的金字塔内Feature Map的形式。与 SSD不同的是,FPN不仅使用了VGG中层次深的Feature Map,并且浅层的 Feature Map也被应用到FPN中。并通过自底向上(bottom-up),自顶向下 (top-down)以及横向连接(lateralconnection)将这些Feature Map高效的整合起来,在提升精度的同时并没有大幅增加检测时间(图10)。
通过自底向上路径,FPN得到了四组Feature Map。浅层的Feature Map含有更多的纹理信息,而深层的Feature Map含有更多的语义信息。为了将这四组倾向不同特征的Feature Map组合起来,FPN使用了自顶向下及横向连接的策略,如图11。
为了提升计算效率,首先FPN使用1X1进行了降维,得到P5,然后使用双线性插值进行上采样,将P5上采样到和C4相同的尺寸。之后,FPN也使用1×1 卷积对P4进行了降维,由于降维并不改变尺寸大小,所以P5和P4具有相同的尺寸,FPN直接把P5单位加到P4得到了更新后的P4。基于同样的策略,我们使用P4更新P3,P3更新P2。这整个过程是从网络的顶层向下层开始更新的,所以叫做自顶向下路径。
FPN使用单位加的操作来更新特征,这种单位加操作叫做横向连接。由于使用了单位加,所以P2,P3,P4,P5应该具有相同数量的Feature Map,所以 FPN使用了1×1卷积进行降维。
在更新完Feature Map之后,FPN在P2,P3,P4,P5之后均接了一个3×3 卷积操作,该卷积操作是为了减轻上采样的混叠效应(aliasing effect)。
3.FPN加入到ResNet18网络的实验效果表
评价标准采用AR(Average Recall),AR右上角的100或1K表示每张图像有100或1000个anchor,AR的右下角s,m,l表示COCO数据集中object的大小分别是小,中,大。feature列的大括号{}表示每层独立预测。
从(a)(b)(c)的对比可以看出FPN的作用确实很明显。另外(a)和 (b)的对比可以看出高层特征并非比低一层的特征有效。(d)表示只有横向连接,而没有自顶向下的过程,也就是仅仅对自底向上的每一层结果做一个1×1的横向连接和3×3的卷积得到最终的结果。(e)表示有自顶向下的过程,但是没有横向连接,即向下过程没有融合原来的特征。这样效果也不好的原因在于目标的location特征在经过多次降采样和上采样过程后变得更加不准确。(f)采用 finest level层做预测,即经过多次特征上采样和融合到最后一步生成的特征用于预测,主要是证明金字塔分层独立预测的表达能力。显然finest level的效果不如FPN好,原因在于PRN网络是一个窗口大小固定的滑动窗口检测器,因此在金字塔的不同层滑动可以增加其对尺度变化的鲁棒性。另外(f)有更多的anchor,说明增加anchor的数量并不能有效提高准确率。
此外,用C4.5算法中信息增益率来判断哪种判别方法得到的准确性更高。具体思路为:分别选择几种不同判别异常方法作为主要特征对学生听课状态进行分类,再对分类结果进行评判。
学生异常行为判别表如图21所示:
以低头为例:设yes为低头,no为未低头:为正常状态学生所占比例,为异常状态学生所占比例
信息增益定义为:g(D,A)=H(D)-H(D|A) (27)
设Ei=H(Y|A=ai)其中i=0,1,ai=a0,a1分别对应未抬头和抬头两种判断特征。
H(D|A)=0.182
信息增益为:
g(D,A)=H(D)-H(D|A)=0.301-0.182=0.119
同理,分别计算转头判断,发呆判断,口罩判断的信息增益率可知,通过是否佩戴口罩判断该学生是否为异常行为的准确率最高。识别判断优先选择口罩检测,同时得到通过是否转头判断该学生是否为异常的准确率最低,则较少使用转头判断。
本发明的方法利用改进的Openpose模型、多人口罩检测模型以及智能健康模块,不仅能够检测出学生上课异常行为及时反馈给老师并且能够提醒学生投入课堂,此外还可以对久坐的学生发出进行起身活动的提醒。
本发明旨在弥补现有技术手段的缺乏与不足,提供一种基于改进的 Openpose的课堂多人异常行为及口罩佩戴检测方法。该方法利用改进的 Openpose对学生姿势中各个关节点的所在位置及位置关系,以及融入FPN的 SSD口罩检测算法,检测出课堂异常行为学生,并及时提醒学生参与课堂以及反馈结果至老师,课后进行教学改革和总结。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。
Claims (6)
1.一种基于改进的Openpose课堂多人异常行为及口罩佩戴检测方法,其特征在于:包括以下步骤:
S1、通过教室前端和后端的摄像头,以一定初始帧率持续拍摄获取学生上课时的图像;
S2、课堂考勤阶段,摄像头正常检测教室,通过识别每个人的面部来判断该名同学是否佩戴口罩,一旦发现有学生未佩戴口罩,便记录该名同学的位置,将信息反馈给老师;
S3、判断异常行为方法:识别出测试图像的每帧图片的关键点并对其编号、连线;挑选出上半身中左右眼睛,左右耳朵,鼻子,脖子,左右手腕,左右手肘,左右肩膀共12个关键点进行不同帧照片之间对比比较,根据关键点的坐标超出一定阈值或关键点之间的距离和连线的角度超过一定阈值将异常状态具体划分为:状态1:主要定义为长时间保持一个姿势不动时;状态2:主要定义为学生的主体躯干部分前后/左右摆动幅度较大;状态3:主要定义为左右张望;状态4:主要定义为长时间低头,以一般情况为例,初始时,系统将会每隔5秒对图像进行对比检测,若各连线数值未达到异常情况将判定为正常上课状态,若关键点间位置关系出现错误、关键点连线之间的距离达到阈值将提高检测频率至每隔1秒进行对比检测;
S4、课堂上课阶段,摄像头上装有信号发射器并持续检测学生有无异常行为,一旦发现有学生出现异常,发射器内的红外遥控发射/接收芯片经过内部运算,输出相应的信号,然后驱动无线发射模块发射信号给讲台上语音模块和教师端服务器;
S5、在学生课桌底面安装一个振动模块,此震动模块由一个信号接收器、一个振动发生器、一个语音模块、一个近距离定向声音采集器、两个固定安装座构成,振动模块主体上分为A、B两面,B面安装时与课桌底面相接触,A面用于传声,当振动模块的信号接收器接收到学生的异常上课信号时,无线发射模块将接收到的信号送入红外遥控发射/接收芯片,经过处理以后送到输出端子,从而控制振动模块工作,振动模块便产生数秒的振动,提醒学生认真上课,当震动模块中的信号接收器收到系统发送的久坐提醒信号时,便会启动语音模块来提醒学生外出活动,两种提醒方式的优先级为:震动提醒优先于语音提醒,即高优先级的提醒方式不产生作用时,再继续采取下一等级的提醒方式;
S6、摄像头同时检测学生上课时的口罩佩戴问题,一旦检测出某学生拿掉口罩或口罩佩戴不规范,系统会自动调整摄像头的焦距,锁定该学生并把这帧图像保存,同时标记该学生为上课行为异常;
S7、在桌面上安装一个薄膜式压力传感器,以此来辅助检测学生的课堂行为姿态,在排除物品压力干扰后,若学生产生压力的区域的平均压力值超出一定的阈值范围,即可进入疑似异常状态;系统会自动调整摄像头的焦距或调用后摄像头,来重点观察此学生的行为姿态,直至其恢复为正常状态或被判定为异常状态;
S8、震动模块中含有近距离定向声音采集器,以此来辅助检测学生的课堂行为,在排除噪音干扰后,若检测到该区域有学生交谈的声音,即可进入疑似异常状态;系统会自动调整摄像头的焦距或者调用后摄像头,来重点观察该区域的学生的课堂行为,直至其恢复为正常状态或被判定为异常状态;
S9、智能健康模块安装完成以后,可进行系统初始化,包括定时器、中断等初始化,中断程序用来设置久坐时间门限,信号接收器接收由总控系统传输的控制信号,当凳子上的压力传感器达到预定的阈值时,即判断为检测到学生进入坐姿,开始启动计时器,当计时达到设定时长门限时,将通过震动模块进行震动提醒,若震动提醒过程中检测到学生起立,则视为报警取消,对定时器进行清零操作,然后返回到常规状态;若学生状态无变化,则进入语音报警状态,提醒久坐者起立舒缓身体;
S10、在讲台放置一语音模块,当摄像头检测到学生异常时,信号发射器发出信号,语音模块上的蓝牙模块接收到此信号,通过功率放大板控制扬声器发出声音,提醒老师该学生出现异常;
S11、引入搜索和优化识别策略,若某一学生经常出现某疑似异常行为状态的确诊,则下一次异常识别中,减少判定异常行为姿态所需要持续的时间,优先判断是否为某课堂异常状态,进而提高分析的效率;
S12、每堂课后对被判定为异常行为的学生视频流进行评定,是否正常行为被识别为异常行为,以及异常行为是否未被识别出,并在课后随机抽取一小段视频流,重新检测以判断准确率。
2.根据权利要求1所述的一种基于改进的Openpose课堂多人异常行为及口罩佩戴检测方法,其特征在于:所述S3中对于在图片中提取到的12个人体结构坐标点,即图片中人的眼睛肩部等位置,将这12个坐标点用点阵向量表示:A=((x1,y1),...,(x12,y12))。
3.根据权利要求1所述的一种基于改进的Openpose课堂多人异常行为及口罩佩戴检测方法,其特征在于:所述S3中状态1:当学生面部五个关键点存在两个或以上关键点丢失且左右手腕和左右手肘共四个关键点在连续二十次识别的帧图像中位置变化小于一定阈值,即定义为异常状态1。状态2:当学生左右手腕及左肩或右肩关键点位置在连续二十次识别的帧图像中变化超过一定阈值,即定义为异常状态2。状态3:当学生面部的左侧或右侧眼睛和耳朵这两个关键点在连续五次识别的帧图像中均丢失即定义为状态3。状态4:当学生的在连续十五次识别的帧图像面部五个关键点中任意关键点的位置低于阈值时,则定义为异常状态4。此外,如果同时发生超过一半学生存在异常,则不作记录,该情况可能为课堂写作业阶段。
4.根据权利要求1所述的一种基于改进的Openpose课堂多人异常行为及口罩佩戴检测方法,其特征在于:所述S7-S8中将压力传感器所判断的状态设定为疑似异常状态Ⅰ,将定向声音采集器所判断的状态设定为疑似异常状态Ⅱ,当学生被判定进入上述两个疑似异常状态的任意一个时,系统便会自动将摄像头聚焦于该学生或该片区域,直至疑似异常状态解除或者被判定为课堂异常,产生相应的震动提醒并将异常数据反馈到教师端。
5.根据权利要求1所述的一种基于改进的Openpose课堂多人异常行为及口罩佩戴检测方法,其特征在于:所述S8中声音采集器主要由线圈、磁钢、外壳组成,当接受到声波信号时,声波产生的力量作用在振膜上,引起振膜振动,带动音圈做相应振动,音圈在磁钢中运动,产生电动势,声音信号转变成电信号传输给下一级系统进行分析。
6.根据权利要求1所述的一种基于改进的Openpose课堂多人异常行为及口罩佩戴检测方法,其特征在于:所述S1中图像的选取方法包括帧消减方法和K-Means聚类算法提取关键帧的方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011413525.XA CN112597814A (zh) | 2020-12-04 | 2020-12-04 | 一种基于改进的Openpose课堂多人异常行为及口罩佩戴检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011413525.XA CN112597814A (zh) | 2020-12-04 | 2020-12-04 | 一种基于改进的Openpose课堂多人异常行为及口罩佩戴检测方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112597814A true CN112597814A (zh) | 2021-04-02 |
Family
ID=75188493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011413525.XA Pending CN112597814A (zh) | 2020-12-04 | 2020-12-04 | 一种基于改进的Openpose课堂多人异常行为及口罩佩戴检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112597814A (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113537005A (zh) * | 2021-07-02 | 2021-10-22 | 福州大学 | 一种基于姿态估计的线上考试学生行为分析方法 |
CN114468653A (zh) * | 2022-02-14 | 2022-05-13 | 广东海瑞智能家居科技有限公司 | 基于用户姿态的智能沙发姿态调整系统 |
CN114708657A (zh) * | 2022-03-30 | 2022-07-05 | 深圳可视科技有限公司 | 一种基于多媒体教学的学生注意力检测方法及系统 |
CN114974309A (zh) * | 2022-07-29 | 2022-08-30 | 广州莱万科技股份有限公司 | 一种基于智能班牌的师生教学情况自动提醒方法 |
CN116524415A (zh) * | 2023-06-29 | 2023-08-01 | 成都考拉悠然科技有限公司 | 一种基于深度学习的计量管状态的检测方法及系统 |
CN117281528A (zh) * | 2023-11-27 | 2023-12-26 | 山东锋士信息技术有限公司 | 基于深度学习的多导联脉冲信号智能识别方法及系统 |
CN118071833A (zh) * | 2024-04-19 | 2024-05-24 | 广州乐庚信息科技有限公司 | 一种基于三维数字课堂的目标对象多模态定位方法及系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108510806A (zh) * | 2018-03-22 | 2018-09-07 | 宁波史瑞迪信息科技有限公司 | 一种用于课堂教学的机器人及其控制方法 |
CN109526125A (zh) * | 2018-02-27 | 2019-03-26 | 山东省青岛第十七中学 | 一种智能型学习装置 |
CN111523444A (zh) * | 2020-04-21 | 2020-08-11 | 南通大学 | 基于改进的Openpose模型和面部微表情的课堂行为检测的方法 |
CN111536976A (zh) * | 2020-05-19 | 2020-08-14 | 谢东浩 | 一种校园穿梭防控系统 |
-
2020
- 2020-12-04 CN CN202011413525.XA patent/CN112597814A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109526125A (zh) * | 2018-02-27 | 2019-03-26 | 山东省青岛第十七中学 | 一种智能型学习装置 |
CN108510806A (zh) * | 2018-03-22 | 2018-09-07 | 宁波史瑞迪信息科技有限公司 | 一种用于课堂教学的机器人及其控制方法 |
CN111523444A (zh) * | 2020-04-21 | 2020-08-11 | 南通大学 | 基于改进的Openpose模型和面部微表情的课堂行为检测的方法 |
CN111536976A (zh) * | 2020-05-19 | 2020-08-14 | 谢东浩 | 一种校园穿梭防控系统 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113537005A (zh) * | 2021-07-02 | 2021-10-22 | 福州大学 | 一种基于姿态估计的线上考试学生行为分析方法 |
CN113537005B (zh) * | 2021-07-02 | 2023-08-11 | 福州大学 | 一种基于姿态估计的线上考试学生行为分析方法 |
CN114468653A (zh) * | 2022-02-14 | 2022-05-13 | 广东海瑞智能家居科技有限公司 | 基于用户姿态的智能沙发姿态调整系统 |
CN114708657A (zh) * | 2022-03-30 | 2022-07-05 | 深圳可视科技有限公司 | 一种基于多媒体教学的学生注意力检测方法及系统 |
CN114974309A (zh) * | 2022-07-29 | 2022-08-30 | 广州莱万科技股份有限公司 | 一种基于智能班牌的师生教学情况自动提醒方法 |
CN114974309B (zh) * | 2022-07-29 | 2022-11-08 | 广州莱万科技股份有限公司 | 一种基于智能班牌的师生教学情况自动提醒方法 |
CN116524415A (zh) * | 2023-06-29 | 2023-08-01 | 成都考拉悠然科技有限公司 | 一种基于深度学习的计量管状态的检测方法及系统 |
CN116524415B (zh) * | 2023-06-29 | 2023-11-24 | 成都考拉悠然科技有限公司 | 一种基于深度学习的计量管状态的检测方法及系统 |
CN117281528A (zh) * | 2023-11-27 | 2023-12-26 | 山东锋士信息技术有限公司 | 基于深度学习的多导联脉冲信号智能识别方法及系统 |
CN118071833A (zh) * | 2024-04-19 | 2024-05-24 | 广州乐庚信息科技有限公司 | 一种基于三维数字课堂的目标对象多模态定位方法及系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112597814A (zh) | 一种基于改进的Openpose课堂多人异常行为及口罩佩戴检测方法 | |
CN109522850B (zh) | 一种基于小样本学习的动作相似度评估方法 | |
CN107545302B (zh) | 一种人眼左右眼图像联合的视线方向计算方法 | |
CN110490109B (zh) | 一种基于单目视觉的在线人体康复动作识别方法 | |
CN113269013B (zh) | 对象行为分析方法、信息显示方法及电子设备 | |
Chang et al. | A pose estimation-based fall detection methodology using artificial intelligence edge computing | |
CN111507182A (zh) | 基于骨骼点融合循环空洞卷积的乱丢垃圾行为检测方法 | |
CN111507184B (zh) | 基于并联空洞卷积和身体结构约束的人体姿态检测方法 | |
CN111046734A (zh) | 基于膨胀卷积的多模态融合视线估计方法 | |
CN115661943A (zh) | 一种基于轻量级姿态评估网络的跌倒检测方法 | |
CN113705583B (zh) | 一种基于卷积神经网络模型的目标检测识别方法 | |
CN112001347A (zh) | 一种基于人体骨架形态与检测目标的动作识别方法 | |
CN112101094B (zh) | 一种基于肢体语言的自杀风险评估方法 | |
CN112434679A (zh) | 康复运动的评估方法及装置、设备、存储介质 | |
CN112001217A (zh) | 基于深度学习的多人人体姿态估计算法 | |
Fei et al. | Flow-pose Net: An effective two-stream network for fall detection | |
CN114170537A (zh) | 一种多模态三维视觉注意力预测方法及其应用 | |
CN116246649A (zh) | 一种三维形象发音过程头部动作模拟方法 | |
CN113553893A (zh) | 基于深度神经网络的人体跌倒检测方法、装置和电子设备 | |
CN112329571B (zh) | 一种基于姿态质量评估的自适应人体姿态优化方法 | |
CN112633083A (zh) | 一种基于改进的Openpose 考试多人异常行为及口罩佩戴检测方法 | |
CN116682178A (zh) | 密集场景下的多人姿态检测方法 | |
KR20210114161A (ko) | 강인한 단일 객체 추적을 위한 자기 집중 방식의 온라인 적응 방법 | |
CN116311518A (zh) | 一种基于人体交互意图信息的层级人物交互检测方法 | |
CN110163133A (zh) | 一种基于深度残差网络的人体行为识别方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20210402 |
|
RJ01 | Rejection of invention patent application after publication |