CN112577628B - A high-sensitivity temperature sensor with strong evanescent field interferometer cascaded optical reflection devices - Google Patents
A high-sensitivity temperature sensor with strong evanescent field interferometer cascaded optical reflection devices Download PDFInfo
- Publication number
- CN112577628B CN112577628B CN202011462553.0A CN202011462553A CN112577628B CN 112577628 B CN112577628 B CN 112577628B CN 202011462553 A CN202011462553 A CN 202011462553A CN 112577628 B CN112577628 B CN 112577628B
- Authority
- CN
- China
- Prior art keywords
- interferometer
- section
- reflection device
- temperature sensor
- optical fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 title claims description 12
- 239000000835 fiber Substances 0.000 claims abstract description 31
- 239000000382 optic material Substances 0.000 claims abstract description 27
- 229910052751 metal Inorganic materials 0.000 claims abstract description 9
- 239000002184 metal Substances 0.000 claims abstract description 9
- -1 polydimethylsiloxane Polymers 0.000 claims abstract description 6
- 239000004205 dimethyl polysiloxane Substances 0.000 claims abstract description 5
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 claims abstract description 5
- 229910001635 magnesium fluoride Inorganic materials 0.000 claims abstract description 5
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims abstract description 5
- 239000004814 polyurethane Substances 0.000 claims abstract description 5
- 229920002635 polyurethane Polymers 0.000 claims abstract description 5
- 239000004642 Polyimide Substances 0.000 claims abstract description 4
- 229920001721 polyimide Polymers 0.000 claims abstract description 4
- 239000013307 optical fiber Substances 0.000 claims description 40
- 238000001228 spectrum Methods 0.000 claims description 14
- 230000002093 peripheral effect Effects 0.000 claims description 8
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- 230000035945 sensitivity Effects 0.000 abstract description 14
- 238000013461 design Methods 0.000 abstract description 3
- 238000005253 cladding Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000012544 monitoring process Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 206010070834 Sensitisation Diseases 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K11/00—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
- G01K11/32—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种光纤温度传感器,属于光纤传感技术领域,也属于材料科学以及光电子技术的交叉领域,尤其涉及一种强倏逝场干涉仪级联光反射器件的高灵敏温度传感器。The invention relates to an optical fiber temperature sensor, which belongs to the field of optical fiber sensing technology, and also belongs to the intersecting field of material science and optoelectronic technology, in particular to a high-sensitivity temperature sensor of a strong evanescent field interferometer cascaded light reflection device.
背景技术Background technique
温度是表征物体冷热程度的物理量,它在工业自动化、家用电器、环境保护、安全生产和汽车工业等行业中都是基本的检测参数之一。特别是随着当今科学技术的高速发展,人们对环境温度测量精度的要求也越来越高。Temperature is a physical quantity that characterizes the degree of coldness and heat of an object. It is one of the basic detection parameters in industries such as industrial automation, household appliances, environmental protection, safety production and automobile industry. Especially with the rapid development of today's science and technology, people's requirements for the measurement accuracy of ambient temperature are getting higher and higher.
目前广泛使用的电阻式、电偶式温度计常用于各种环境监测,同时还有一些其他技术监测环境温度的变化,包括晶体管温度传感器、微波温度传感器、电容温度传感器等,但是,以上技术都或多或少地存在以下缺点:抗电磁干扰能力较弱,体积较大、价格高昂等,而这些缺点势必会影响监测的精确度与灵敏度。Currently widely used resistance and galvanic thermometers are commonly used in various environmental monitoring, and there are some other technologies to monitor changes in environmental temperature, including transistor temperature sensors, microwave temperature sensors, capacitance temperature sensors, etc. However, the above technologies are all or There are more or less the following shortcomings: weak anti-electromagnetic interference ability, large volume, high price, etc., and these shortcomings will inevitably affect the accuracy and sensitivity of monitoring.
公开该背景技术部分的信息仅仅旨在增加对本专利申请的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。The disclosure of information in this background section is only intended to increase the understanding of the general background of this patent application, and should not be considered as an acknowledgment or any form of suggestion that the information constitutes prior art known to those skilled in the art.
发明内容Contents of the invention
本发明的目的是克服现有技术中存在的灵敏度较低的缺陷与问题,提供一种灵敏度较高的强倏逝场干涉仪级联光反射器件的高灵敏温度传感器。The purpose of the present invention is to overcome the defects and problems of low sensitivity in the prior art, and provide a high-sensitivity temperature sensor with strong evanescent field interferometer cascaded light reflection devices with high sensitivity.
为实现以上目的,本发明的技术解决方案是:一种强倏逝场干涉仪级联光反射器件的高灵敏温度传感器,其包括外包裹层、干涉仪与光反射器件,所述干涉仪包括包层及其内设置的多根纤芯;To achieve the above objectives, the technical solution of the present invention is: a high-sensitivity temperature sensor of a strong evanescent field interferometer cascaded light reflection device, which includes an outer wrapping layer, an interferometer and a light reflection device, and the interferometer includes The cladding and multiple fiber cores arranged in it;
所述干涉仪的一端与光源相连接,干涉仪的另一端与光反射器件相串联,干涉仪的中部外包裹有外包裹层,且该外包裹层为热光材料。One end of the interferometer is connected to a light source, the other end of the interferometer is connected in series with a light reflection device, and the middle part of the interferometer is wrapped with an outer wrapping layer, and the outer wrapping layer is a thermo-optic material.
所述热光材料的热光系数绝对值大于3*104,折射率为1.38—1.43,表面张力为20.6—21.2mN/m。The absolute value of the thermo-optic coefficient of the thermo-optic material is greater than 3*10 4 , the refractive index is 1.38-1.43, and the surface tension is 20.6-21.2 mN/m.
所述热光材料为聚二甲基硅氧烷、聚酰亚胺、氟化镁或聚氨酯。The thermo-optic material is polydimethylsiloxane, polyimide, magnesium fluoride or polyurethane.
所述光反射器件的波段选择宽度为干涉仪的传感峰自由频谱宽度的1.1—1.6倍。The band selection width of the light reflection device is 1.1-1.6 times of the free spectrum width of the sensing peak of the interferometer.
所述光反射器件的波段中心波长范围为干涉仪的传感峰的波长范围的1.2—2.0倍。The central wavelength range of the band of the light reflection device is 1.2-2.0 times the wavelength range of the sensing peak of the interferometer.
所述光反射器件为光纤布拉格光栅、宽带布拉格光栅或经表面修饰的纳米银反射膜。The light reflection device is a fiber Bragg grating, a broadband Bragg grating or a surface-modified nano-silver reflective film.
所述干涉仪包括左光纤段、左锥形段、平直腰段、右锥形段与右光纤段,所述左光纤段的一端与光源相连接,左光纤段的另一端依次经左锥形段、平直腰段、右锥形段、右光纤段后与光反射器件相互串联;所述左光纤段、右光纤段的直径一致,所述平直腰段的直径为左光纤段的直径的1/10至1/20;The interferometer includes a left optical fiber section, a left tapered section, a straight waist section, a right tapered section and a right optical fiber section, one end of the left optical fiber section is connected to a light source, and the other end of the left optical fiber section passes through the left cone in turn. Shaped section, straight waist section, right tapered section, right optical fiber section are connected in series with the light reflection device; 1/10 to 1/20 of the diameter;
所述左光纤段上近左锥形段的部位、左锥形段、平直腰段、右锥形段、右光纤段上近右锥形段的部位的外部共同包裹有同一个外包裹层。The parts near the left tapered section on the left optical fiber section, the left tapered section, the straight waist section, the right tapered section, and the parts near the right tapered section on the right optical fiber section are jointly wrapped with the same outer wrapping layer .
所述纤芯的数量为七根,包括一根中间芯与六根外围芯,所有的外围芯围绕中间芯以正六边形均匀分布。There are seven fiber cores, including one central core and six peripheral cores, and all the peripheral cores are evenly distributed in a regular hexagon around the central core.
所述纤芯的直径为9μm,相邻纤芯的间距为35μm,所述左光纤段、右光纤段的直径均为125μm,所述平直腰段的直径为6μm—15μm。The diameter of the fiber core is 9 μm, the distance between adjacent fiber cores is 35 μm, the diameters of the left fiber section and the right fiber section are both 125 μm, and the diameter of the straight waist section is 6 μm-15 μm.
所述外包裹层的外部包裹有毛细金属管。The outside of the outer wrapping layer is wrapped with a capillary metal tube.
与现有技术相比,本发明的有益效果为:Compared with prior art, the beneficial effect of the present invention is:
1、本发明一种强倏逝场干涉仪级联光反射器件的高灵敏温度传感器中,包括外包裹层、干涉仪与光反射器件,干涉仪包括包层及其内设置的多根纤芯,其中,干涉仪的一端与光源相连接,干涉仪的另一端与光反射器件相串联,干涉仪的中部外包裹有外包裹层(即热光材料),应用时,光源发出的入射光经过干涉仪产生干涉光谱,该干涉光谱经光反射器件后,干涉光谱中的传感峰会被反射回干涉仪中,该设计的优点如下:1. In the high-sensitivity temperature sensor of a strong evanescent field interferometer cascaded light reflection device of the present invention, it includes an outer cladding layer, an interferometer and a light reflection device, and the interferometer includes a cladding layer and multiple fiber cores arranged in it , where one end of the interferometer is connected to the light source, the other end of the interferometer is connected in series with the light reflection device, and the middle part of the interferometer is wrapped with an outer wrapping layer (that is, a thermo-optic material). When applied, the incident light emitted by the light source passes through The interferometer generates an interference spectrum. After the interference spectrum passes through the light reflection device, the sensing peak in the interference spectrum is reflected back to the interferometer. The advantages of this design are as follows:
首先,外部环境的温度变化会引起热光材料的折射率发生相应的线性变化,而热光材料的折射率变化又会导致干涉仪产生的干涉光谱的波长发生漂移,从而在外部环境温度、干涉光谱的波长之间构建一种线性关系,进而克服干涉仪温度敏感度较低的缺陷,实现增敏;其次,当干涉光谱第一次产生时,能得到热光材料的增敏,而当干涉光谱中的传感峰被反射回干涉仪中后,会再次得到热光材料的增敏,传感峰强度将会被大大增加,能较大幅度的提高灵敏度。因此,本发明不仅能监测环境的温度,而且灵敏度较高。First, the temperature change of the external environment will cause a corresponding linear change in the refractive index of the thermo-optic material, and the change in the refractive index of the thermo-optic material will cause the wavelength of the interference spectrum generated by the interferometer to shift, so that the external environment temperature, interference A linear relationship is constructed between the wavelengths of the spectrum, thereby overcoming the defect of low temperature sensitivity of the interferometer and realizing the sensitivity enhancement; secondly, when the interference spectrum is generated for the first time, the sensitivity enhancement of the thermo-optic material can be obtained, and when the interference spectrum After the sensing peak in the spectrum is reflected back into the interferometer, it will be sensitized by the thermo-optic material again, and the intensity of the sensing peak will be greatly increased, which can greatly improve the sensitivity. Therefore, the invention not only can monitor the temperature of the environment, but also has high sensitivity.
2、本发明一种强倏逝场干涉仪级联光反射器件的高灵敏温度传感器中,当干涉光谱中的传感峰被反射回干涉仪中后,由于热光材料的增敏,传感峰强度将会被大大增加,非常利于后续对传感峰的解调,便于实现即时的在线监测。因此,本发明便于解调,能实时在线监测。2. In the high-sensitivity temperature sensor of a strong evanescent field interferometer cascaded optical reflection device of the present invention, when the sensing peak in the interference spectrum is reflected back to the interferometer, due to the sensitization of the thermo-optic material, the sensing The peak intensity will be greatly increased, which is very beneficial to the subsequent demodulation of the sensing peak and facilitates real-time online monitoring. Therefore, the invention is convenient for demodulation and can monitor on-line in real time.
3、本发明一种强倏逝场干涉仪级联光反射器件的高灵敏温度传感器中,在外包裹层的外部包裹有毛细金属管,应用时,毛细金属管不仅能够对外包裹层(即热光材料)进行保护封装,克服热光材料柔性的缺点,而且可减少响应时间以及避免震动或压强对传感产生的干扰,有利于实现在线实时高精度解调。因此,本发明不仅便于封装固定,而且抗干扰能力较强,利于实现高精度监测。3. In the high-sensitivity temperature sensor of a strong evanescent field interferometer cascaded optical reflection device of the present invention, a capillary metal tube is wrapped outside the outer wrapping layer. When applied, the capillary metal tube can not only material) to protect the package, overcome the shortcomings of thermo-optic material flexibility, and can reduce the response time and avoid the interference of vibration or pressure on the sensor, which is conducive to the realization of online real-time high-precision demodulation. Therefore, the present invention is not only convenient for packaging and fixing, but also has strong anti-interference ability, which is beneficial to realize high-precision monitoring.
附图说明Description of drawings
图1是本发明的结构示意图。Fig. 1 is a structural schematic diagram of the present invention.
图2是图1的横向剖视图。FIG. 2 is a transverse sectional view of FIG. 1 .
图3是图1中干涉仪的结构示意图。FIG. 3 is a schematic structural diagram of the interferometer in FIG. 1 .
图4是图3的横向剖视图。FIG. 4 is a transverse sectional view of FIG. 3 .
图5是本发明的应用示意图。Fig. 5 is a schematic diagram of the application of the present invention.
图6是本发明中实施例1的温度敏感对比示意图。Fig. 6 is a schematic diagram of temperature sensitivity comparison in Example 1 of the present invention.
图中:外包裹层1、干涉仪2、包层21、纤芯22、中间芯221、外围芯222、左光纤段23、左锥形段24、平直腰段25、右锥形段26、右光纤段27、光反射器件3、毛细金属管4、光源5、封端套头6、热光材料灌注窗口7、解调仪8。In the figure:
具体实施方式detailed description
以下结合附图说明和具体实施方式对本发明作进一步详细的说明。The present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments.
参见图1—图5,一种强倏逝场干涉仪级联光反射器件的高灵敏温度传感器,其包括外包裹层1、干涉仪2与光反射器件3,所述干涉仪2包括包层21及其内设置的多根纤芯22;Referring to Fig. 1-Fig. 5, a high-sensitivity temperature sensor of a strong evanescent field interferometer cascaded light reflective device, which includes an
所述干涉仪2的一端与光源5相连接,干涉仪2的另一端与光反射器件3相串联,包层21的中部外包裹有外包裹层1,且该外包裹层1为热光材料。One end of the
所述热光材料的热光系数绝对值大于3*104,折射率为1.38—1.43,表面张力为20.6—21.2mN/m。The absolute value of the thermo-optic coefficient of the thermo-optic material is greater than 3*10 4 , the refractive index is 1.38-1.43, and the surface tension is 20.6-21.2 mN/m.
所述热光材料为聚二甲基硅氧烷、聚酰亚胺、氟化镁或聚氨酯。The thermo-optic material is polydimethylsiloxane, polyimide, magnesium fluoride or polyurethane.
所述光反射器件3的波段选择宽度为干涉仪2的传感峰自由频谱宽度的1.1—1.6倍。The band selection width of the
所述光反射器件3的波段中心波长范围为干涉仪2的传感峰的波长范围的1.2—2.0倍。The central wavelength range of the band of the
所述光反射器件3为光纤布拉格光栅、宽带布拉格光栅或经表面修饰的纳米银反射膜。The
所述干涉仪2包括左光纤段23、左锥形段24、平直腰段25、右锥形段26与右光纤段27,所述左光纤段23的一端与光源5相连接,左光纤段23的另一端依次经左锥形段24、平直腰段25、右锥形段26、右光纤段27后与光反射器件3相互串联;所述左光纤段23、右光纤段27的直径一致,所述平直腰段25的直径为左光纤段23的直径的1/10至1/20;Described
所述左光纤段23上近左锥形段24的部位、左锥形段24、平直腰段25、右锥形段26、右光纤段27上近右锥形段26的部位的外部共同包裹有同一个外包裹层1。The outside of the position near the left
所述纤芯22的数量为七根,包括一根中间芯221与六根外围芯222,所有的外围芯222围绕中间芯221以正六边形均匀分布。The number of the
所述纤芯22的直径为9μm,相邻纤芯22的间距为35μm,所述左光纤段23、右光纤段27的直径均为125μm,所述平直腰段25的直径为6μm—15μm。The diameter of the
所述外包裹层1的外部包裹有毛细金属管4。A
本发明的原理说明如下:Principle of the present invention is described as follows:
本发明中对光纤进行加热熔融拉锥处理成微纳尺寸,以使光纤表面形成倏逝场(包括左锥形段24、平直腰段25、右锥形段26,尤其在平直腰段25的表面形成强倏逝场),从而得到干涉仪,然后,再使干涉仪与热光材料(即外包裹层)相接触,最后,用毛细金属管进行封装。In the present invention, the optical fiber is heated, melted and tapered into a micro-nano size, so that the surface of the optical fiber forms an evanescent field (including the left
应用时,光穿过干涉仪时会产生干涉光谱,此时,外界温度或折射率发生改变都会引起干涉仪的有效折射率发生改变,导致干涉谱发生波长漂移,从而感应外界温度或折射率的变化。但由于二氧化硅的热光系数较小,干涉仪的温度敏感度较低,因此,本设计主要关注于外界折射率变化,为此,在干涉仪的外部包裹有热光材料,即关注热光材料折射率的变化与波长漂移之间的联系,而热光材料之外环境温度的变化又会引起热光材料折射率的线性变化,从而,在外界环境温度与波长漂移之间建立一种线性的对应联系。In application, when light passes through the interferometer, an interference spectrum will be generated. At this time, changes in the external temperature or refractive index will cause changes in the effective refractive index of the interferometer, resulting in a wavelength shift in the interference spectrum, thereby sensing the external temperature or refractive index. Variety. However, due to the small thermo-optic coefficient of silicon dioxide, the temperature sensitivity of the interferometer is low. Therefore, this design mainly focuses on the external refractive index change. Therefore, the thermo-optic material is wrapped outside the interferometer, that is, the thermal The relationship between the change of the refractive index of the optical material and the wavelength drift, and the change of the ambient temperature outside the thermo-optic material will cause the linear change of the refractive index of the thermo-optic material, thus establishing a relationship between the external ambient temperature and the wavelength drift linear correspondence.
本发明中优选热光材料折射率为1.3907-1.4125,所处温度为10-60摄氏度。In the present invention, the thermo-optic material preferably has a refractive index of 1.3907-1.4125 and a temperature of 10-60 degrees Celsius.
本发明中的光反射器件为波段选择性光反射器件。The light reflective device in the present invention is a band-selective light reflective device.
实施例1:Example 1:
参见图1—图5,一种强倏逝场干涉仪级联光反射器件的高灵敏温度传感器,其包括外包裹层1、干涉仪2、光反射器件3与毛细金属管4,所述干涉仪2包括包层21及其内设置的七根纤芯22(包括一根中间芯221与六根外围芯222,所有的外围芯222围绕中间芯221以正六边形均匀分布),所述干涉仪2包括左光纤段23、左锥形段24、平直腰段25、右锥形段26与右光纤段27,所述左光纤段23的一端与光源5相连接,左光纤段23的另一端依次经左锥形段24、平直腰段25、右锥形段26、右光纤段27后与光反射器件3相互串联;所述左光纤段23、右光纤段27的直径一致,所述平直腰段25的直径为左光纤段23的直径的1/10至1/20;所述左光纤段23上近左锥形段24的部位、左锥形段24、平直腰段25、右锥形段26、右光纤段27上近右锥形段26的部位的外部共同包裹有同一个外包裹层1,该外包裹层1为热光材料(本实施例中为聚二甲基硅氧烷)。Referring to Fig. 1-Fig. 5, a high-sensitivity temperature sensor of a strong evanescent field interferometer cascaded light reflective device, which includes an
根据实验数据,上述高灵敏度温度传感器的灵敏度可达14338pm/℃,与裸光纤MZI相比,增加了500倍,精度最高可达0.001℃。According to the experimental data, the sensitivity of the above-mentioned high-sensitivity temperature sensor can reach 14338pm/°C, which is 500 times higher than that of the bare fiber MZI, and the accuracy can reach up to 0.001°C.
此外,请参见图6,该图为本实施例1的温度敏感对比示意图,由图可见,聚二甲基硅氧烷包裹之后,本传感器对温度的敏感性大幅增加。In addition, please refer to FIG. 6 , which is a schematic diagram of the comparison of temperature sensitivity in Example 1. It can be seen from the figure that after being wrapped with polydimethylsiloxane, the sensitivity of the sensor to temperature is greatly increased.
实施例2:Example 2:
基本内容同实施例1,不同之处在于:Basic content is the same as
热光材料选用氟化镁,干涉仪选用拉锥七芯光纤马赫-曾德尔干涉仪。Magnesium fluoride is used as the thermo-optic material, and a tapered seven-core fiber Mach-Zehnder interferometer is used as the interferometer.
实施例3:Example 3:
基本内容同实施例1,不同之处在于:Basic content is the same as
热光材料选用聚氨酯,干涉仪选用拉锥单模芯光纤马赫-曾德尔干涉仪。The thermo-optic material is polyurethane, and the interferometer is a tapered single-mode fiber Mach-Zehnder interferometer.
以上所述仅为本发明的较佳实施方式,本发明的保护范围并不以上述实施方式为限,但凡本领域普通技术人员根据本发明所揭示内容所作的等效修饰或变化,皆应纳入权利要求书中记载的保护范围内。The above descriptions are only preferred embodiments of the present invention, and the scope of protection of the present invention is not limited to the above embodiments, but all equivalent modifications or changes made by those of ordinary skill in the art according to the disclosure of the present invention should be included within the scope of protection described in the claims.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011462553.0A CN112577628B (en) | 2020-12-14 | 2020-12-14 | A high-sensitivity temperature sensor with strong evanescent field interferometer cascaded optical reflection devices |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011462553.0A CN112577628B (en) | 2020-12-14 | 2020-12-14 | A high-sensitivity temperature sensor with strong evanescent field interferometer cascaded optical reflection devices |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112577628A CN112577628A (en) | 2021-03-30 |
CN112577628B true CN112577628B (en) | 2023-01-17 |
Family
ID=75132231
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011462553.0A Active CN112577628B (en) | 2020-12-14 | 2020-12-14 | A high-sensitivity temperature sensor with strong evanescent field interferometer cascaded optical reflection devices |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112577628B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114485904A (en) * | 2022-01-25 | 2022-05-13 | 西北大学 | Ultrasonic sensor based on conical multi-core optical fiber |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103148956A (en) * | 2013-01-31 | 2013-06-12 | 中国人民解放军国防科学技术大学 | Conducting temperature measurement device and method based on coating micro-nano optical fibers |
CN105241848A (en) * | 2015-09-23 | 2016-01-13 | 天津大学 | Liquid refractive index and temperature dual-parameter sensor, and preparation method thereof |
CN106053389A (en) * | 2016-05-25 | 2016-10-26 | 哈尔滨工程大学 | Micro-droplet sensing device and method using same to measure refractivity |
CN107014522A (en) * | 2017-05-25 | 2017-08-04 | 杭州电子科技大学 | A kind of Whispering-gallery-mode optical resonator temperature-sensing system |
CN108534911A (en) * | 2018-04-12 | 2018-09-14 | 南昌航空大学 | A kind of temperature sensor and preparation method thereof coupled with microballoon based on D-type optical fiber |
CN109631963A (en) * | 2019-01-21 | 2019-04-16 | 杭州光预科技有限公司 | Polynary parameter measurement system and method based on microstructured optical fibers interference microwave photon method for sensing |
CN210268950U (en) * | 2019-06-21 | 2020-04-07 | 佛山科学技术学院 | A temperature sensor based on micro-nano fiber and end face reflection |
CN111122006A (en) * | 2020-01-12 | 2020-05-08 | 哈尔滨理工大学 | Flower-shaped ZnO/graphene single-sphere micro-nano structure temperature sensor and manufacturing method thereof |
CA3065175A1 (en) * | 2019-01-11 | 2020-07-11 | Corning Incorporated | Multicore fiber crosstalk sensor |
-
2020
- 2020-12-14 CN CN202011462553.0A patent/CN112577628B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103148956A (en) * | 2013-01-31 | 2013-06-12 | 中国人民解放军国防科学技术大学 | Conducting temperature measurement device and method based on coating micro-nano optical fibers |
CN105241848A (en) * | 2015-09-23 | 2016-01-13 | 天津大学 | Liquid refractive index and temperature dual-parameter sensor, and preparation method thereof |
CN106053389A (en) * | 2016-05-25 | 2016-10-26 | 哈尔滨工程大学 | Micro-droplet sensing device and method using same to measure refractivity |
CN107014522A (en) * | 2017-05-25 | 2017-08-04 | 杭州电子科技大学 | A kind of Whispering-gallery-mode optical resonator temperature-sensing system |
CN108534911A (en) * | 2018-04-12 | 2018-09-14 | 南昌航空大学 | A kind of temperature sensor and preparation method thereof coupled with microballoon based on D-type optical fiber |
CA3065175A1 (en) * | 2019-01-11 | 2020-07-11 | Corning Incorporated | Multicore fiber crosstalk sensor |
CN109631963A (en) * | 2019-01-21 | 2019-04-16 | 杭州光预科技有限公司 | Polynary parameter measurement system and method based on microstructured optical fibers interference microwave photon method for sensing |
CN210268950U (en) * | 2019-06-21 | 2020-04-07 | 佛山科学技术学院 | A temperature sensor based on micro-nano fiber and end face reflection |
CN111122006A (en) * | 2020-01-12 | 2020-05-08 | 哈尔滨理工大学 | Flower-shaped ZnO/graphene single-sphere micro-nano structure temperature sensor and manufacturing method thereof |
Non-Patent Citations (2)
Title |
---|
"七芯光纤拉锥的折射率传感性能研究";郭东来等;《武汉理工大学学报》;20180630;第40卷(第6期);第29-33页 * |
"高灵敏度的工字型微纳光纤温度传感器";郭东来等;《武汉理工大学学报》;20190630;第41卷(第6期);第65-69页 * |
Also Published As
Publication number | Publication date |
---|---|
CN112577628A (en) | 2021-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tian et al. | High-performance humidity sensor based on a micro-nano fiber Bragg grating coated with graphene oxide | |
Rao et al. | Review of optical humidity sensors | |
Rego | A review of refractometric sensors based on long period fibre gratings | |
Alwis et al. | Fibre optic long period grating-based humidity sensor probe using a Michelson interferometric arrangement | |
Tan et al. | Temperature-insensitive humidity sensor based on a silica fiber taper interferometer | |
CN103940530B (en) | A kind of temperature sensor based on hollow annular waveguide fiber | |
CN203287311U (en) | Double-cone fine-core single mode fiber based transmission-type optical fiber humidity sensor | |
CN110319786A (en) | A kind of strain sensing Fabry-Perot interferometer and the strain sensing method based on the interferometer | |
CN106802190B (en) | A highly sensitive optical fiber torsion sensor without temperature cross-interference | |
CN103852428A (en) | Humidity sensor based on multimode fiber core and fiber grating and preparation method of humidity sensor | |
CN102829893A (en) | Method for simultaneously measuring temperature and stress of fiber bragg gratings (obtained by corrosion) with different diameters | |
CN108844919A (en) | The reflection type inclined fiber grating index sensor of covering and production, measurement method | |
Tan et al. | Continuous refractive index sensing based on carbon-nanotube-deposited photonic crystal fibers | |
Salman et al. | Sensitivity-enhanced moisture sensor based on θ-shape bending fiber coated with copper-polyvinyl alcohol thin film | |
Cheng et al. | Tapered multicore fiber interferometer for ultra-sensitive temperature sensing with thermo-optical materials | |
CN108333144A (en) | A kind of self-reference micron plastic optical fiber liquid refractive index sensor of coupled structure | |
CN102141513A (en) | Refractive index sensor of micro-nano optical fiber | |
CN112577628B (en) | A high-sensitivity temperature sensor with strong evanescent field interferometer cascaded optical reflection devices | |
Zhao et al. | Fabrication and sensing characteristics of long-period fiber grating in capillary fiber | |
Bao et al. | Investigation of long period grating imprinted on a plastic optical fiber for liquid level sensing | |
Dang et al. | Sensing performance improvement of resonating sensors based on knotting micro/nanofibers: A review | |
CN203083927U (en) | Optical fiber refraction index sensor based on single mode, fine core, multi-mode and single mode structure | |
CN204964381U (en) | Gelatin concentration detection system based on different core fibre structure of single mode | |
Peng et al. | Miniature fiber optic SPR high sensitivity humidity sensor based on coated polyvinyl alcohol film | |
CN112595435B (en) | High-sensitivity temperature measurement demodulation sensing system based on optical fiber strong evanescent field interferometer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |