CN112575034A - Product for treating hemophilia A and application - Google Patents

Product for treating hemophilia A and application Download PDF

Info

Publication number
CN112575034A
CN112575034A CN202010778534.2A CN202010778534A CN112575034A CN 112575034 A CN112575034 A CN 112575034A CN 202010778534 A CN202010778534 A CN 202010778534A CN 112575034 A CN112575034 A CN 112575034A
Authority
CN
China
Prior art keywords
seq
ser
leu
homology
thr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010778534.2A
Other languages
Chinese (zh)
Other versions
CN112575034B (en
Inventor
罗昀
宋珂慧
郭栋
邢晓
郭伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinan Saier Biological Technology Co ltd
Original Assignee
Jinan Saier Biological Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinan Saier Biological Technology Co ltd filed Critical Jinan Saier Biological Technology Co ltd
Publication of CN112575034A publication Critical patent/CN112575034A/en
Application granted granted Critical
Publication of CN112575034B publication Critical patent/CN112575034B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/36Blood coagulation or fibrinolysis factors
    • A61K38/37Factors VIII
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15041Use of virus, viral particle or viral elements as a vector
    • C12N2740/15043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Abstract

The application discloses a product for treating hemophilia A and application thereof. The products include expression cassettes for the BDD FVIII gene, recombinant vectors comprising the expression cassettes, recombinant viruses, particularly recombinant lentiviruses, recombinant bacteria, or recombinant cells. The promoter of the BDD FVIII gene in the expression cassette comprises the PF4 promoter. The lentiviral vector containing the PF4 promoter and the BDD FVIII gene expression cassette constructed by the invention can ensure that the BDD FVIII gene is specifically expressed in platelets derived from cytoplasm shedding of megakaryocytes from CD34+ cells through the PF4 promoter, thereby playing a blood coagulation function and being applicable to gene therapy of hemophilia A of all ages.

Description

Product for treating hemophilia A and application
Technical Field
The invention relates to the field of gene therapy, in particular to a product for treating hemophilia A and application thereof.
Background
Hemophilia is an X-linked recessive hereditary hemorrhagic disease, and is classified into hemophilia a (hemophilia a) and hemophilia B (hemophilia B). Hemophilia a is a deficiency of coagulation factor viii (fviii) caused by a gene mutation. FVIII gene is located at the end of the long arm of the X chromosome: (Xq28) encoding a synthetic peptide chain arranged in the manner of A1-A2-B-A3-C1-C2. The major types of mutations that are closely related to the production of inhibitors in severe hemophiliacs include large fragment deletions, nonsense mutations, inversion of intron 22, followed by small fragment deletions and insertions, missense mutations, and the like. The incidence of hemophilia is not population or regional. In the male population, the incidence of hemophilia a is about 1/5000, accounting for 80% -85% of all hemophilia populations; the incidence of hemophilia B is about 1/25000, accounting for 15% -20% of all hemophilia populations.
The main treatment for hemophilia a is replacement therapy, preferably a recombinant FVIII preparation or a virus inactivated blood-derived FVIII preparation, and cryoprecipitate or fresh frozen plasma or the like can be selected only in the absence of the above conditions. Either a genetically recombinant FVIII preparation or a virally inactivated blood-derived FVIII preparation induces production of inhibitors in the patient's body. In recent years, there has been a trend toward increasing inhibitors of acquired blood coagulation factor viii (fvii)/blood coagulation factor ix (fxi) (also known as acquired hemophilia) or pooled inhibitors in hemophilia patients. The former is an anti-FVIII/FIX autoantibody produced by a non-hemophiliac patient, and the latter is an anti-FVIII/FIX alloantibody produced by a hemophiliac patient who has received an infusion of an exogenous blood coagulation factor product. The incidence of inhibitors for patients with severe type A hemophilia is about 30 percent, and the incidence of inhibitors for patients with non-severe type A is 3 to 13 percent; patients with hemophilia B range from 1% to 6%. Even with the use of standardized immune tolerance Induction Therapy (ITI), the success rate of the ITI for hemophilia a inhibitor positive patients is 70%, the success rate of the ITI for hemophilia B inhibitor positive patients is only 30%, and there is a risk of anaphylaxis and irreversible kidney damage.
The gene therapy for hemophilia a is to directly transfect a vector carrying a modified FVIII gene, such as adeno-associated virus (AAV), into a human body, allowing direct synthesis of FVIII in cells in the body. FVIII mRNA is 9kb in length, encodes a precursor polypeptide of 2351 amino acids, and after a signal peptide of 19 residues at the N-terminal is removed, the mature protein contains 2332 amino acids. FVIII cDNAs are too long to be loaded into vectors such as AVV. The B domain of FVIII is not essential for the activity and function of FVIII in vivo. Deletion of the B domain resulted in a 17-fold increase in mRNA levels and a 30% increase in secreted protein relative to full-length wild-type FVIII. There have been numerous organizations that have developed corresponding research and development for knock-outs of the B domain and shortened linker substitutions.
FVIII (BDD FVIII) genes knocked out by B structural domain loaded and modified by adeno-associated virus (AAV) are directly input into a human body, and after the AAV enters liver cells, the BDD FVIII is synthesized and released, so that the treatment purpose is achieved.
WO/2017/083764 discloses a method for treating hemophilia A by using Adenovirus Associated Virus (AAV) vector carrying FVIII-BDD gene, which shows that the expression amount of FVIII protein can be improved in mammalian cells. However, the biggest problem with AAV for treating hemophilia a is the presence of AAV antibodies in about 30-40% of the population. It is estimated that the serological positive rate of neutralizing antibodies to AAV1 in healthy humans is about 67%, AAV2 72%, AAV5 40%, AAV6 46%, AAV8 38%, and AAV 9. Based on the homology of the AAV capsid structure, antibodies directed against one AAV serotype may cross-react with other AAV. In addition, AAV exists primarily in free form within the cell, and cell division will dilute AAV-loaded genes and ultimately lead to diminished therapeutic effect. Since adult liver cells are mostly in the resting stage, gene therapy for hemophilia using AAV mostly targets the liver as AAV organ and is limited to adult patients. AAV gene therapy has not been practical for children with hemophilia a.
CN108795986A discloses a hemophilia a lentiviral vector modified at the splice donor site 5' of the pTYF lentiviral vector, further comprising FVIII and/or FVIII-BDD genes. The patent mainly relates to the modification of lentivirus, so that the lentivirus loses the self-replication capacity and the safety of gene therapy is improved. The promoter sequence utilized in the patent is EF1 alpha, and can realize the increase of the expression amount of the BDD FVIII gene in cells, but EF1 alpha is not a tissue-specific promoter and cannot effectively control the expression of the BDD FVIII in vivo.
Disclosure of Invention
Aiming at the defects in the prior art, the invention provides a product for treating hemophilia A and application thereof, wherein the product comprises an expression cassette of a BDD FVIII gene, a recombinant vector containing the expression cassette, a recombinant virus, especially a recombinant lentivirus, a recombinant bacterium or a recombinant cell. The promoter of the BDD FVIII gene in the expression cassette comprises the PF4 promoter. The PF4 promoter enables the BDD FVIII gene to be specifically and highly expressed in recombinant lentiviruses, megakaryocytes and hematopoietic stem cells.
The invention adopts the following technical scheme:
in a first aspect, the present invention provides a recombinant vector for treating hemophilia a comprising an expression cassette co-expressed in tandem of the PF4 promoter and the BDD FVIII gene;
i.e., the recombinant vector comprises an expression cassette for the BDD FVIII gene, wherein the promoter for the BDD FVIII gene comprises the PF4 promoter.
In one embodiment, the platelet factor 4 promoter is the human PF4 promoter (hPF4 promoter) and has the sequence shown in SEQ ID No.1 or a nucleotide sequence at least 80% homologous, preferably at least 85% homologous, and more preferably at least 95% homologous thereto.
In one embodiment, the hPF4 promoter is further optimized to have a sequence as shown in SEQ ID NO.2 or a nucleotide sequence at least 80% homologous, preferably at least 85% homologous, and more preferably at least 95% homologous thereto.
In one embodiment, the hPF4 promoter is further optimized to have a sequence as shown in SEQ ID NO.3 or a nucleotide sequence at least 80% homologous, preferably at least 85% homologous, and more preferably at least 95% homologous thereto.
In one example, the hPF4 promoter can be replaced by the rat PF4 promoter (rPF4), the sequence of which is shown in patent PCT/US 91/07233.
In one embodiment, the hPF4 promoter can also be replaced by other species, such as the mouse PF4 promoter (mPF4 promoter).
In one embodiment, the hPF4 promoter can also be replaced by the GPIba promoter, the ITGA2B promoter, the CD68 promoter, the c-mpl promoter, and the like.
In one embodiment, the sequence of the PF4 promoter may be more or less than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 75, 100, 150, 200, 300, 400, 500, 600 or more nucleic acid sequences than SEQ ID nos. 1-3.
The nucleotide sequence of the BDD FVIII gene is shown in SEQ ID NO.4, or the nucleotide sequence which has at least 80% homology, preferably at least 85% homology, and further preferably at least 95% homology with the BDD FVIII gene;
the amino acid sequence coded by the BDD FVIII gene is shown in SEQ ID NO.16, or the amino acid sequence which has at least 80 percent of homology, preferably at least 85 percent of homology, and further preferably at least 95 percent of homology with the BDD FVIII gene;
in one embodiment, the BDD FVIII sequence is substituted between 2277bp and 2278 bp/between 759aa and 760aa with a nucleotide/amino acid sequence as shown in SEQ ID NO.5, SEQ ID NO.18 or with at least 80% homology thereto, preferably at least 85% homology thereto, further preferably at least 95% homology thereto, based on the sequence as shown in SEQ ID NO.4, SEQ ID NO. 16.
In one embodiment, the BDD FVIII sequence is substituted between 2277bp and 2278 bp/between 759aa and 760aa with a nucleotide/amino acid sequence as shown in SEQ ID NO.6, SEQ ID NO.19 or with at least 80% homology thereto, preferably at least 85% homology thereto, further preferably at least 95% homology thereto, based on the sequence as shown in SEQ ID NO.4, SEQ ID NO. 16.
In one embodiment, the BDD FVIII sequence is substituted between 2277bp and 2278 bp/759 aa and 760aa with a nucleotide/amino acid sequence as shown in SEQ ID NO.8, SEQ ID NO.21 or with at least 80%, preferably at least 85%, further preferably at least 95% homology thereto, based on the sequence as shown in SEQ ID NO.4, SEQ ID NO. 16.
In one embodiment, the BDD FVIII sequence is substituted between 2277bp and 2278 bp/between 759aa and 760aa with a nucleotide/amino acid sequence as shown in SEQ ID NO.9, SEQ ID NO.22 or with at least 80% homology thereto, preferably at least 85% homology thereto, further preferably at least 95% homology thereto, based on the sequence as shown in SEQ ID NO.4, SEQ ID NO. 16.
In one embodiment, the BDD FVIII sequence is substituted between 2277bp and 2278 bp/759 aa and 760aa with a nucleotide/amino acid sequence as shown in SEQ ID NO.10, SEQ ID NO.23 or with at least 80%, preferably at least 85%, further preferably at least 95% homology thereto, based on the sequence as shown in SEQ ID NO.4, SEQ ID NO. 16.
In one embodiment, the BDD FVIII sequence is substituted between 2277bp and 2278 bp/between 759aa and 760aa with the nucleotide/amino acid sequence shown in SEQ ID NO.11, SEQ ID NO.24 or with at least 80% homology thereto, preferably at least 85% homology thereto, further preferably at least 95% homology thereto, based on the sequence shown in SEQ ID NO.4, SEQ ID NO. 16.
In one embodiment, the BDD FVIII sequence is substituted between 2277bp and 2278 bp/between 759aa and 760aa with the nucleotide/amino acid sequence shown in SEQ ID NO.12, SEQ ID NO.25 or with at least 80% homology thereto, preferably at least 85% homology thereto, further preferably at least 95% homology thereto, based on the sequence shown in SEQ ID NO.4, SEQ ID NO. 16.
In one embodiment, the BDD FVIII sequence is substituted between 2277bp and 2278 bp/between 759aa and 760aa with the nucleotide/amino acid sequence shown in SEQ ID NO.13, SEQ ID NO.26 or with at least 80% homology thereto, preferably at least 85% homology thereto, further preferably at least 95% homology thereto, based on the sequence shown in SEQ ID NO.4, SEQ ID NO. 16.
In one embodiment, the BDD FVIII sequence is substituted between 2277bp and 2278 bp/759 aa and 760aa with the nucleotide/amino acid sequence shown in SEQ ID NO.14, SEQ ID NO.27 or with at least 80%, preferably at least 85%, further preferably at least 95% homology thereto, based on the sequence shown in SEQ ID NO.4, SEQ ID NO. 16.
In one embodiment, the BDD FVIII sequence is substituted between 2277bp and 2278 bp/between 759aa and 760aa with the nucleotide/amino acid sequence shown in SEQ ID NO.15, SEQ ID NO.28 or with at least 80% homology thereto, preferably at least 85% homology thereto, further preferably at least 95% homology thereto, based on the sequence shown in SEQ ID NO.4, SEQ ID NO. 16.
In one embodiment, the BDD FVIII sequence is based on the sequence shown in SEQ ID NO.4, SEQ ID NO.16, between 2277bp and 2278 bp/759 aa and 760aa substituted with the nucleotide/amino acid sequence shown in SEQ ID NO.7 and deleted 2278-2289bp/SEQ ID NO.20 and deleted 760-763aa or with at least 80%, preferably at least 85%, more preferably at least 95% homology thereto.
In one embodiment, the BDD FVIII sequence can be further codon optimized for higher protein expression. The optimized nucleotide sequence is shown as SEQ ID NO.17 or nucleotide with at least 80% homology, preferably at least 85% homology, and further preferably at least 95% homology, and the BDD FVIII amino acid sequence is shown as SEQ ID NO.29 or amino acid sequence with at least 80% homology, preferably at least 85% homology, and further preferably at least 95% homology. The expression amount of the optimized BDD FVIII protein can be increased by about 100 percent and above.
In one example, the BDD FVIII sequence may be an engineered FVIII sequence not mentioned in this patent, including B region knockout and ligation, other region genetic modifications, codon optimization, etc., CpG reduced BDD FVIII as shown in patent WO 2017/075619 a1, or BDD FVIII as shown in patent WO 2017/074526 a1, or codon optimized BDD FVIII-SQ as shown in patent WO 2015/038625, or BDD FVIII sequence as shown in WO 2017/083764, etc.
In one embodiment, the BDD FVIII sequence may be further linked to other protein peptide fragments to form a fusion protein, such as VWFSPD2-BDD FVIII fusion protein sequence shown in patent WO 2014/066663 a 1.
In one embodiment, the 1 st to 57bp (signal peptide sequence) of the sequence shown in SEQ ID NO.4 is replaced by a nucleotide sequence shown in SEQ ID NO.30 or having at least 80% homology thereto, preferably at least 85% homology thereto, further preferably at least 95% homology thereto; 1-19aa (signal peptide sequence) of the sequence shown in SEQ ID NO.16 is substituted by an amino acid sequence shown in SEQ ID NO.31 or having at least 80% homology thereto, preferably at least 85% homology thereto, and more preferably at least 95% homology thereto.
In one example, portions/total nucleotide sequence of PF 4-promoter-BDD FVIII composition can be obtained by chemical synthesis and/or overlap extension PCR.
In one example, the 5 'and 3' ends of the PF4-BDD FVIII compositions may be supplemented with the corresponding sequences of restriction sites XcmI, SalI, respectively, for insertion into the corresponding lentiviral vector plasmids.
In one example, the PF4-BDD FVIII composition (SEQ ID No.1, SEQ ID No.4) can be inserted into prrlsin. cppt. PGK-GFP. wpre (Plasmid #12252) with PGK promoter and GFP sequence deleted to form PF4-BDD FVIII loaded lentiviral vector Plasmid-1, the nucleotide sequence of PF4-BDD FVIII composition is shown in SEQ ID No.32, and the structure of prrlsin. cppt. pf4-BDD FVIII. wpre-1 is shown in fig. 1.
In one example, the PF4-BDD FVIII composition (SEQ ID No.1, SEQ ID No.17) can be inserted into prrlsin. cppt. PGK-GFP. wpre (Plasmid #12252) with PGK promoter and GFP sequences knocked out to form PF4-BDD FVIII loaded lentiviral vector Plasmid-2, the PF4-BDD FVIII composition nucleotide sequence is shown in SEQ ID No.33, and the prrlsin. pf4-BDD FVIII. wpre-2 structure is shown in fig. 1.
In one embodiment, the PF4-BDD FVIII sequence may be followed by a PPT- Δ U3-R-rabbit-globin polyadenylation signal sequence.
In one embodiment, the PF4-BDD FVIII sequence may be followed by a Δ U3-R-BGHpa sequence.
In one example, the PF4-BDD FVIII sequence can also be inserted into other lentiviral vector plasmids not mentioned in this patent.
The recombinant vector is a lentiviral vector, a retroviral vector, an adenoviral vector, an adeno-associated viral vector, a simian viral vector, a vaccinia viral vector, a Sendai viral vector, an EB viral vector or a herpes simplex viral vector, and a sleeping beauty transposon system vector; preferably, a lentiviral vector, more preferably, the lentiviral vector is obtained by inserting the PF4 promoter and the BDD FVIII gene between the XcmI and SalI sites of vector pRRLSIN.
In a second aspect, the present invention provides any one of the following 1) to 2) biomaterials:
1) an expression cassette as described in any of the above,
2) a recombinant virus comprising 1) said expression cassette, preferably said recombinant virus is a recombinant lentivirus,
3) the recombinant cell or the recombinant bacterium containing the expression cassette 1), preferably, the recombinant cell is a hematopoietic stem cell or a megakaryocyte.
The recombinant bacteria can be engineering bacteria and are used for propagating, storing or detecting the expression cassette;
the recombinant cell may be a cell for lentivirus packaging purification, such as a mammalian cell, preferably a HEK293T cell;
the recombinant cell can be a megakaryocyte such as a Dami cell, and is used for identifying the expression of the BDD FVIII gene in the recombinant lentivirus,
the recombinant cells may be hematopoietic stem cells for use in gene therapy of haemophilia a in a patient after reinfusion.
In one example, lentiviral vectors (e.g., lentiviral vector-1, lentiviral vector-2, etc.) loaded with PF4-BDD FVIII gene were able to stably express BDD FVIII in Dami cells and their secreted supernatant via the corresponding transfection procedure.
In one example, mononuclear cells in cord blood, bone marrow, mobilized peripheral blood, or peripheral blood are sorted by CD34 magnetic bead monoclonal antibodies to obtain purified CD34+ cells.
In one example, lentiviral vectors (e.g., lentiviral vector-1, lentiviral vector-2, etc.) loaded with PF4-BDD FVIII gene were capable of stably expressing BDD FVIII in CD34+ cell-derived megakaryocytes and platelets formed by cytoplasmic shedding thereof via a corresponding transfection step;
in one embodiment, the lentiviral vector loaded with the PF4-BDD FVIII gene can also transfect stem cells such as pluripotent stem cells (iPS), Mesenchymal Stem Cells (MSC), adipose-derived stem cells (ADSCs) and the like.
In a third aspect, the invention provides the use of said recombinant vector, such as said lentiviral vector, said expression cassette, said recombinant lentivirus, said recombinant cell, for expressing the BDD FVIII gene or for the manufacture of a medicament and/or an agent for the treatment of haemophilia A,
preferably, the BDD FVIII expressing gene is specifically expressed in platelets derived from cytoplasmic shedding of CD34+ cell-derived megakaryocytes.
In one example, mouse bone marrow hematopoietic stem cells such as Sca + cells transfected with a lentiviral vector loaded with the PF4-BDD FVIII gene are capable of correcting the coagulation deficiencies of hemophilia A mice.
In one example, stem cells such as CD34+, iPS, transfected with a lentiviral vector loaded with PF4-BDD FVIII gene, can be used for gene therapy of hemophilia a.
The invention has the beneficial effects that:
the invention constructs a lentiviral vector containing a PF4 promoter and a BDD FVIII gene expression cassette, and the vector enables the BDD FVIII gene to be specifically expressed in platelets formed by the cytoplasm shedding of megakaryocytes from CD34+ cells through the PF4 promoter, thereby playing a blood coagulation function and being applicable to the gene therapy of the hemophilia A of all ages.
Drawings
The accompanying drawings, which are included to provide a further understanding of the application and are incorporated in and constitute a part of this application, illustrate embodiment(s) of the application and together with the description serve to explain the application and not to limit the application. In the drawings:
FIG. 1 is a schematic diagram of the structure of vector pRRL-PF4-BDD FVIII-WPRE-1/2.
FIG. 2 shows the detection of CD34 by Western Blot+Relative expression levels of BDD FVIII protein in the cell colonies, wherein, indicates a significant difference compared to the control group under the same conditions (P < 0.05), indicates a very significant difference compared to the control group under the same conditions (P < 0.01), and indicates a very significant difference compared to the control group under the same conditions (P < 0.001).
Detailed Description
To further illustrate the technical means adopted by the present invention and the effects thereof, the present invention is further described below with reference to the embodiments and the accompanying drawings. It is to be understood that the specific embodiments described herein are merely illustrative of the invention and are not limiting of the invention.
The examples do not show the specific techniques or conditions, according to the technical or conditions described in the literature in the field, or according to the product specifications. The reagents or apparatus used are conventional products commercially available from normal sources, not indicated by the manufacturer.
Example 1 construction of Lentiviral vectors
1. The nucleotide sequences of the PGK promoter and GFP gene on pRRLSIN.cPPT.PGK-GFP.WPRE vector Plasmid (Plasmid #12252) were excised using restriction enzymes XcmI and SalI, and the vector backbone was recovered;
2. obtaining a nucleotide sequence composition 1(SEQ ID NO.32) or a nucleotide sequence composition 2(SEQ ID NO.33) containing a PF4 promoter (SEQ ID NO.1) and BDD FVIII (SEQ ID NO.4 or SEQ ID NO.17) by chemical synthesis and/or overlap extension PCR, and respectively connecting the obtained nucleotide sequence compositions with the vector skeleton obtained in the step 1 to obtain two recombinant vectors: pRRL-PF4-BDD FVIII-WPRE-1 and pRRL-PF4-BDD FVIII-WPRE-2, the basic structures of which are shown in FIG. 1, and which differ in sequence only at the position of BDD FVIII.
Example 2 packaging and purification of Lentiviral vectors
1. Taking a 10cm culture dish as an example, planting HEK293T cells in a DMEM medium containing 10% fetal bovine serum; when the virus grows to 70-80% of fusion degree, starting to package the virus;
2. removing the original culture medium by suction, adding 50% volume of fresh culture medium, and continuing incubation;
3. according to pRRL-PF4-BDD FVIII-WPRE-1/2: psPAX 2: PMD2.0G is 8: 6: 2, packaging the lentiviral vector by adopting a calcium transfer method;
4. after 12h, changing the liquid;
5. after 36h, collecting cell suspension, filtering by a 0.44 mu m filter membrane, and centrifuging at 50000g for 2 h;
6. and collecting the precipitate, namely the PF4-BDD FVIII loaded lentiviral vector, wherein the lentiviral vector comprises the sequence shown in SEQ ID NO.32 as the lentiviral vector-1, and the lentiviral vector comprises the sequence shown in SEQ ID NO.33 as the lentiviral vector-2.
Example 3 preparation of genetically modified Dami cells
1. 1640+ 10% FBS + L-Glutamin medium to logarithmic growth phase;
2. sucking cells, washing, and blowing and mixing Dami cells uniformly by adopting X-VIVO10+ 10% FBS +4ug/ml Polybrene culture medium according to the proportion of 2 multiplied by 106Planting at 20 μ g/cm per well2In the retroNectin-coated six-well plate, cells are divided into 3 groups, and the group 1 is a control group without adding a lentiviral vector; group 2 is lentivirus vector-1 transfection group; group 3 is the lentiviral vector-2 transfection group.
3. After 2h, adding a PF4-BDD FVIII loaded lentiviral vector to the cell suspension at an MOI of 5-50; after 24h, adding the same amount of lentiviral vector again;
4. after 24h, the cells were aspirated, washed, centrifuged, and conditioned to 1X 10 by adding 1640+ 10% FBS + L-Glutamin medium6Planting in a new six-hole plate; continuously culturing for 48 h;
5. and sucking the supernatant for later use.
Example 4 BDD FVIII assay in genetically modified Dami cell culture supernatant
FVIII: C in the supernatant was assayed using a Coatest VIII: C/4Kit (Diacharma, Franklin, OH, USA) using an Afstyla (single chain coagulation factor for treating haemophilia A) as a standard curve. Group 2, group 3 had significantly higher FVIII: C compared to the control group, and group 3 was higher than group 2. The results are shown in Table 1.
TABLE 1
Group of FVIII: C assay results (U/ml)
Group 1 0
Group 2 6.63±1.23
Group 3 13.36±2.53
The above results show that: in the recombinant cells of Dami cells infected by the lentiviral vector-1 or the lentiviral vector-2, the protein expression level of FVIII is obviously higher than that of a control group not infected by the lentivirus, and the protein expression level of FVIII in the recombinant cells infected by the lentiviral vector-2 is obviously higher than that of the recombinant cells infected by the lentiviral vector-1.
Example 5 genetically modified CD34+Preparation of
1. Collecting peripheral blood, umbilical cord blood, or bone marrow, and separating with Meitian and whirlwind CD34 Microbead KitPurified CD34+A cell;
2. according to a 1-4X 106Per ml, CD34 collected+The cells were seeded in X-VIVO 20 medium containing 100ng/ml IL-3, 100ng/ml TPO, 100ng/ml SCF, 100ng/ml FLT-L3 at 37 ℃ with 5% CO2Incubating for 12-48 hours in the environment;
3. collection of CDs 34+Cells at 1-4X 106Per ml, it was planted at 20. mu.g/cm2In the retroNectin-coated six-well plate, cells are divided into 3 groups, and the group 1 is a control group without adding a lentiviral vector; group 2 is lentivirus vector-1 transfection group; group 3 lentiviral vector-2 transfection group;
4. to each cell suspension was added the corresponding lentiviral vector at 37 ℃ with 5% CO at MOI of 10-1002Incubation in the environment;
5. after 24h, each set of cells was collected, washed, counted and prepared for further processing.
Example 6 genetically modified CD34+Cell colony formation
1. 500-TMC Staingkit for CFU-Mk for CFU-MK (megakaryocyte colony) culture.
2. Culturing for 12-14 days, after staining, picking MK and other colonies in each group of culture dish, washing, centrifuging, wherein group 1-1 is control group-non-MK, group 1-2 is control group-MK; group 2-1 is lentivector-1 transfection group-non-MK, group 2-2 is lentivector-1 transfection group-MK; the group 3-1 is lentivirus vector-2 transfection group-non-MK, the group 3-2 is lentivirus vector-2 transfection group-MK, and the next detection is carried out.
Example 7 BDD FVIII detection in various lines of colonies
1. Collecting the cells of each group in example 6, and extracting total protein respectively;
2. BDD FVIII expression in each group of cells was detected using Western Blot of FVIII antibody, and the expression level of BDD FVIII relative to GAPDH in each group of cells was calculated using GAPDH as internal reference.
The results are shown in FIG. 2, with essentially no BDD FVIII expression in the non-MK colonies of groups 1-1 and the MK colonies of groups 1-2, a small amount of BDD FVIII expression is seen in groups 2-1, 3-1, while BDD FVIII expression is significantly enhanced in groups 2-2, 3-2, and significantly higher in groups 3-2 than in groups 2-2.
Example 8 Gene therapy in hemophilia A mice
1. Lentiviral vector-1 and Lentiviral vector-2 were transfected into hemophilia A mouse-derived bone marrow Sca+Hematopoietic stem cells;
2. bone marrow Sca after transfection+Hematopoietic stem cells are transplanted into the A hemophilia mice which are pretreated by radiation through tail vein injection respectively, and the transplantation is carried out on the A hemophilia mice by 0.5 multiplied by 106Only, as group 2, group 3; control group was untransfected bone marrow Sca+Hematopoietic stem cells were transplanted into hemophilia a mice, group 1; each group of 5 hemophilia a mice;
3. after 1-3 months, the mouse tail-breaking test is performed. Mice in group 1 died due to excessive blood loss caused by failure of endogenous blood coagulation function after tail cutting, and mice in group 2 and group 3 survived due to endogenous blood coagulation after tail cutting. The results are shown in Table 2.
TABLE 2
Group of Survival rate of hemophilia a mice
Group
1 0
Group 2 100%
Group 3 100%
The above description is only an example of the present application, and the protection scope of the present application is not limited by these specific examples, but is defined by the claims of the present application. Various modifications and changes may occur to those skilled in the art. Any modification, equivalent replacement, improvement, etc. made within the technical idea and principle of the present application should be included in the protection scope of the present application.
Sequence listing
<110> Jinan Seal Biotechnology Ltd
<120> product for treating hemophilia A and application
<130> JH-CNP200100
<160> 33
<170> PatentIn version 3.5
<210> 1
<211> 787
<212> DNA
<213> Artificial sequence
<400> 1
cagccaggca ctaagctttt acaaaaagaa tgcattcaaa tattacttct gcaatttttc 60
caagagtacg agtaatggga aaatagacct tgcgtcctac agcatactgg gtgattgttg 120
gtggagcctg gtaaatacca tccagagact agggaagttt tccacattca ggtgaaattc 180
aaaagagtca tcgcctagag accaaattaa acttattagt agcagaaaat aattgcgaat 240
aacacatgct tcacacacaa agccaccaaa ctcagtagta ataattggta gttgcagctg 300
ggaggttgga aaggaaacag gaactgtcag ggtcctgaaa gcacctactg tgtaagttgc 360
atgatgacag cagagaactc tactgttaat acaacacaaa aaacattcct tttctgactc 420
aagttctgtt tctaactcta caaacgtgct tgtatgtaag ttgaggttgg aggtcccagc 480
caaggcagct gcccagagcc ttttctttct ttctttcttt ctttcttttc ttttcttttt 540
tttttttttt tttttttttt tttttttttt tttttttttt ggtaatcttg gctggccaga 600
acccaagtct tcccagtact atcttagttt ccgcaccgca gttcctcggt gtccacttca 660
ggcttccgga ctggaaggac agccgggaat aaaacgtgcc ggcgaggctc aggagtcatt 720
ggccacagag acccagcccg agtttcccat cgcactgagc actgaggggg atccaccggt 780
cgccacc 787
<210> 2
<211> 493
<212> DNA
<213> Artificial sequence
<400> 2
cagctgggag gttggaaagg aaacaggaac tgtcagggtc ctgaaagcac ctactgtgta 60
agttgcatga tgacagcaga gaactctact gttaatacaa cacaaaaaac attccttttc 120
tgactcaagt tctgtttcta actctacaaa cgtgcttgta tgtaagttga ggttggaggt 180
cccagccaag gcagctgccc agagcctttt ctttctttct ttctttcttt cttttctttt 240
cttttttttt tttttttttt tttttttttt tttttttttt ttttttggta atcttggctg 300
gccagaaccc aagtcttccc agtactatct tagtttccgc accgcagttc ctcggtgtcc 360
acttcaggct tccggactgg aaggacagcc gggaataaaa cgtgccggcg aggctcagga 420
gtcattggcc acagagaccc agcccgagtt tcccatcgca ctgagcactg agggggatcc 480
accggtcgcc acc 493
<210> 3
<211> 315
<212> DNA
<213> Artificial sequence
<400> 3
gtcccagcca aggcagctgc ccagagcctt ttctttcttt ctttctttct ttcttttctt 60
ttcttttttt tttttttttt tttttttttt tttttttttt ttttttttgg taatcttggc 120
tggccagaac ccaagtcttc ccagtactat cttagtttcc gcaccgcagt tcctcggtgt 180
ccacttcagg cttccggact ggaaggacag ccgggaataa aacgtgccgg cgaggctcag 240
gagtcattgg ccacagagac ccagcccgag tttcccatcg cactgagcac tgagggggat 300
ccaccggtcg ccacc 315
<210> 4
<211> 4332
<212> DNA
<213> Artificial sequence
<400> 4
atgcaaatag agctctccac ctgcttcttt ctgtgccttt tgcgattctg ctttagtgcc 60
accagaagat actacctggg tgcagtggaa ctgtcatggg actatatgca aagtgatctc 120
ggtgagctgc ctgtggacgc aagatttcct cctagagtgc caaaatcttt tccattcaac 180
acctcagtcg tgtacaaaaa gactctgttt gtagaattca cggatcacct tttcaacatc 240
gctaagccaa ggccaccctg gatgggtctg ctaggtccta ccatccaggc tgaggtttat 300
gatacagtgg tcattacact taagaacatg gcttcccatc ctgtcagtct tcatgctgtt 360
ggtgtatcct actggaaagc ttctgaggga gctgaatatg atgatcagac cagtcaaagg 420
gagaaagaag atgataaagt cttccctggt ggaagccata catatgtctg gcaggtcctg 480
aaagagaatg gtccaatggc ctctgaccca ctgtgcctta cctactcata tctttctcat 540
gtggacctgg taaaagactt gaattcaggc ctcattggag ccctactagt atgtagagaa 600
gggagtctgg ccaaggaaaa gacacagacc ttgcacaaat ttatactact ttttgctgta 660
tttgatgaag ggaaaagttg gcactcagaa acaaagaact ccttgatgca ggatagggat 720
gctgcatctg ctcgggcctg gcctaaaatg cacacagtca atggttatgt aaacaggtct 780
ctgccaggtc tgattggatg ccacaggaaa tcagtctatt ggcatgtgat tggaatgggc 840
accactcctg aagtgcactc aatattcctc gaaggtcaca catttcttgt gaggaaccat 900
cgccaggcgt ccttggaaat ctcgccaata actttcctta ctgctcaaac actcttgatg 960
gaccttggac agtttctact gttttgtcat atctcttccc accaacatga tggcatggaa 1020
gcttatgtca aagtagacag ctgtccagag gaaccccaac tacgaatgaa aaataatgaa 1080
gaagcggaag actatgatga tgatcttact gattctgaaa tggatgtggt caggtttgat 1140
gatgacaact ctccttcctt tatccaaatt cgctcagttg ccaagaagca tcctaaaact 1200
tgggtacatt acattgctgc tgaagaggag gactgggact atgctccctt agtcctcgcc 1260
cccgatgaca gaagttataa aagtcaatat ttgaacaatg gccctcagcg gattggtagg 1320
aagtacaaaa aagtccgatt tatggcatac acagatgaaa cctttaagac tcgtgaagct 1380
attcagcatg aatcaggaat cttgggacct ttactttatg gggaagttgg agacacactg 1440
ttgattatat ttaagaatca agcaagcaga ccatataaca tctaccctca cggaatcact 1500
gatgtccgtc ctttgtattc aaggagatta ccaaaaggtg taaaacattt gaaggatttt 1560
ccaattctgc caggagaaat attcaaatat aaatggacag tgactgtaga agatgggcca 1620
actaaatcag atcctcggtg cctgacccgc tattactcta gtttcgttaa tatggagaga 1680
gatctagctt caggactcat tggccctctc ctcatctgct acaaagaatc tgtagatcaa 1740
agaggaaacc agataatgtc agacaagagg aatgtcatcc tgttttctgt atttgatgag 1800
aaccgaagct ggtacctcac agagaatata caacgctttc tccccaatcc agctggagtg 1860
cagcttgagg atccagagtt ccaagcctcc aacatcatgc acagcatcaa tggctatgtt 1920
tttgatagtt tgcagttgtc agtttgtttg catgaggtgg catactggta cattctaagc 1980
attggagcac agactgactt cctttctgtc ttcttctctg gatatacctt caaacacaaa 2040
atggtctatg aagacacact caccctattc ccattctcag gagaaactgt cttcatgtcg 2100
atggaaaacc caggtctatg gattctgggg tgccacaact cagactttcg gaacagaggc 2160
atgaccgcct tactgaaggt ttctagttgt gacaagaaca ctggtgatta ttacgaggac 2220
agttatgaag atatttcagc atacttgctg agtaaaaaca atgccattga accaagagaa 2280
ataactcgta ctactcttca gtcagatcaa gaggaaattg actatgatga taccatatca 2340
gttgaaatga agaaggaaga ttttgacatt tatgatgagg atgaaaatca gagcccccgc 2400
agctttcaaa agaaaacacg acactatttt attgctgcag tggagaggct ctgggattat 2460
gggatgagta gctccccaca tgttctaaga aacagggctc agagtggcag tgtccctcag 2520
ttcaagaaag ttgttttcca ggaatttact gatggctcct ttactcagcc cttataccgt 2580
ggagaactaa atgaacattt gggactcctg gggccatata taagagcaga agttgaagat 2640
aatatcatgg taactttcag aaatcaggcc tctcgtccct attccttcta ttctagcctt 2700
atttcttatg aggaagatca gaggcaagga gcagaaccta gaaaaaactt tgtcaagcct 2760
aatgaaacca aaacttactt ttggaaagtg caacatcata tggcacccac taaagatgag 2820
tttgactgca aagcctgggc ttatttctct gatgttgacc tggaaaaaga tgtgcactca 2880
ggcctgattg gaccccttct ggtctgccac actaacacac tgaaccctgc tcatgggaga 2940
caagtgacag tacaggaatt tgctctgttt ttcaccatct ttgatgagac caaaagctgg 3000
tacttcactg aaaatatgga aagaaactgc agggctccct gcaatatcca gatggaagat 3060
cccactttta aagagaatta tcgcttccat gcaatcaatg gctacataat ggatacacta 3120
cctggcttag taatggctca ggatcaaagg attcgatggt atctgctcag catgggcagc 3180
aatgaaaaca tccattctat tcatttcagt ggacatgtgt tcactgtacg aaaaaaagag 3240
gagtataaaa tggcactgta caatctctat ccaggtgttt ttgagacagt ggaaatgtta 3300
ccatccaaag ctggaatttg gcgggtggaa tgccttattg gcgagcatct acatgctggg 3360
atgagcacac tttttctggt gtacagcaat aagtgtcaga ctcccctggg aatggcttct 3420
ggacacatta gagattttca gattacagct tcaggacaat atggacagtg ggccccaaag 3480
ctggccagac ttcattattc cggatcaatc aatgcctgga gcaccaagga gcccttttct 3540
tggatcaagg tggatctgtt ggcaccaatg attattcacg gcatcaagac ccagggtgcc 3600
cgtcagaagt tctccagcct ctacatctct cagtttatca tcatgtatag tcttgatggg 3660
aagaagtggc agacttatcg aggaaattcc actggaacct taatggtctt ctttggcaat 3720
gtggattcat ctgggataaa acacaatatt tttaaccctc caattattgc tcgatacatc 3780
cgtttgcacc caactcatta tagcattcgc agcactcttc gcatggagtt gatgggctgt 3840
gatttaaata gttgcagcat gccattggga atggagagta aagcaatatc agatgcacag 3900
attactgctt catcctactt taccaatatg tttgccacct ggtctccttc aaaagctcga 3960
cttcacctcc aagggaggag taatgcctgg agacctcagg tgaataatcc aaaagagtgg 4020
ctgcaagtgg acttccagaa gacaatgaaa gtcacaggag taactactca gggagtaaaa 4080
tctctgctta ccagcatgta tgtgaaggag ttcctcatct ccagcagtca agatggccat 4140
cagtggactc tcttttttca gaatggcaaa gtaaaggttt ttcagggaaa tcaagactcc 4200
ttcacacctg tggtgaactc tctagaccca ccgttactga ctcgctacct tcgaattcac 4260
ccccagagtt gggtgcacca gattgccctg aggatggagg ttctgggctg cgaggcacag 4320
gacctctact ga 4332
<210> 5
<211> 42
<212> DNA
<213> Artificial sequence
<400> 5
agcttctccc agaatccacc agtcttgaaa cgccatcaac gg 42
<210> 6
<211> 30
<212> DNA
<213> Artificial sequence
<400> 6
agcttctccc agaatccacc agtcttgaaa 30
<210> 7
<211> 72
<212> DNA
<213> Artificial sequence
<400> 7
agcttctccc agaattcaag acaccctagc actaggcaaa agcaatttaa tgccaccaca 60
attccagaaa at 72
<210> 8
<211> 63
<212> DNA
<213> Artificial sequence
<400> 8
agcttctccc agaattcaag acacccttct caaaacccac cagtcttgaa acgccatcaa 60
cgg 63
<210> 9
<211> 51
<212> DNA
<213> Artificial sequence
<400> 9
agcttctccc agaattcaag acacccttct caaaacccac cagtcttgaa a 51
<210> 10
<211> 48
<212> DNA
<213> Artificial sequence
<400> 10
agcttctccc agaattcaag acaccaggcg tatcgttatc gtcgcggc 48
<210> 11
<211> 36
<212> DNA
<213> Artificial sequence
<400> 11
agcttctccc agaattcaag acaccaggcg tatggc 36
<210> 12
<211> 93
<212> DNA
<213> Artificial sequence
<400> 12
agcttctccc agaatgccac taatgtgtct aacaacagca acaccagcaa tgacagcaat 60
gtgtctccac cagtcttgaa acgccatcaa cgg 93
<210> 13
<211> 81
<212> DNA
<213> Artificial sequence
<400> 13
agcttctccc agaatgccac taatgtgtct aacaacagca acaccagcaa tgacagcaat 60
gtgtctccac cagtcttgaa a 81
<210> 14
<211> 708
<212> DNA
<213> Artificial sequence
<400> 14
agcttctccc agaattcaag acaccctagc actaggcaaa agcaatttaa tgccaccaca 60
attccagaaa atgacataga gaagactgac ccttggtttg cacacagaac acctatgcct 120
aaaatacaaa atgtctcctc tagtgatttg ttgatgctct tgcgacagag tcctactcca 180
catgggctat ccttatctga tctccaagaa gccaaatatg agactttttc tgatgatcca 240
tcacctggag caatagacag taataacagc ctgtctgaaa tgacacactt caggccacag 300
ctccatcaca gtggggacat ggtatttacc cctgagtcag gcctccaatt aagattaaat 360
gagaaactgg ggacaactgc agcaacagag ttgaagaaac ttgatttcaa agtttctagt 420
acatcaaata atctgatttc aacaattcca tcagacaatt tggcagcagg tactgataat 480
acaagttcct taggaccccc aagtatgcca gttcattatg atagtcaatt agataccact 540
ctatttggca aaaagtcatc tccccttact gagtctggtg gacctctgag cttgagtgaa 600
gaaaataatg attcaaagtt gttagaatca ggtttaatga atagccaaga aagttcatgg 660
ggaaaaaatg tatcgacccg tccaccagtc ttgaaacgcc atcaacgg 708
<210> 15
<211> 678
<212> DNA
<213> Artificial sequence
<400> 15
agcttctccc agaattcaag acaccctagc actaggcaaa agcaatttaa tgccaccaca 60
attccagaaa atgacataga gaagactgac ccttggtttg cacacagaac acctatgcct 120
aaaatacaaa atgtctcctc tagtgatttg ttgatgctct tgcgacagag tcctactcca 180
catgggctat ccttatctga tctccaagaa gccaaatatg agactttttc tgatgatcca 240
tcacctggag caatagacag taataacagc ctgtctgaaa tgacacactt caggccacag 300
ctccatcaca gtggggacat ggtatttacc cctgagtcag gcctccaatt aagattaaat 360
gagaaactgg ggacaactgc agcaacagag ttgaagaaac ttgatttcaa agtttctagt 420
acatcaaata atctgatttc aacaattcca tcagacaatt tggcagcagg tactgataat 480
acaagttcct taggaccccc aagtatgcca gttcattatg atagtcaatt agataccact 540
ctatttggca aaaagtcatc tccccttact gagtctggtg gacctctgag cttgagtgaa 600
gaaaataatg attcaaagtt gttagaatca ggtttaatga atagccaaga aagttcatgg 660
ggaaaaaatg tatcgtca 678
<210> 16
<211> 1443
<212> PRT
<213> Artificial sequence
<400> 16
Met Gln Ile Glu Leu Ser Thr Cys Phe Phe Leu Cys Leu Leu Arg Phe
1 5 10 15
Cys Phe Ser Ala Thr Arg Arg Tyr Tyr Leu Gly Ala Val Glu Leu Ser
20 25 30
Trp Asp Tyr Met Gln Ser Asp Leu Gly Glu Leu Pro Val Asp Ala Arg
35 40 45
Phe Pro Pro Arg Val Pro Lys Ser Phe Pro Phe Asn Thr Ser Val Val
50 55 60
Tyr Lys Lys Thr Leu Phe Val Glu Phe Thr Asp His Leu Phe Asn Ile
65 70 75 80
Ala Lys Pro Arg Pro Pro Trp Met Gly Leu Leu Gly Pro Thr Ile Gln
85 90 95
Ala Glu Val Tyr Asp Thr Val Val Ile Thr Leu Lys Asn Met Ala Ser
100 105 110
His Pro Val Ser Leu His Ala Val Gly Val Ser Tyr Trp Lys Ala Ser
115 120 125
Glu Gly Ala Glu Tyr Asp Asp Gln Thr Ser Gln Arg Glu Lys Glu Asp
130 135 140
Asp Lys Val Phe Pro Gly Gly Ser His Thr Tyr Val Trp Gln Val Leu
145 150 155 160
Lys Glu Asn Gly Pro Met Ala Ser Asp Pro Leu Cys Leu Thr Tyr Ser
165 170 175
Tyr Leu Ser His Val Asp Leu Val Lys Asp Leu Asn Ser Gly Leu Ile
180 185 190
Gly Ala Leu Leu Val Cys Arg Glu Gly Ser Leu Ala Lys Glu Lys Thr
195 200 205
Gln Thr Leu His Lys Phe Ile Leu Leu Phe Ala Val Phe Asp Glu Gly
210 215 220
Lys Ser Trp His Ser Glu Thr Lys Asn Ser Leu Met Gln Asp Arg Asp
225 230 235 240
Ala Ala Ser Ala Arg Ala Trp Pro Lys Met His Thr Val Asn Gly Tyr
245 250 255
Val Asn Arg Ser Leu Pro Gly Leu Ile Gly Cys His Arg Lys Ser Val
260 265 270
Tyr Trp His Val Ile Gly Met Gly Thr Thr Pro Glu Val His Ser Ile
275 280 285
Phe Leu Glu Gly His Thr Phe Leu Val Arg Asn His Arg Gln Ala Ser
290 295 300
Leu Glu Ile Ser Pro Ile Thr Phe Leu Thr Ala Gln Thr Leu Leu Met
305 310 315 320
Asp Leu Gly Gln Phe Leu Leu Phe Cys His Ile Ser Ser His Gln His
325 330 335
Asp Gly Met Glu Ala Tyr Val Lys Val Asp Ser Cys Pro Glu Glu Pro
340 345 350
Gln Leu Arg Met Lys Asn Asn Glu Glu Ala Glu Asp Tyr Asp Asp Asp
355 360 365
Leu Thr Asp Ser Glu Met Asp Val Val Arg Phe Asp Asp Asp Asn Ser
370 375 380
Pro Ser Phe Ile Gln Ile Arg Ser Val Ala Lys Lys His Pro Lys Thr
385 390 395 400
Trp Val His Tyr Ile Ala Ala Glu Glu Glu Asp Trp Asp Tyr Ala Pro
405 410 415
Leu Val Leu Ala Pro Asp Asp Arg Ser Tyr Lys Ser Gln Tyr Leu Asn
420 425 430
Asn Gly Pro Gln Arg Ile Gly Arg Lys Tyr Lys Lys Val Arg Phe Met
435 440 445
Ala Tyr Thr Asp Glu Thr Phe Lys Thr Arg Glu Ala Ile Gln His Glu
450 455 460
Ser Gly Ile Leu Gly Pro Leu Leu Tyr Gly Glu Val Gly Asp Thr Leu
465 470 475 480
Leu Ile Ile Phe Lys Asn Gln Ala Ser Arg Pro Tyr Asn Ile Tyr Pro
485 490 495
His Gly Ile Thr Asp Val Arg Pro Leu Tyr Ser Arg Arg Leu Pro Lys
500 505 510
Gly Val Lys His Leu Lys Asp Phe Pro Ile Leu Pro Gly Glu Ile Phe
515 520 525
Lys Tyr Lys Trp Thr Val Thr Val Glu Asp Gly Pro Thr Lys Ser Asp
530 535 540
Pro Arg Cys Leu Thr Arg Tyr Tyr Ser Ser Phe Val Asn Met Glu Arg
545 550 555 560
Asp Leu Ala Ser Gly Leu Ile Gly Pro Leu Leu Ile Cys Tyr Lys Glu
565 570 575
Ser Val Asp Gln Arg Gly Asn Gln Ile Met Ser Asp Lys Arg Asn Val
580 585 590
Ile Leu Phe Ser Val Phe Asp Glu Asn Arg Ser Trp Tyr Leu Thr Glu
595 600 605
Asn Ile Gln Arg Phe Leu Pro Asn Pro Ala Gly Val Gln Leu Glu Asp
610 615 620
Pro Glu Phe Gln Ala Ser Asn Ile Met His Ser Ile Asn Gly Tyr Val
625 630 635 640
Phe Asp Ser Leu Gln Leu Ser Val Cys Leu His Glu Val Ala Tyr Trp
645 650 655
Tyr Ile Leu Ser Ile Gly Ala Gln Thr Asp Phe Leu Ser Val Phe Phe
660 665 670
Ser Gly Tyr Thr Phe Lys His Lys Met Val Tyr Glu Asp Thr Leu Thr
675 680 685
Leu Phe Pro Phe Ser Gly Glu Thr Val Phe Met Ser Met Glu Asn Pro
690 695 700
Gly Leu Trp Ile Leu Gly Cys His Asn Ser Asp Phe Arg Asn Arg Gly
705 710 715 720
Met Thr Ala Leu Leu Lys Val Ser Ser Cys Asp Lys Asn Thr Gly Asp
725 730 735
Tyr Tyr Glu Asp Ser Tyr Glu Asp Ile Ser Ala Tyr Leu Leu Ser Lys
740 745 750
Asn Asn Ala Ile Glu Pro Arg Glu Ile Thr Arg Thr Thr Leu Gln Ser
755 760 765
Asp Gln Glu Glu Ile Asp Tyr Asp Asp Thr Ile Ser Val Glu Met Lys
770 775 780
Lys Glu Asp Phe Asp Ile Tyr Asp Glu Asp Glu Asn Gln Ser Pro Arg
785 790 795 800
Ser Phe Gln Lys Lys Thr Arg His Tyr Phe Ile Ala Ala Val Glu Arg
805 810 815
Leu Trp Asp Tyr Gly Met Ser Ser Ser Pro His Val Leu Arg Asn Arg
820 825 830
Ala Gln Ser Gly Ser Val Pro Gln Phe Lys Lys Val Val Phe Gln Glu
835 840 845
Phe Thr Asp Gly Ser Phe Thr Gln Pro Leu Tyr Arg Gly Glu Leu Asn
850 855 860
Glu His Leu Gly Leu Leu Gly Pro Tyr Ile Arg Ala Glu Val Glu Asp
865 870 875 880
Asn Ile Met Val Thr Phe Arg Asn Gln Ala Ser Arg Pro Tyr Ser Phe
885 890 895
Tyr Ser Ser Leu Ile Ser Tyr Glu Glu Asp Gln Arg Gln Gly Ala Glu
900 905 910
Pro Arg Lys Asn Phe Val Lys Pro Asn Glu Thr Lys Thr Tyr Phe Trp
915 920 925
Lys Val Gln His His Met Ala Pro Thr Lys Asp Glu Phe Asp Cys Lys
930 935 940
Ala Trp Ala Tyr Phe Ser Asp Val Asp Leu Glu Lys Asp Val His Ser
945 950 955 960
Gly Leu Ile Gly Pro Leu Leu Val Cys His Thr Asn Thr Leu Asn Pro
965 970 975
Ala His Gly Arg Gln Val Thr Val Gln Glu Phe Ala Leu Phe Phe Thr
980 985 990
Ile Phe Asp Glu Thr Lys Ser Trp Tyr Phe Thr Glu Asn Met Glu Arg
995 1000 1005
Asn Cys Arg Ala Pro Cys Asn Ile Gln Met Glu Asp Pro Thr Phe Lys
1010 1015 1020
Glu Asn Tyr Arg Phe His Ala Ile Asn Gly Tyr Ile Met Asp Thr Leu
1025 1030 1035 1040
Pro Gly Leu Val Met Ala Gln Asp Gln Arg Ile Arg Trp Tyr Leu Leu
1045 1050 1055
Ser Met Gly Ser Asn Glu Asn Ile His Ser Ile His Phe Ser Gly His
1060 1065 1070
Val Phe Thr Val Arg Lys Lys Glu Glu Tyr Lys Met Ala Leu Tyr Asn
1075 1080 1085
Leu Tyr Pro Gly Val Phe Glu Thr Val Glu Met Leu Pro Ser Lys Ala
1090 1095 1100
Gly Ile Trp Arg Val Glu Cys Leu Ile Gly Glu His Leu His Ala Gly
1105 1110 1115 1120
Met Ser Thr Leu Phe Leu Val Tyr Ser Asn Lys Cys Gln Thr Pro Leu
1125 1130 1135
Gly Met Ala Ser Gly His Ile Arg Asp Phe Gln Ile Thr Ala Ser Gly
1140 1145 1150
Gln Tyr Gly Gln Trp Ala Pro Lys Leu Ala Arg Leu His Tyr Ser Gly
1155 1160 1165
Ser Ile Asn Ala Trp Ser Thr Lys Glu Pro Phe Ser Trp Ile Lys Val
1170 1175 1180
Asp Leu Leu Ala Pro Met Ile Ile His Gly Ile Lys Thr Gln Gly Ala
1185 1190 1195 1200
Arg Gln Lys Phe Ser Ser Leu Tyr Ile Ser Gln Phe Ile Ile Met Tyr
1205 1210 1215
Ser Leu Asp Gly Lys Lys Trp Gln Thr Tyr Arg Gly Asn Ser Thr Gly
1220 1225 1230
Thr Leu Met Val Phe Phe Gly Asn Val Asp Ser Ser Gly Ile Lys His
1235 1240 1245
Asn Ile Phe Asn Pro Pro Ile Ile Ala Arg Tyr Ile Arg Leu His Pro
1250 1255 1260
Thr His Tyr Ser Ile Arg Ser Thr Leu Arg Met Glu Leu Met Gly Cys
1265 1270 1275 1280
Asp Leu Asn Ser Cys Ser Met Pro Leu Gly Met Glu Ser Lys Ala Ile
1285 1290 1295
Ser Asp Ala Gln Ile Thr Ala Ser Ser Tyr Phe Thr Asn Met Phe Ala
1300 1305 1310
Thr Trp Ser Pro Ser Lys Ala Arg Leu His Leu Gln Gly Arg Ser Asn
1315 1320 1325
Ala Trp Arg Pro Gln Val Asn Asn Pro Lys Glu Trp Leu Gln Val Asp
1330 1335 1340
Phe Gln Lys Thr Met Lys Val Thr Gly Val Thr Thr Gln Gly Val Lys
1345 1350 1355 1360
Ser Leu Leu Thr Ser Met Tyr Val Lys Glu Phe Leu Ile Ser Ser Ser
1365 1370 1375
Gln Asp Gly His Gln Trp Thr Leu Phe Phe Gln Asn Gly Lys Val Lys
1380 1385 1390
Val Phe Gln Gly Asn Gln Asp Ser Phe Thr Pro Val Val Asn Ser Leu
1395 1400 1405
Asp Pro Pro Leu Leu Thr Arg Tyr Leu Arg Ile His Pro Gln Ser Trp
1410 1415 1420
Val His Gln Ile Ala Leu Arg Met Glu Val Leu Gly Cys Glu Ala Gln
1425 1430 1435 1440
Asp Leu Tyr
<210> 17
<211> 4413
<212> DNA
<213> Artificial sequence
<400> 17
atgcagatcg agttgagtac gtgtttcttc ctctgcctgc tgcgattttg tttctccgct 60
acccggagat attacttggg cgccgtagaa ctcagctggg actatatgca gagcgacctg 120
ggggagctcc ctgtagatgc tcggtttcca ccacgcgtgc ctaagtcatt ccctttcaat 180
actagtgttg tgtacaagaa gaccttgttt gtagagttca ccgaccatct tttcaacatc 240
gccaaacccc gaccaccatg gatgggactg ctgggaccca ctattcaggc cgaggtgtac 300
gacaccgtgg taatcactct gaagaacatg gcaagccacc ctgtctcact gcacgctgtt 360
ggagtgtcat actggaaggc cagtgaaggc gccgaatatg acgaccagac ctctcaacgg 420
gagaaggagg atgataaggt attcccaggc ggaagccata cttacgtctg gcaggtcctt 480
aaggagaatg gacccatggc ctcagatcca ctttgtctca cctattctta cctgtctcac 540
gtggaccttg tcaaggatct caacagtgga ctcatcggtg ctctcctggt ctgccgagag 600
ggatcactcg ccaaggaaaa gacgcaaact ctccacaaat tcattctgct ctttgccgtc 660
tttgacgagg gaaaatcatg gcacagcgaa acgaagaact ctcttatgca ggatagggat 720
gctgcatccg ccagagcgtg gcctaagatg cacacagtca acggatacgt gaatcgctct 780
cttccggggc tcatagggtg tcatagaaag tccgtgtact ggcatgtaat tggaatggga 840
acaaccccag aagtgcattc catattcctg gagggacata cttttttggt tagaaaccac 900
agacaggcct ccctcgaaat atcccccatc actttcctga ccgcccagac attgctgatg 960
gatctcgggc aattcctttt gagctgtcat atcagctctc accagcacga cggaatggaa 1020
gcttacgtaa aggttgacag ttgcccagag gaaccacagc tgcgcatgaa aaacaacgag 1080
gaagccgagg actatgacga tgacttgaca gacagcgaaa tggatgtggt gcggtttgac 1140
gatgataaca gccctagttt tattcagatc cgctccgtag cgaaaaagca tcccaaaacc 1200
tgggtgcact acattgcagc tgaggaagaa gactgggact acgccccact ggttttggcg 1260
ccagatgacc gaagttacaa gagccagtac ctgaataacg gcccacagag aatcgggcgc 1320
aaatataaga aggtcagatt tatggcttac accgatgaga cattcaagac aagagaggcc 1380
attcagcatg aatccggcat tctgggtcct cttctgtacg gcgaagtcgg agacacactg 1440
ctgattatct ttaaaaatca ggcctcaagg ccatacaaca tctacccaca tggaattacc 1500
gatgtacggc ctctttatag ccgaaggctt cctaaaggag tgaagcatct gaaagatttt 1560
ccgatattgc cgggagagat attcaagtac aagtggacgg tcaccgtgga agatggccca 1620
acaaagagtg acccccggtg tctcacaagg tattactctt cattcgttaa tatggagagg 1680
gatttggcat ccggcctgat tggaccactg ctgatttgtt acaaggagtc tgtcgatcag 1740
agaggaaacc agatcatgag cgataaacgc aatgttatcc tcttctctgt tttcgacgag 1800
aatcggtctt ggtatctgac cgaaaatatc cagagattcc tgccaaaccc ggctggtgta 1860
cagcttgaag atcccgaatt tcaagccagc aatattatgc acagcatcaa cggatacgtc 1920
tttgacagtc ttcagttgtc cgtgtgtctg catgaggtgg cctactggta cattcttagc 1980
atcggcgctc agaccgattt ccttagtgtg ttcttttctg ggtacacatt caagcacaaa 2040
atggtatacg aggacaccct gacacttttc ccctttagtg gtgagactgt ttttatgtcc 2100
atggagaacc ccggactctg gatcctgggc tgccacaaca gtgacttccg caacaggggt 2160
atgactgcat tgctgaaagt tagcagctgt gataagaata ccggcgacta ttacgaggac 2220
tcctatgaag acatctccgc ctatctgttg agcaaaaaca atgcaataga acccagaagc 2280
tttagccaga atgctacaaa tgtgagcaac aacagcaaca ccagtaacga cagtaacgtg 2340
tctccacctg tgctcaagga gatcacacgg acaacgctgc aatcagatca ggaggagatt 2400
gattatgacg acaccataag cgtcgagatg aagaaggagg atttcgacat ttacgacgag 2460
gatgagaacc aatcacccag aagtttccag aagaagaccc gccactattt tatcgcagcg 2520
gtcgaaaggc tgtgggatta tggcatgtct agcagtccac acgtgctgcg aaaccgcgca 2580
cagtctggct ctgttcctca atttaagaag gtcgtattcc aggaatttac cgatgggtca 2640
ttcacccaac cattgtatag aggggaactt aatgaacatc tgggacttct tggcccctac 2700
attcgagcag aggtggagga taatattatg gtaacgttcc gaaatcaagc gtcaagaccc 2760
tactccttct actccagcct cattagttat gaagaggacc aacgccaagg agctgagcca 2820
aggaaaaact tcgtgaagcc caatgagacg aagacctact tttggaaagt gcagcatcac 2880
atggctccaa caaaagacga gttcgattgc aaagcatggg cttacttcag tgacgtggac 2940
ctcgaaaagg acgtgcattc aggacttatc gggcctctgc ttgtctgcca taccaacacc 3000
ctgaaccctg cccatggaag gcaggtaacc gttcaggagt tcgctctctt ttttacaatt 3060
tttgatgaga cgaagagctg gtacttcacc gaaaacatgg aaaggaactg tagggcaccc 3120
tgcaatatcc agatggaaga tcccaccttt aaggagaatt acaggtttca cgctatcaac 3180
ggttacataa tggataccct tcctgggctg gttatggctc aagatcagcg gattagatgg 3240
tatcttctgt ccatggggtc aaacgaaaac attcatagta ttcattttag tggacacgtg 3300
tttaccgtgc gcaaaaaaga agagtacaag atggctctgt acaatctgta tcccggtgtt 3360
ttcgaaactg tcgagatgct tccttctaag gccgggatct ggcgagtcga atgtcttata 3420
ggtgaacact tgcatgccgg tatgagcacc ctgttcctgg tatacagcaa caagtgccag 3480
actccacttg gaatggccag cggtcacata agggattttc aaatcaccgc ttccggacag 3540
tacggccagt gggctccaaa gctggcccga cttcattact ccgggtcaat caatgcttgg 3600
tccactaaag agcccttttc atggatcaaa gtggatctgc ttgccccgat gatcattcat 3660
ggcatcaaga cacagggagc acgacagaaa tttagctctc tctacatcag ccagtttatt 3720
atcatgtata gtctggatgg aaaaaagtgg cagacctaca ggggaaattc aactgggacc 3780
ttgatggtgt tcttcggtaa cgtggattcc agtggcataa agcataacat ctttaaccct 3840
ccgattattg cacgctatat taggttgcac cctacacatt atagcattcg ctctactctg 3900
cggatggaac ttatgggctg tgacctgaat tcttgttcca tgccacttgg catggaaagt 3960
aaggccatca gtgacgctca gatcacggct tctagttatt tcaccaatat gtttgctacc 4020
tggtcacctt ctaaggccag actccatctc cagggcagat ccaacgcttg gagaccacag 4080
gtgaacaatc ctaaggagtg gctgcaagtg gatttccaga agacaatgaa ggtgaccgga 4140
gtcacaaccc aaggagtgaa gtcactgctg acttcaatgt atgtaaagga gttcctgatc 4200
agctcaagtc aagatggtca tcagtggaca ctgtttttcc agaatggcaa ggttaaagtg 4260
tttcagggaa atcaggactc tttcactccc gtcgtgaata gtctggaccc tccgcttctt 4320
accaggtatt tgcgcattca cccccagtct tgggtccatc aaattgctct gagaatggaa 4380
gttcttggtt gtgaggctca ggatctgtac tga 4413
<210> 18
<211> 14
<212> PRT
<213> Artificial sequence
<400> 18
Ser Phe Ser Gln Asn Pro Pro Val Leu Lys Arg His Gln Arg
1 5 10
<210> 19
<211> 10
<212> PRT
<213> Artificial sequence
<400> 19
Ser Phe Ser Gln Asn Pro Pro Val Leu Lys
1 5 10
<210> 20
<211> 24
<212> PRT
<213> Artificial sequence
<400> 20
Ser Phe Ser Gln Asn Ser Arg His Pro Ser Thr Arg Gln Lys Gln Phe
1 5 10 15
Asn Ala Thr Thr Ile Pro Glu Asn
20
<210> 21
<211> 21
<212> PRT
<213> Artificial sequence
<400> 21
Ser Phe Ser Gln Asn Ser Arg His Pro Ser Gln Asn Pro Pro Val Leu
1 5 10 15
Lys Arg His Gln Arg
20
<210> 22
<211> 17
<212> PRT
<213> Artificial sequence
<400> 22
Ser Phe Ser Gln Asn Ser Arg His Pro Ser Gln Asn Pro Pro Val Leu
1 5 10 15
Lys
<210> 23
<211> 16
<212> PRT
<213> Artificial sequence
<400> 23
Ser Phe Ser Gln Asn Ser Arg His Gln Ala Tyr Arg Tyr Arg Arg Gly
1 5 10 15
<210> 24
<211> 12
<212> PRT
<213> Artificial sequence
<400> 24
Ser Phe Ser Gln Asn Ser Arg His Gln Ala Tyr Gly
1 5 10
<210> 25
<211> 31
<212> PRT
<213> Artificial sequence
<400> 25
Ser Phe Ser Gln Asn Ala Thr Asn Val Ser Asn Asn Ser Asn Thr Ser
1 5 10 15
Asn Asp Ser Asn Val Ser Pro Pro Val Leu Lys Arg His Gln Arg
20 25 30
<210> 26
<211> 27
<212> PRT
<213> Artificial sequence
<400> 26
Ser Phe Ser Gln Asn Ala Thr Asn Val Ser Asn Asn Ser Asn Thr Ser
1 5 10 15
Asn Asp Ser Asn Val Ser Pro Pro Val Leu Lys
20 25
<210> 27
<211> 236
<212> PRT
<213> Artificial sequence
<400> 27
Ser Phe Ser Gln Asn Ser Arg His Pro Ser Thr Arg Gln Lys Gln Phe
1 5 10 15
Asn Ala Thr Thr Ile Pro Glu Asn Asp Ile Glu Lys Thr Asp Pro Trp
20 25 30
Phe Ala His Arg Thr Pro Met Pro Lys Ile Gln Asn Val Ser Ser Ser
35 40 45
Asp Leu Leu Met Leu Leu Arg Gln Ser Pro Thr Pro His Gly Leu Ser
50 55 60
Leu Ser Asp Leu Gln Glu Ala Lys Tyr Glu Thr Phe Ser Asp Asp Pro
65 70 75 80
Ser Pro Gly Ala Ile Asp Ser Asn Asn Ser Leu Ser Glu Met Thr His
85 90 95
Phe Arg Pro Gln Leu His His Ser Gly Asp Met Val Phe Thr Pro Glu
100 105 110
Ser Gly Leu Gln Leu Arg Leu Asn Glu Lys Leu Gly Thr Thr Ala Ala
115 120 125
Thr Glu Leu Lys Lys Leu Asp Phe Lys Val Ser Ser Thr Ser Asn Asn
130 135 140
Leu Ile Ser Thr Ile Pro Ser Asp Asn Leu Ala Ala Gly Thr Asp Asn
145 150 155 160
Thr Ser Ser Leu Gly Pro Pro Ser Met Pro Val His Tyr Asp Ser Gln
165 170 175
Leu Asp Thr Thr Leu Phe Gly Lys Lys Ser Ser Pro Leu Thr Glu Ser
180 185 190
Gly Gly Pro Leu Ser Leu Ser Glu Glu Asn Asn Asp Ser Lys Leu Leu
195 200 205
Glu Ser Gly Leu Met Asn Ser Gln Glu Ser Ser Trp Gly Lys Asn Val
210 215 220
Ser Thr Arg Pro Pro Val Leu Lys Arg His Gln Arg
225 230 235
<210> 28
<211> 226
<212> PRT
<213> Artificial sequence
<400> 28
Ser Phe Ser Gln Asn Ser Arg His Pro Ser Thr Arg Gln Lys Gln Phe
1 5 10 15
Asn Ala Thr Thr Ile Pro Glu Asn Asp Ile Glu Lys Thr Asp Pro Trp
20 25 30
Phe Ala His Arg Thr Pro Met Pro Lys Ile Gln Asn Val Ser Ser Ser
35 40 45
Asp Leu Leu Met Leu Leu Arg Gln Ser Pro Thr Pro His Gly Leu Ser
50 55 60
Leu Ser Asp Leu Gln Glu Ala Lys Tyr Glu Thr Phe Ser Asp Asp Pro
65 70 75 80
Ser Pro Gly Ala Ile Asp Ser Asn Asn Ser Leu Ser Glu Met Thr His
85 90 95
Phe Arg Pro Gln Leu His His Ser Gly Asp Met Val Phe Thr Pro Glu
100 105 110
Ser Gly Leu Gln Leu Arg Leu Asn Glu Lys Leu Gly Thr Thr Ala Ala
115 120 125
Thr Glu Leu Lys Lys Leu Asp Phe Lys Val Ser Ser Thr Ser Asn Asn
130 135 140
Leu Ile Ser Thr Ile Pro Ser Asp Asn Leu Ala Ala Gly Thr Asp Asn
145 150 155 160
Thr Ser Ser Leu Gly Pro Pro Ser Met Pro Val His Tyr Asp Ser Gln
165 170 175
Leu Asp Thr Thr Leu Phe Gly Lys Lys Ser Ser Pro Leu Thr Glu Ser
180 185 190
Gly Gly Pro Leu Ser Leu Ser Glu Glu Asn Asn Asp Ser Lys Leu Leu
195 200 205
Glu Ser Gly Leu Met Asn Ser Gln Glu Ser Ser Trp Gly Lys Asn Val
210 215 220
Ser Ser
225
<210> 29
<211> 1470
<212> PRT
<213> Artificial sequence
<400> 29
Met Gln Ile Glu Leu Ser Thr Cys Phe Phe Leu Cys Leu Leu Arg Phe
1 5 10 15
Cys Phe Ser Ala Thr Arg Arg Tyr Tyr Leu Gly Ala Val Glu Leu Ser
20 25 30
Trp Asp Tyr Met Gln Ser Asp Leu Gly Glu Leu Pro Val Asp Ala Arg
35 40 45
Phe Pro Pro Arg Val Pro Lys Ser Phe Pro Phe Asn Thr Ser Val Val
50 55 60
Tyr Lys Lys Thr Leu Phe Val Glu Phe Thr Asp His Leu Phe Asn Ile
65 70 75 80
Ala Lys Pro Arg Pro Pro Trp Met Gly Leu Leu Gly Pro Thr Ile Gln
85 90 95
Ala Glu Val Tyr Asp Thr Val Val Ile Thr Leu Lys Asn Met Ala Ser
100 105 110
His Pro Val Ser Leu His Ala Val Gly Val Ser Tyr Trp Lys Ala Ser
115 120 125
Glu Gly Ala Glu Tyr Asp Asp Gln Thr Ser Gln Arg Glu Lys Glu Asp
130 135 140
Asp Lys Val Phe Pro Gly Gly Ser His Thr Tyr Val Trp Gln Val Leu
145 150 155 160
Lys Glu Asn Gly Pro Met Ala Ser Asp Pro Leu Cys Leu Thr Tyr Ser
165 170 175
Tyr Leu Ser His Val Asp Leu Val Lys Asp Leu Asn Ser Gly Leu Ile
180 185 190
Gly Ala Leu Leu Val Cys Arg Glu Gly Ser Leu Ala Lys Glu Lys Thr
195 200 205
Gln Thr Leu His Lys Phe Ile Leu Leu Phe Ala Val Phe Asp Glu Gly
210 215 220
Lys Ser Trp His Ser Glu Thr Lys Asn Ser Leu Met Gln Asp Arg Asp
225 230 235 240
Ala Ala Ser Ala Arg Ala Trp Pro Lys Met His Thr Val Asn Gly Tyr
245 250 255
Val Asn Arg Ser Leu Pro Gly Leu Ile Gly Cys His Arg Lys Ser Val
260 265 270
Tyr Trp His Val Ile Gly Met Gly Thr Thr Pro Glu Val His Ser Ile
275 280 285
Phe Leu Glu Gly His Thr Phe Leu Val Arg Asn His Arg Gln Ala Ser
290 295 300
Leu Glu Ile Ser Pro Ile Thr Phe Leu Thr Ala Gln Thr Leu Leu Met
305 310 315 320
Asp Leu Gly Gln Phe Leu Leu Ser Cys His Ile Ser Ser His Gln His
325 330 335
Asp Gly Met Glu Ala Tyr Val Lys Val Asp Ser Cys Pro Glu Glu Pro
340 345 350
Gln Leu Arg Met Lys Asn Asn Glu Glu Ala Glu Asp Tyr Asp Asp Asp
355 360 365
Leu Thr Asp Ser Glu Met Asp Val Val Arg Phe Asp Asp Asp Asn Ser
370 375 380
Pro Ser Phe Ile Gln Ile Arg Ser Val Ala Lys Lys His Pro Lys Thr
385 390 395 400
Trp Val His Tyr Ile Ala Ala Glu Glu Glu Asp Trp Asp Tyr Ala Pro
405 410 415
Leu Val Leu Ala Pro Asp Asp Arg Ser Tyr Lys Ser Gln Tyr Leu Asn
420 425 430
Asn Gly Pro Gln Arg Ile Gly Arg Lys Tyr Lys Lys Val Arg Phe Met
435 440 445
Ala Tyr Thr Asp Glu Thr Phe Lys Thr Arg Glu Ala Ile Gln His Glu
450 455 460
Ser Gly Ile Leu Gly Pro Leu Leu Tyr Gly Glu Val Gly Asp Thr Leu
465 470 475 480
Leu Ile Ile Phe Lys Asn Gln Ala Ser Arg Pro Tyr Asn Ile Tyr Pro
485 490 495
His Gly Ile Thr Asp Val Arg Pro Leu Tyr Ser Arg Arg Leu Pro Lys
500 505 510
Gly Val Lys His Leu Lys Asp Phe Pro Ile Leu Pro Gly Glu Ile Phe
515 520 525
Lys Tyr Lys Trp Thr Val Thr Val Glu Asp Gly Pro Thr Lys Ser Asp
530 535 540
Pro Arg Cys Leu Thr Arg Tyr Tyr Ser Ser Phe Val Asn Met Glu Arg
545 550 555 560
Asp Leu Ala Ser Gly Leu Ile Gly Pro Leu Leu Ile Cys Tyr Lys Glu
565 570 575
Ser Val Asp Gln Arg Gly Asn Gln Ile Met Ser Asp Lys Arg Asn Val
580 585 590
Ile Leu Phe Ser Val Phe Asp Glu Asn Arg Ser Trp Tyr Leu Thr Glu
595 600 605
Asn Ile Gln Arg Phe Leu Pro Asn Pro Ala Gly Val Gln Leu Glu Asp
610 615 620
Pro Glu Phe Gln Ala Ser Asn Ile Met His Ser Ile Asn Gly Tyr Val
625 630 635 640
Phe Asp Ser Leu Gln Leu Ser Val Cys Leu His Glu Val Ala Tyr Trp
645 650 655
Tyr Ile Leu Ser Ile Gly Ala Gln Thr Asp Phe Leu Ser Val Phe Phe
660 665 670
Ser Gly Tyr Thr Phe Lys His Lys Met Val Tyr Glu Asp Thr Leu Thr
675 680 685
Leu Phe Pro Phe Ser Gly Glu Thr Val Phe Met Ser Met Glu Asn Pro
690 695 700
Gly Leu Trp Ile Leu Gly Cys His Asn Ser Asp Phe Arg Asn Arg Gly
705 710 715 720
Met Thr Ala Leu Leu Lys Val Ser Ser Cys Asp Lys Asn Thr Gly Asp
725 730 735
Tyr Tyr Glu Asp Ser Tyr Glu Asp Ile Ser Ala Tyr Leu Leu Ser Lys
740 745 750
Asn Asn Ala Ile Glu Pro Arg Ser Phe Ser Gln Asn Ala Thr Asn Val
755 760 765
Ser Asn Asn Ser Asn Thr Ser Asn Asp Ser Asn Val Ser Pro Pro Val
770 775 780
Leu Lys Glu Ile Thr Arg Thr Thr Leu Gln Ser Asp Gln Glu Glu Ile
785 790 795 800
Asp Tyr Asp Asp Thr Ile Ser Val Glu Met Lys Lys Glu Asp Phe Asp
805 810 815
Ile Tyr Asp Glu Asp Glu Asn Gln Ser Pro Arg Ser Phe Gln Lys Lys
820 825 830
Thr Arg His Tyr Phe Ile Ala Ala Val Glu Arg Leu Trp Asp Tyr Gly
835 840 845
Met Ser Ser Ser Pro His Val Leu Arg Asn Arg Ala Gln Ser Gly Ser
850 855 860
Val Pro Gln Phe Lys Lys Val Val Phe Gln Glu Phe Thr Asp Gly Ser
865 870 875 880
Phe Thr Gln Pro Leu Tyr Arg Gly Glu Leu Asn Glu His Leu Gly Leu
885 890 895
Leu Gly Pro Tyr Ile Arg Ala Glu Val Glu Asp Asn Ile Met Val Thr
900 905 910
Phe Arg Asn Gln Ala Ser Arg Pro Tyr Ser Phe Tyr Ser Ser Leu Ile
915 920 925
Ser Tyr Glu Glu Asp Gln Arg Gln Gly Ala Glu Pro Arg Lys Asn Phe
930 935 940
Val Lys Pro Asn Glu Thr Lys Thr Tyr Phe Trp Lys Val Gln His His
945 950 955 960
Met Ala Pro Thr Lys Asp Glu Phe Asp Cys Lys Ala Trp Ala Tyr Phe
965 970 975
Ser Asp Val Asp Leu Glu Lys Asp Val His Ser Gly Leu Ile Gly Pro
980 985 990
Leu Leu Val Cys His Thr Asn Thr Leu Asn Pro Ala His Gly Arg Gln
995 1000 1005
Val Thr Val Gln Glu Phe Ala Leu Phe Phe Thr Ile Phe Asp Glu Thr
1010 1015 1020
Lys Ser Trp Tyr Phe Thr Glu Asn Met Glu Arg Asn Cys Arg Ala Pro
1025 1030 1035 1040
Cys Asn Ile Gln Met Glu Asp Pro Thr Phe Lys Glu Asn Tyr Arg Phe
1045 1050 1055
His Ala Ile Asn Gly Tyr Ile Met Asp Thr Leu Pro Gly Leu Val Met
1060 1065 1070
Ala Gln Asp Gln Arg Ile Arg Trp Tyr Leu Leu Ser Met Gly Ser Asn
1075 1080 1085
Glu Asn Ile His Ser Ile His Phe Ser Gly His Val Phe Thr Val Arg
1090 1095 1100
Lys Lys Glu Glu Tyr Lys Met Ala Leu Tyr Asn Leu Tyr Pro Gly Val
1105 1110 1115 1120
Phe Glu Thr Val Glu Met Leu Pro Ser Lys Ala Gly Ile Trp Arg Val
1125 1130 1135
Glu Cys Leu Ile Gly Glu His Leu His Ala Gly Met Ser Thr Leu Phe
1140 1145 1150
Leu Val Tyr Ser Asn Lys Cys Gln Thr Pro Leu Gly Met Ala Ser Gly
1155 1160 1165
His Ile Arg Asp Phe Gln Ile Thr Ala Ser Gly Gln Tyr Gly Gln Trp
1170 1175 1180
Ala Pro Lys Leu Ala Arg Leu His Tyr Ser Gly Ser Ile Asn Ala Trp
1185 1190 1195 1200
Ser Thr Lys Glu Pro Phe Ser Trp Ile Lys Val Asp Leu Leu Ala Pro
1205 1210 1215
Met Ile Ile His Gly Ile Lys Thr Gln Gly Ala Arg Gln Lys Phe Ser
1220 1225 1230
Ser Leu Tyr Ile Ser Gln Phe Ile Ile Met Tyr Ser Leu Asp Gly Lys
1235 1240 1245
Lys Trp Gln Thr Tyr Arg Gly Asn Ser Thr Gly Thr Leu Met Val Phe
1250 1255 1260
Phe Gly Asn Val Asp Ser Ser Gly Ile Lys His Asn Ile Phe Asn Pro
1265 1270 1275 1280
Pro Ile Ile Ala Arg Tyr Ile Arg Leu His Pro Thr His Tyr Ser Ile
1285 1290 1295
Arg Ser Thr Leu Arg Met Glu Leu Met Gly Cys Asp Leu Asn Ser Cys
1300 1305 1310
Ser Met Pro Leu Gly Met Glu Ser Lys Ala Ile Ser Asp Ala Gln Ile
1315 1320 1325
Thr Ala Ser Ser Tyr Phe Thr Asn Met Phe Ala Thr Trp Ser Pro Ser
1330 1335 1340
Lys Ala Arg Leu His Leu Gln Gly Arg Ser Asn Ala Trp Arg Pro Gln
1345 1350 1355 1360
Val Asn Asn Pro Lys Glu Trp Leu Gln Val Asp Phe Gln Lys Thr Met
1365 1370 1375
Lys Val Thr Gly Val Thr Thr Gln Gly Val Lys Ser Leu Leu Thr Ser
1380 1385 1390
Met Tyr Val Lys Glu Phe Leu Ile Ser Ser Ser Gln Asp Gly His Gln
1395 1400 1405
Trp Thr Leu Phe Phe Gln Asn Gly Lys Val Lys Val Phe Gln Gly Asn
1410 1415 1420
Gln Asp Ser Phe Thr Pro Val Val Asn Ser Leu Asp Pro Pro Leu Leu
1425 1430 1435 1440
Thr Arg Tyr Leu Arg Ile His Pro Gln Ser Trp Val His Gln Ile Ala
1445 1450 1455
Leu Arg Met Glu Val Leu Gly Cys Glu Ala Gln Asp Leu Tyr
1460 1465 1470
<210> 30
<211> 63
<212> DNA
<213> Artificial sequence
<400> 30
atgagctccg cagccgggtt ctgcgcctca cgccccgggc tgctgttcct ggggttgctg 60
ctc 63
<210> 31
<211> 31
<212> PRT
<213> Artificial sequence
<400> 31
Met Ser Ser Ala Ala Gly Phe Cys Ala Ser Arg Pro Gly Leu Leu Phe
1 5 10 15
Leu Gly Leu Leu Leu Leu Pro Leu Val Val Ala Phe Ala Ser Ala
20 25 30
<210> 32
<211> 5119
<212> DNA
<213> Artificial sequence
<400> 32
cagccaggca ctaagctttt acaaaaagaa tgcattcaaa tattacttct gcaatttttc 60
caagagtacg agtaatggga aaatagacct tgcgtcctac agcatactgg gtgattgttg 120
gtggagcctg gtaaatacca tccagagact agggaagttt tccacattca ggtgaaattc 180
aaaagagtca tcgcctagag accaaattaa acttattagt agcagaaaat aattgcgaat 240
aacacatgct tcacacacaa agccaccaaa ctcagtagta ataattggta gttgcagctg 300
ggaggttgga aaggaaacag gaactgtcag ggtcctgaaa gcacctactg tgtaagttgc 360
atgatgacag cagagaactc tactgttaat acaacacaaa aaacattcct tttctgactc 420
aagttctgtt tctaactcta caaacgtgct tgtatgtaag ttgaggttgg aggtcccagc 480
caaggcagct gcccagagcc ttttctttct ttctttcttt ctttcttttc ttttcttttt 540
tttttttttt tttttttttt tttttttttt tttttttttt ggtaatcttg gctggccaga 600
acccaagtct tcccagtact atcttagttt ccgcaccgca gttcctcggt gtccacttca 660
ggcttccgga ctggaaggac agccgggaat aaaacgtgcc ggcgaggctc aggagtcatt 720
ggccacagag acccagcccg agtttcccat cgcactgagc actgaggggg atccaccggt 780
cgccaccatg caaatagagc tctccacctg cttctttctg tgccttttgc gattctgctt 840
tagtgccacc agaagatact acctgggtgc agtggaactg tcatgggact atatgcaaag 900
tgatctcggt gagctgcctg tggacgcaag atttcctcct agagtgccaa aatcttttcc 960
attcaacacc tcagtcgtgt acaaaaagac tctgtttgta gaattcacgg atcacctttt 1020
caacatcgct aagccaaggc caccctggat gggtctgcta ggtcctacca tccaggctga 1080
ggtttatgat acagtggtca ttacacttaa gaacatggct tcccatcctg tcagtcttca 1140
tgctgttggt gtatcctact ggaaagcttc tgagggagct gaatatgatg atcagaccag 1200
tcaaagggag aaagaagatg ataaagtctt ccctggtgga agccatacat atgtctggca 1260
ggtcctgaaa gagaatggtc caatggcctc tgacccactg tgccttacct actcatatct 1320
ttctcatgtg gacctggtaa aagacttgaa ttcaggcctc attggagccc tactagtatg 1380
tagagaaggg agtctggcca aggaaaagac acagaccttg cacaaattta tactactttt 1440
tgctgtattt gatgaaggga aaagttggca ctcagaaaca aagaactcct tgatgcagga 1500
tagggatgct gcatctgctc gggcctggcc taaaatgcac acagtcaatg gttatgtaaa 1560
caggtctctg ccaggtctga ttggatgcca caggaaatca gtctattggc atgtgattgg 1620
aatgggcacc actcctgaag tgcactcaat attcctcgaa ggtcacacat ttcttgtgag 1680
gaaccatcgc caggcgtcct tggaaatctc gccaataact ttccttactg ctcaaacact 1740
cttgatggac cttggacagt ttctactgtt ttgtcatatc tcttcccacc aacatgatgg 1800
catggaagct tatgtcaaag tagacagctg tccagaggaa ccccaactac gaatgaaaaa 1860
taatgaagaa gcggaagact atgatgatga tcttactgat tctgaaatgg atgtggtcag 1920
gtttgatgat gacaactctc cttcctttat ccaaattcgc tcagttgcca agaagcatcc 1980
taaaacttgg gtacattaca ttgctgctga agaggaggac tgggactatg ctcccttagt 2040
cctcgccccc gatgacagaa gttataaaag tcaatatttg aacaatggcc ctcagcggat 2100
tggtaggaag tacaaaaaag tccgatttat ggcatacaca gatgaaacct ttaagactcg 2160
tgaagctatt cagcatgaat caggaatctt gggaccttta ctttatgggg aagttggaga 2220
cacactgttg attatattta agaatcaagc aagcagacca tataacatct accctcacgg 2280
aatcactgat gtccgtcctt tgtattcaag gagattacca aaaggtgtaa aacatttgaa 2340
ggattttcca attctgccag gagaaatatt caaatataaa tggacagtga ctgtagaaga 2400
tgggccaact aaatcagatc ctcggtgcct gacccgctat tactctagtt tcgttaatat 2460
ggagagagat ctagcttcag gactcattgg ccctctcctc atctgctaca aagaatctgt 2520
agatcaaaga ggaaaccaga taatgtcaga caagaggaat gtcatcctgt tttctgtatt 2580
tgatgagaac cgaagctggt acctcacaga gaatatacaa cgctttctcc ccaatccagc 2640
tggagtgcag cttgaggatc cagagttcca agcctccaac atcatgcaca gcatcaatgg 2700
ctatgttttt gatagtttgc agttgtcagt ttgtttgcat gaggtggcat actggtacat 2760
tctaagcatt ggagcacaga ctgacttcct ttctgtcttc ttctctggat ataccttcaa 2820
acacaaaatg gtctatgaag acacactcac cctattccca ttctcaggag aaactgtctt 2880
catgtcgatg gaaaacccag gtctatggat tctggggtgc cacaactcag actttcggaa 2940
cagaggcatg accgccttac tgaaggtttc tagttgtgac aagaacactg gtgattatta 3000
cgaggacagt tatgaagata tttcagcata cttgctgagt aaaaacaatg ccattgaacc 3060
aagagaaata actcgtacta ctcttcagtc agatcaagag gaaattgact atgatgatac 3120
catatcagtt gaaatgaaga aggaagattt tgacatttat gatgaggatg aaaatcagag 3180
cccccgcagc tttcaaaaga aaacacgaca ctattttatt gctgcagtgg agaggctctg 3240
ggattatggg atgagtagct ccccacatgt tctaagaaac agggctcaga gtggcagtgt 3300
ccctcagttc aagaaagttg ttttccagga atttactgat ggctccttta ctcagccctt 3360
ataccgtgga gaactaaatg aacatttggg actcctgggg ccatatataa gagcagaagt 3420
tgaagataat atcatggtaa ctttcagaaa tcaggcctct cgtccctatt ccttctattc 3480
tagccttatt tcttatgagg aagatcagag gcaaggagca gaacctagaa aaaactttgt 3540
caagcctaat gaaaccaaaa cttacttttg gaaagtgcaa catcatatgg cacccactaa 3600
agatgagttt gactgcaaag cctgggctta tttctctgat gttgacctgg aaaaagatgt 3660
gcactcaggc ctgattggac cccttctggt ctgccacact aacacactga accctgctca 3720
tgggagacaa gtgacagtac aggaatttgc tctgtttttc accatctttg atgagaccaa 3780
aagctggtac ttcactgaaa atatggaaag aaactgcagg gctccctgca atatccagat 3840
ggaagatccc acttttaaag agaattatcg cttccatgca atcaatggct acataatgga 3900
tacactacct ggcttagtaa tggctcagga tcaaaggatt cgatggtatc tgctcagcat 3960
gggcagcaat gaaaacatcc attctattca tttcagtgga catgtgttca ctgtacgaaa 4020
aaaagaggag tataaaatgg cactgtacaa tctctatcca ggtgtttttg agacagtgga 4080
aatgttacca tccaaagctg gaatttggcg ggtggaatgc cttattggcg agcatctaca 4140
tgctgggatg agcacacttt ttctggtgta cagcaataag tgtcagactc ccctgggaat 4200
ggcttctgga cacattagag attttcagat tacagcttca ggacaatatg gacagtgggc 4260
cccaaagctg gccagacttc attattccgg atcaatcaat gcctggagca ccaaggagcc 4320
cttttcttgg atcaaggtgg atctgttggc accaatgatt attcacggca tcaagaccca 4380
gggtgcccgt cagaagttct ccagcctcta catctctcag tttatcatca tgtatagtct 4440
tgatgggaag aagtggcaga cttatcgagg aaattccact ggaaccttaa tggtcttctt 4500
tggcaatgtg gattcatctg ggataaaaca caatattttt aaccctccaa ttattgctcg 4560
atacatccgt ttgcacccaa ctcattatag cattcgcagc actcttcgca tggagttgat 4620
gggctgtgat ttaaatagtt gcagcatgcc attgggaatg gagagtaaag caatatcaga 4680
tgcacagatt actgcttcat cctactttac caatatgttt gccacctggt ctccttcaaa 4740
agctcgactt cacctccaag ggaggagtaa tgcctggaga cctcaggtga ataatccaaa 4800
agagtggctg caagtggact tccagaagac aatgaaagtc acaggagtaa ctactcaggg 4860
agtaaaatct ctgcttacca gcatgtatgt gaaggagttc ctcatctcca gcagtcaaga 4920
tggccatcag tggactctct tttttcagaa tggcaaagta aaggtttttc agggaaatca 4980
agactccttc acacctgtgg tgaactctct agacccaccg ttactgactc gctaccttcg 5040
aattcacccc cagagttggg tgcaccagat tgccctgagg atggaggttc tgggctgcga 5100
ggcacaggac ctctactga 5119
<210> 33
<211> 5200
<212> DNA
<213> Artificial sequence
<400> 33
cagccaggca ctaagctttt acaaaaagaa tgcattcaaa tattacttct gcaatttttc 60
caagagtacg agtaatggga aaatagacct tgcgtcctac agcatactgg gtgattgttg 120
gtggagcctg gtaaatacca tccagagact agggaagttt tccacattca ggtgaaattc 180
aaaagagtca tcgcctagag accaaattaa acttattagt agcagaaaat aattgcgaat 240
aacacatgct tcacacacaa agccaccaaa ctcagtagta ataattggta gttgcagctg 300
ggaggttgga aaggaaacag gaactgtcag ggtcctgaaa gcacctactg tgtaagttgc 360
atgatgacag cagagaactc tactgttaat acaacacaaa aaacattcct tttctgactc 420
aagttctgtt tctaactcta caaacgtgct tgtatgtaag ttgaggttgg aggtcccagc 480
caaggcagct gcccagagcc ttttctttct ttctttcttt ctttcttttc ttttcttttt 540
tttttttttt tttttttttt tttttttttt tttttttttt ggtaatcttg gctggccaga 600
acccaagtct tcccagtact atcttagttt ccgcaccgca gttcctcggt gtccacttca 660
ggcttccgga ctggaaggac agccgggaat aaaacgtgcc ggcgaggctc aggagtcatt 720
ggccacagag acccagcccg agtttcccat cgcactgagc actgaggggg atccaccggt 780
cgccaccatg cagatcgagt tgagtacgtg tttcttcctc tgcctgctgc gattttgttt 840
ctccgctacc cggagatatt acttgggcgc cgtagaactc agctgggact atatgcagag 900
cgacctgggg gagctccctg tagatgctcg gtttccacca cgcgtgccta agtcattccc 960
tttcaatact agtgttgtgt acaagaagac cttgtttgta gagttcaccg accatctttt 1020
caacatcgcc aaaccccgac caccatggat gggactgctg ggacccacta ttcaggccga 1080
ggtgtacgac accgtggtaa tcactctgaa gaacatggca agccaccctg tctcactgca 1140
cgctgttgga gtgtcatact ggaaggccag tgaaggcgcc gaatatgacg accagacctc 1200
tcaacgggag aaggaggatg ataaggtatt cccaggcgga agccatactt acgtctggca 1260
ggtccttaag gagaatggac ccatggcctc agatccactt tgtctcacct attcttacct 1320
gtctcacgtg gaccttgtca aggatctcaa cagtggactc atcggtgctc tcctggtctg 1380
ccgagaggga tcactcgcca aggaaaagac gcaaactctc cacaaattca ttctgctctt 1440
tgccgtcttt gacgagggaa aatcatggca cagcgaaacg aagaactctc ttatgcagga 1500
tagggatgct gcatccgcca gagcgtggcc taagatgcac acagtcaacg gatacgtgaa 1560
tcgctctctt ccggggctca tagggtgtca tagaaagtcc gtgtactggc atgtaattgg 1620
aatgggaaca accccagaag tgcattccat attcctggag ggacatactt ttttggttag 1680
aaaccacaga caggcctccc tcgaaatatc ccccatcact ttcctgaccg cccagacatt 1740
gctgatggat ctcgggcaat tccttttgag ctgtcatatc agctctcacc agcacgacgg 1800
aatggaagct tacgtaaagg ttgacagttg cccagaggaa ccacagctgc gcatgaaaaa 1860
caacgaggaa gccgaggact atgacgatga cttgacagac agcgaaatgg atgtggtgcg 1920
gtttgacgat gataacagcc ctagttttat tcagatccgc tccgtagcga aaaagcatcc 1980
caaaacctgg gtgcactaca ttgcagctga ggaagaagac tgggactacg ccccactggt 2040
tttggcgcca gatgaccgaa gttacaagag ccagtacctg aataacggcc cacagagaat 2100
cgggcgcaaa tataagaagg tcagatttat ggcttacacc gatgagacat tcaagacaag 2160
agaggccatt cagcatgaat ccggcattct gggtcctctt ctgtacggcg aagtcggaga 2220
cacactgctg attatcttta aaaatcaggc ctcaaggcca tacaacatct acccacatgg 2280
aattaccgat gtacggcctc tttatagccg aaggcttcct aaaggagtga agcatctgaa 2340
agattttccg atattgccgg gagagatatt caagtacaag tggacggtca ccgtggaaga 2400
tggcccaaca aagagtgacc cccggtgtct cacaaggtat tactcttcat tcgttaatat 2460
ggagagggat ttggcatccg gcctgattgg accactgctg atttgttaca aggagtctgt 2520
cgatcagaga ggaaaccaga tcatgagcga taaacgcaat gttatcctct tctctgtttt 2580
cgacgagaat cggtcttggt atctgaccga aaatatccag agattcctgc caaacccggc 2640
tggtgtacag cttgaagatc ccgaatttca agccagcaat attatgcaca gcatcaacgg 2700
atacgtcttt gacagtcttc agttgtccgt gtgtctgcat gaggtggcct actggtacat 2760
tcttagcatc ggcgctcaga ccgatttcct tagtgtgttc ttttctgggt acacattcaa 2820
gcacaaaatg gtatacgagg acaccctgac acttttcccc tttagtggtg agactgtttt 2880
tatgtccatg gagaaccccg gactctggat cctgggctgc cacaacagtg acttccgcaa 2940
caggggtatg actgcattgc tgaaagttag cagctgtgat aagaataccg gcgactatta 3000
cgaggactcc tatgaagaca tctccgccta tctgttgagc aaaaacaatg caatagaacc 3060
cagaagcttt agccagaatg ctacaaatgt gagcaacaac agcaacacca gtaacgacag 3120
taacgtgtct ccacctgtgc tcaaggagat cacacggaca acgctgcaat cagatcagga 3180
ggagattgat tatgacgaca ccataagcgt cgagatgaag aaggaggatt tcgacattta 3240
cgacgaggat gagaaccaat cacccagaag tttccagaag aagacccgcc actattttat 3300
cgcagcggtc gaaaggctgt gggattatgg catgtctagc agtccacacg tgctgcgaaa 3360
ccgcgcacag tctggctctg ttcctcaatt taagaaggtc gtattccagg aatttaccga 3420
tgggtcattc acccaaccat tgtatagagg ggaacttaat gaacatctgg gacttcttgg 3480
cccctacatt cgagcagagg tggaggataa tattatggta acgttccgaa atcaagcgtc 3540
aagaccctac tccttctact ccagcctcat tagttatgaa gaggaccaac gccaaggagc 3600
tgagccaagg aaaaacttcg tgaagcccaa tgagacgaag acctactttt ggaaagtgca 3660
gcatcacatg gctccaacaa aagacgagtt cgattgcaaa gcatgggctt acttcagtga 3720
cgtggacctc gaaaaggacg tgcattcagg acttatcggg cctctgcttg tctgccatac 3780
caacaccctg aaccctgccc atggaaggca ggtaaccgtt caggagttcg ctctcttttt 3840
tacaattttt gatgagacga agagctggta cttcaccgaa aacatggaaa ggaactgtag 3900
ggcaccctgc aatatccaga tggaagatcc cacctttaag gagaattaca ggtttcacgc 3960
tatcaacggt tacataatgg atacccttcc tgggctggtt atggctcaag atcagcggat 4020
tagatggtat cttctgtcca tggggtcaaa cgaaaacatt catagtattc attttagtgg 4080
acacgtgttt accgtgcgca aaaaagaaga gtacaagatg gctctgtaca atctgtatcc 4140
cggtgttttc gaaactgtcg agatgcttcc ttctaaggcc gggatctggc gagtcgaatg 4200
tcttataggt gaacacttgc atgccggtat gagcaccctg ttcctggtat acagcaacaa 4260
gtgccagact ccacttggaa tggccagcgg tcacataagg gattttcaaa tcaccgcttc 4320
cggacagtac ggccagtggg ctccaaagct ggcccgactt cattactccg ggtcaatcaa 4380
tgcttggtcc actaaagagc ccttttcatg gatcaaagtg gatctgcttg ccccgatgat 4440
cattcatggc atcaagacac agggagcacg acagaaattt agctctctct acatcagcca 4500
gtttattatc atgtatagtc tggatggaaa aaagtggcag acctacaggg gaaattcaac 4560
tgggaccttg atggtgttct tcggtaacgt ggattccagt ggcataaagc ataacatctt 4620
taaccctccg attattgcac gctatattag gttgcaccct acacattata gcattcgctc 4680
tactctgcgg atggaactta tgggctgtga cctgaattct tgttccatgc cacttggcat 4740
ggaaagtaag gccatcagtg acgctcagat cacggcttct agttatttca ccaatatgtt 4800
tgctacctgg tcaccttcta aggccagact ccatctccag ggcagatcca acgcttggag 4860
accacaggtg aacaatccta aggagtggct gcaagtggat ttccagaaga caatgaaggt 4920
gaccggagtc acaacccaag gagtgaagtc actgctgact tcaatgtatg taaaggagtt 4980
cctgatcagc tcaagtcaag atggtcatca gtggacactg tttttccaga atggcaaggt 5040
taaagtgttt cagggaaatc aggactcttt cactcccgtc gtgaatagtc tggaccctcc 5100
gcttcttacc aggtatttgc gcattcaccc ccagtcttgg gtccatcaaa ttgctctgag 5160
aatggaagtt cttggttgtg aggctcagga tctgtactga 5200

Claims (10)

1. A recombinant vector for treating hemophilia a comprising an expression cassette for co-expression of the PF4 promoter and BDD FVIII gene in tandem.
2. The recombinant vector according to claim 1, wherein the nucleotide sequence of the PF4 promoter is represented by SEQ ID No.1 or a nucleotide sequence having at least 80% homology thereto, preferably at least 85% homology thereto, and further preferably at least 95% homology thereto;
preferably, the PF4 promoter is shown as SEQ ID NO.2 nucleotide sequence or a nucleotide sequence which has at least 80% homology, preferably at least 85% homology, and further preferably at least 95% homology with the nucleotide sequence;
preferably, the PF4 promoter is shown as SEQ ID NO.3 nucleotide sequence or a nucleotide sequence at least 80% homologous, preferably at least 85% homologous, and further preferably at least 95% homologous thereto.
3. The recombinant vector according to claim 1 or 2, wherein the nucleotide sequence of the BDD FVIII gene is as shown in SEQ ID No.4, or a nucleotide sequence having at least 80% homology, preferably at least 85% homology, further preferably at least 95% homology thereto;
preferably, the amino acid sequence encoded by the BDD FVIII gene is shown in SEQ ID No.16, or an amino acid sequence having at least 80% homology, preferably at least 85% homology, and further preferably at least 95% homology thereto.
4. The recombinant vector according to claim 1 or 2, wherein the nucleotide sequence of the BDD FVIII gene is inserted between 2277bp and 2278bp on the basis of the sequence shown in SEQ ID No.4 as SEQ ID No.5, SEQ ID No.6, SEQ ID No.8, SEQ ID No.9, SEQ ID No.10, SEQ ID No.11, SEQ ID No.12, SEQ ID No.13, SEQ ID No.14, SEQ ID No.15 or a nucleotide sequence having at least 80%, preferably at least 85%, and even more preferably at least 95% homology thereto;
or, the nucleotide sequence of the BDD FVIII gene is based on the sequence shown in SEQ ID NO.4, the nucleotide sequence shown in SEQ ID NO.7 is inserted between 2277bp and 2278bp, and 2278-2289bp is deleted, or the nucleotide sequence has at least 80 percent of homology with the BDD FVIII gene, preferably at least 85 percent of homology with the BDD FVIII gene, and further preferably at least 95 percent of homology with the BDD FVIII gene;
preferably, the amino acid sequence encoded by the BDD FVIII gene is inserted between 759aa and 760aa on the basis of the sequence shown in SEQ ID NO.16, and is shown in SEQ ID NO.18, SEQ ID NO.19, SEQ ID NO.21, SEQ ID NO.22, SEQ ID NO.23, SEQ ID NO.24, SEQ ID NO.25, SEQ ID NO.26, SEQ ID NO.27 and SEQ ID NO. 28; or, the amino acid sequence coded by the BDD FVIII gene is based on the sequence shown in SEQ ID NO.16, and the amino acid sequence shown in SEQ ID NO.20 is inserted between 759aa and 760aa, and the amino acid sequence shown in 760-763aa is deleted; or an amino acid sequence having at least 80% homology thereto, preferably at least 85% homology thereto, and further preferably at least 95% homology thereto.
5. The recombinant vector according to claim 1 or 2, wherein the nucleotide sequence of the BDD FVIII gene is represented by SEQ ID No.17, or a nucleotide sequence having at least 80% homology, preferably at least 85% homology, further preferably at least 95% homology thereto,
preferably, the amino acid sequence of the BDD FVIII gene is shown in SEQ ID NO.29 or an amino acid sequence at least 80% homologous, preferably at least 85% homologous, and further preferably at least 95% homologous thereto.
6. The recombinant vector according to claim 1 or 2, wherein the nucleotide sequence of the BDD FVIII gene is the sequence of SEQ ID No.4, bp 1-57, substituted by a nucleotide sequence as shown in SEQ ID No.30 or having at least 80% homology, preferably at least 85% homology, further preferably at least 95% homology thereto;
preferably, the amino acid sequence of the BDD FVIII gene is the sequence shown in SEQ ID No.14, the 1 st to 19aa is replaced by an amino acid sequence shown in SEQ ID No.31 or having at least 80% homology, preferably at least 85% homology, and further preferably at least 95% homology with the amino acid sequence.
7. The recombinant vector according to claim 1 or 2, wherein the sequence of the PF4 promoter after tandem connection with the BDD FVIII gene is shown in SEQ ID No.32 or SEQ ID No.33 or a nucleotide sequence at least 80%, preferably at least 85%, and more preferably at least 95% homologous thereto.
8. The recombinant vector according to any one of claims 1 to 7, wherein the recombinant vector is a lentiviral vector, a retroviral vector, an adenoviral vector, an adeno-associated viral vector, a simian viral vector, a vaccinia viral vector, a Sendai viral vector, an EB viral vector or a herpes simplex viral vector, a sleeping beauty transposon system vector; preferably, the lentiviral vector is a vector in which the PF4 promoter and the BDD FVIII gene are inserted into the vector prrlsin. cppt. PGK-GFP. wpre in place of the PGK promoter and GFP gene.
9. Any one of the following 1) -3) biomaterials:
1) the recombinant vector of claim 1-8 in the expression cassette,
2) a recombinant virus comprising 1) said expression cassette, preferably said recombinant virus is a recombinant lentivirus,
3) the recombinant cell or the recombinant bacterium containing the expression cassette 1), preferably, the recombinant cell is a hematopoietic stem cell or a megakaryocyte.
10. Use of the recombinant vector, the expression cassette, the recombinant virus, the recombinant cell, or the recombinant bacterium according to any one of claims 1 to 9 for expressing a BDD FVIII gene or for the manufacture of a medicament and/or an agent for hemophilia a treatment.
CN202010778534.2A 2019-09-29 2020-08-05 Product for treating hemophilia A and application thereof Active CN112575034B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2019109348075 2019-09-29
CN201910934807 2019-09-29

Publications (2)

Publication Number Publication Date
CN112575034A true CN112575034A (en) 2021-03-30
CN112575034B CN112575034B (en) 2023-04-25

Family

ID=75120210

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010778534.2A Active CN112575034B (en) 2019-09-29 2020-08-05 Product for treating hemophilia A and application thereof

Country Status (1)

Country Link
CN (1) CN112575034B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113336841A (en) * 2021-06-02 2021-09-03 中国医学科学院血液病医院(中国医学科学院血液学研究所) F8 protein variant and gene therapy vector prepared by using same
CN113736824A (en) * 2021-08-19 2021-12-03 中南大学 Recombinant vector and preparation method and application thereof
WO2022228086A1 (en) * 2021-04-26 2022-11-03 Beijing Meikang Geno-Immune Biotechnology Co., Ltd. Myeloid-specific promoter and use thereof
WO2023071905A1 (en) * 2021-10-28 2023-05-04 Beijing Meikang Geno-Immune Biotechnology Co., Ltd. Tissue-specific promoter and use thereof
WO2024007978A1 (en) * 2022-07-07 2024-01-11 深圳新诺微环生物科技有限公司 Linker peptide, fviii protein containing linker peptide or variant thereof, and use thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1297452A (en) * 1998-03-10 2001-05-30 埃默大学 Modified factor VIII
CN101351229A (en) * 2005-10-28 2009-01-21 生物载体株式会社 Therapeutic method for blood coagulation disorder
CN101970481A (en) * 2007-04-20 2011-02-09 Lfb生物科技公司 Demannosylated recombinant factor viii for the treatment of patients with hemophiila a
CN103215308A (en) * 2013-02-01 2013-07-24 中国科学院苏州生物医学院工程技术研究所 Integration plasmid and cell line expressing recombinant human FVIII, and construction method and application thereof
US20150158930A1 (en) * 2012-06-12 2015-06-11 Ucl Business Plc The Network Building Factor viii sequences
US20170096684A1 (en) * 2014-05-21 2017-04-06 Imperial Innovations Limited Lentiviral vectors
CN108602876A (en) * 2015-11-13 2018-09-28 百深公司 The viral vectors of the coding recombination FVIII variants with increased expression of gene therapy for hemophilia A
WO2019067766A1 (en) * 2017-09-27 2019-04-04 Sigilon Therapeutics, Inc. Methods, compositions, and implantable elements comprising active cells

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1297452A (en) * 1998-03-10 2001-05-30 埃默大学 Modified factor VIII
CN101351229A (en) * 2005-10-28 2009-01-21 生物载体株式会社 Therapeutic method for blood coagulation disorder
CN101970481A (en) * 2007-04-20 2011-02-09 Lfb生物科技公司 Demannosylated recombinant factor viii for the treatment of patients with hemophiila a
US20150158930A1 (en) * 2012-06-12 2015-06-11 Ucl Business Plc The Network Building Factor viii sequences
CN103215308A (en) * 2013-02-01 2013-07-24 中国科学院苏州生物医学院工程技术研究所 Integration plasmid and cell line expressing recombinant human FVIII, and construction method and application thereof
US20170096684A1 (en) * 2014-05-21 2017-04-06 Imperial Innovations Limited Lentiviral vectors
CN108602876A (en) * 2015-11-13 2018-09-28 百深公司 The viral vectors of the coding recombination FVIII variants with increased expression of gene therapy for hemophilia A
WO2019067766A1 (en) * 2017-09-27 2019-04-04 Sigilon Therapeutics, Inc. Methods, compositions, and implantable elements comprising active cells

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ANDREA L. DAMON等: "Altered bioavailability of platelet-derived factor VIII during thrombocytosis reverses phenotypic efficacy in haemophilic mice", 《PLATELETS AND BLOOD CELLS》 *
BY ZHENG CUI: "2245 bp of 5 -Flanking Region From the Human Platelet Factor 4 Gene Is Sufficient to Drive Megakaryocyte-Speci®cExpression In Vivo", 《BLOOD》 *
GIANG N. NGUYEN: "Human Factor VIII Variants with Diminished PACE-Furin Cleavage Exhibit Increased Biological Activity and Therapeutic Efficacy", 《BLOOD》 *
KIOUPTSI K: "NCBI Reference Sequence: NM_000132.4", 《GENBANK》 *
QIZHEN SHI: "Platelet-Targeted Gene Therapy for Hemophilia", 《MOLECULAR THERAPY: METHODS & CLINICAL DEVELOPMENT》 *
姜佳楠: "人血小板第4因子基因启动子报告基因载体的构建及转录活性分析", 《军事医学》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022228086A1 (en) * 2021-04-26 2022-11-03 Beijing Meikang Geno-Immune Biotechnology Co., Ltd. Myeloid-specific promoter and use thereof
CN113336841A (en) * 2021-06-02 2021-09-03 中国医学科学院血液病医院(中国医学科学院血液学研究所) F8 protein variant and gene therapy vector prepared by using same
CN113736824A (en) * 2021-08-19 2021-12-03 中南大学 Recombinant vector and preparation method and application thereof
CN113736824B (en) * 2021-08-19 2023-12-26 中南大学 Recombinant vector and preparation method and application thereof
WO2023071905A1 (en) * 2021-10-28 2023-05-04 Beijing Meikang Geno-Immune Biotechnology Co., Ltd. Tissue-specific promoter and use thereof
WO2024007978A1 (en) * 2022-07-07 2024-01-11 深圳新诺微环生物科技有限公司 Linker peptide, fviii protein containing linker peptide or variant thereof, and use thereof

Also Published As

Publication number Publication date
CN112575034B (en) 2023-04-25

Similar Documents

Publication Publication Date Title
CN112575034B (en) Product for treating hemophilia A and application thereof
US11083801B2 (en) Factor VIII mutation repair and tolerance induction
US9273325B2 (en) Serum-free stable transfection and production of recombinant human proteins in human cell lines
EP3155098A1 (en) FACTOR VIII MUTATION REPAIR AND TOLERANCE INDUCTION AND RELATED CDNAs, COMPOSITIONS, METHODS AND SYSTEMS
JP2021078526A (en) Factor ix fusion proteins and methods of making and using the same
KR20200118089A (en) Use of lentiviral vectors expressing factor VIII
AU2008205445A1 (en) Method for producing gamma-carboxlated proteins
CN109072214A (en) The factor VIII gene of optimization
CN113248594B (en) Recombinant blood coagulation factor VIII and application thereof
EP3250226A1 (en) Factor viii proteins having ancestral sequences, expression vectors, and uses related thereto
US20160045575A1 (en) FACTOR VIII MUTATION REPAIR AND TOLERANCE INDUCTION AND RELATED cDNAs, COMPOSITIONS, METHODS AND SYSTEMS
CN114929735A (en) Factor VIII constructs
EP3013855B1 (en) Mutant factor viii compositions and methods
WO2017112895A1 (en) F8 gene repair
CN113025659B (en) Gene editing system for treating hemophilia A and application thereof
JP2020519272A (en) Coagulation factor variants and uses thereof
TW202045534A (en) Gene therapy of hemophilia b using viral vectors encoding recombinant fix variants with increased expression
CA2462966A1 (en) Factor viii c2 domain variants
WO2023071905A1 (en) Tissue-specific promoter and use thereof
JP7457302B2 (en) How to treat rheumatoid arthritis using RNA-guided genome editing of HLA genes
CN108977464A (en) For improving the composition, drug and sgRNA of the blood coagulation activity of haemophilia B patient
CN113336841B (en) F8 protein variant and gene therapy vector prepared by using same
RU2808564C2 (en) Codon-optimized nucleic acid that encodes b-domain-deleted factor viii protein and its use
RU2818229C2 (en) Recovered nucleic acid which codes fviii-bdd-based fusion protein and heterologous signal peptide, and use thereof
CN112041437A (en) Adeno-associated virus compositions for restoring F8 gene function and methods of use thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant