CN112560574A - 河流黑水排放检测方法及应用其的识别系统 - Google Patents

河流黑水排放检测方法及应用其的识别系统 Download PDF

Info

Publication number
CN112560574A
CN112560574A CN202011187933.8A CN202011187933A CN112560574A CN 112560574 A CN112560574 A CN 112560574A CN 202011187933 A CN202011187933 A CN 202011187933A CN 112560574 A CN112560574 A CN 112560574A
Authority
CN
China
Prior art keywords
image
black water
water discharge
detection method
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011187933.8A
Other languages
English (en)
Inventor
朱斌
龙力辉
张浩彬
薛丽丹
霍健淳
黄健辉
汤达宏
陈文辉
黎柏允
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Create Environ & Tech Co ltd
Original Assignee
Guangdong Create Environ & Tech Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Create Environ & Tech Co ltd filed Critical Guangdong Create Environ & Tech Co ltd
Priority to CN202011187933.8A priority Critical patent/CN112560574A/zh
Publication of CN112560574A publication Critical patent/CN112560574A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/52Surveillance or monitoring of activities, e.g. for recognising suspicious objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • G06F18/232Non-hierarchical techniques
    • G06F18/2321Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
    • G06F18/23213Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Multimedia (AREA)
  • Image Analysis (AREA)

Abstract

本发明提供的一种河流黑水排放检测方法,其包括以下步骤:S1、获取有检测图像;S2、对所述检测图像进行图像预处理,获取有标准图像;所述图像预处理过程包括去反光处理步骤;S3、对所得标准图像进行图像识别处理,以获取有识别结果;S4、当所得识别结果确认为存在黑水排放状态时,发送有告警信息。基于应用有该河流黑水排放检测方法的应用,使得有识别系统能有效地排除水体反光的影响,以进行黑水排放的准确检测,确保在黑水排放初期即可作出识别反应,以避免黑水的非法排放情况。

Description

河流黑水排放检测方法及应用其的识别系统
技术领域
本发明涉及污水监控技术领域,具体而言,涉及一种河流黑水排放检测方法及应用其的 识别系统。
背景技术
目前国内监管部门对黑色污水偷排漏排的企业的排污监管方式还是停留在依靠人工现场 排查、人工远程查看排污口摄像头或有群众投诉时再对企业进行督查。对企业黑色污水的排 放监管只能依靠每月或每季度的抽样检测数据为参考。现有的图像识别技术对光照条件良好, 待识别目标物较清晰的图像,可以做到较高的准确率。但是在实际场景中,我们经常会遇到 各种因素干扰,例如阴天光照影响大、拍摄的图像不像标准数据集没有经过筛选,图像质量 很不统一,因此不能有效地直接以图像视频作出简单的黑水排放结论。
发明内容
本发明的目的在于,为克服现有技术的不足而提供有一种河流黑水排放检测方法,以及 应用该河流黑水排放检测方法的河流黑水排放识别的识别系统。
河流黑水排放检测方法,其包括以下步骤:
S1、获取有检测图像;
S2、对所述检测图像进行图像预处理,获取有标准图像;所述图像预处理过程包括去反 光处理步骤;
S3、对所得标准图像进行图像识别处理,以获取有识别结果;
S4、当所得识别结果确认为存在黑水排放状态时,发送有告警信息。
进一步地,于步骤S2,所述去反光处理步骤包括:
S2-1、光照区域颜色特征分析,得到有光照区域颜色特征;
S2-2、通过K-Means聚类算法进行聚类,得到有K个聚类中心;
S2-3、根据所得光照区域颜色特征,将K个聚类中心中rgb像素值最高的类别判断为反 光区域,并使用反光区域附近的像素进行填补替换。
进一步地,于步骤S2,所述图像预处理过程还包括图像去噪处理步骤,所述图像去噪处 理步骤应用有Non-LocalMeans降噪算法进行去噪。
进一步地,于步骤S3,所述图像识别处理过程包括颜色特征区别识别步骤。
进一步地,所述颜色特征区别识别步骤包括以下步骤:
S3-1、获取有历史颜色特征区别数据,并以此设定有水源基准颜色范围特征及排放黑水 基准颜色范围特征;
S3-2、根据所得标准图像进行相应的颜色范围参照认定,以历史颜色特征区别数据为依 据,当所述标准图像中的颜色特征与所述水源基准颜色范围特征及黑水基准颜色范围特征吻 合时,该识别结果判断为存在黑水排放状态。
进一步地,所述图像识别处理过程,包括以上述颜色特征区别识别步骤为基准,选取有 训练集图片;以该训练集图片进行有基于SqueezeNet架构的图像识别模型训练,并以训练所 得的图像识别模型进行有识别处理。所述训练集图片中包括有黑水排放状态认定图片及非黑 水排放状态认定图片两类。
进一步地,于步骤S3,所述图像识别处理过程,其包括采用投票队列对检测结果进行投 票处理。
本发明的河流黑水排放检测方法的识别系统,其包括应用有如上述所述的河流黑水排放 检测方法进行河流黑水排放的检测识别。
本发明的有益效果在于:
基于应用有该河流黑水排放检测方法的应用,使得有识别系统能有效地排除水体反光的 影响,以进行黑水排放的准确检测,确保在黑水排放初期即可作出识别反应,以避免黑水的 非法排放情况。
附图说明
图1为本发明的河流黑水排放检测方法应用流程示意图;
图2为本发明的河流黑水排放检测方法中的Rgb像素映射规则示意图;
图3为本发明的河流黑水排放检测方法中的反光区域量化前图像示意图;
图4为本发明的河流黑水排放检测方法中的反光区域量化后图像示意图;
图5为本发明的河流黑水排放检测方法中的去反光前图像示意图;
图6为本发明的河流黑水排放检测方法中的去反光后图像示意图;
图7为本发明的河流黑水排放检测方法中的图像预处理前图像示意图;
图8为本发明的河流黑水排放检测方法中的图像预处理后图像示意图;
图9为本发明的河流黑水排放检测方法中的File模块的核心架构示意图;
图10为本发明的河流黑水排放检测方法中的模型量化示意图。
具体实施方式
为了使本发明的技术方案、目的及其优点更清楚明白,以下结合附图及实施例,对本发 明进行进一步的解释说明。
本发明的一种用于河流黑水排放识别的识别系统,其包括针对各河流流道废水排放口位 置设置的多个摄像头,各摄像头通讯链接呈局域网设置有采用边缘检测的树莓派设备;树莓 派使用RTSP协议从摄像头实时地获取有其对应废水排放口位置区域的水面环境情况视像数 据,并以此截取有即时的单张检测图像。
基于截取的检测图像不确定性情况,我们需对其进行有图像预处理,则所获取的检测图 像将发送至后台的图像预处理模块进行预处理。具体而言,该图像预处理过程包括以此设置 有图像去噪处理步骤、去反光处理步骤及调整图像尺寸操作步骤。
所述图像去噪处理的过程如下:由于获取的检测图像是户外采集,在光源不恒定的情况 下会有比较多随机噪声干扰,图像不同位置的噪声干扰值不一致,经过试验分析采用 Non-LocalMeans降噪算法,利用整幅图像进行去噪,以图像块为单位在图像中寻找相似区域, 再对这些区域进行求平均,能够比较好的去除图像中存在的高斯噪声。其中NLM的降噪公 式定义如下:
给定一个离散的噪声图像v={v(i),i∈I},对于一个像素i的估计值NL[v](i),可以表示为图 像中所有像素的加权平均值:
Figure BDA0002751862790000031
其中w表示权重,衡量相似度的方法有很多,最常用的是根据两个像素亮度差值的平方 来估计。由于有噪声,单独的一个像素并不可靠,所以使用它们的邻域,只有邻域相似度高 才能说这两个像素的相似度高。衡量两个图像块的相似度最常用的方法是计算他们之间的欧 氏距离:
Figure BDA0002751862790000032
Figure BDA0002751862790000033
该去反光处理的过程如下:
实际场景下的水面由于在室外所以有很强的太阳光照干扰,经过分析光照区域的颜色特 征,采用颜色量化后然后使用无监督聚类算法,找出图像中反光区域,然后对反光区域进行 替换,具体说明如下:
(1)结合实际场景,河面中的光照区域的颜色亮度要明显高于非光照区域,即光照区域 的rgb各参数值要高于非光照区域的rgb值,以此颜色特征作为判断反光区域的依据。
(2)为了节省存储空间,先对图像进行颜色量化,在该过程中,将尽可能保留图像的颜 色外观的同时,减少颜色的数量。
将rgb像素值按照如图2的规则进行像素表示。
则反光区域量化前后图像如图3及图4所示。
(3)进行图像量化后,利用K-Means聚类算法,将图像像素分成K个类别,k-means聚类算法实现步骤如下:
3.1随机选取K个点作为聚类中心;
3.2计算每个点分别到K个聚类中心的聚类,然后将该点分到最近的聚类中心,形成K 个簇;
3.3重新计算每个簇的质心;
3.4重复3.2-3.4步,直到质心的位置不再发生变化或者达到设定的迭代次数。
(4)通过K-Means聚类后,将得到K个聚类中心,根据之前分析的光照区域颜色特征, 将K个聚类中心中rgb像素值最高的类别判断为反光区域,并使用反光区域附近的像素进行 填补替换。
则通过该去反光处理的前后图像如图5及图6所示。
调整图像尺寸操作步骤情况如下:使用按长宽比例缩放图像而不是使用拉伸缩放图像, 减小图像大小变化带来的失真。
则相应的检测图像通过该图像预处理过程后,可得到有相应的标准图像,以用于进行后 续图像识别处理过程;该图像预处理过程前后的反光区域处理图样如图7及图8所示。
所述图像识别处理过程如下:
基于所获取的标准图像,若存在黑水排放的情况,则该标准图像中将具有水源与排放黑 水之间的颜色特征区别。而基于所收集的大量黑水排放历史样本作为相应的历史颜色特征区 别数据以作参考,明确并设定有参考情况下的水源基准颜色范围特征及排放黑水基准颜色范 围特征。则在该图像识别处理过程中,是在于对标准图像中的颜色特征进行图像识别处理, 若根据所得标准图像进行相应的颜色范围参照认定,以历史颜色特征区别数据为依据,当所 述标准图像中的颜色特征与所述水源基准颜色范围特征及黑水基准颜色范围特征吻合时,该 识别结果判断为存在黑水排放状态;反之,则判断为非黑水排放状态,继续下一周期的检测 图像获取及图像预处理步骤,以作再次的图像识别处理准备;其大概流程如图1所示。
作为一优选的实施方式,本发明的图像识别处理过程可基于上述判断逻辑,选取有包括 黑水排放状态认定图片及非黑水排放状态认定图片两类作为训练集图片;以该训练集图片训 练应用有图像识别模型以进行图像识别判断。本实施例中,可选择一种基于SqueezeNet架构 的图像识别模型进行应用,其针对河道水面这一特殊环境,经训练过程以作模型结构的调整, 使得模型能有效地作出准确的判断识别处理。
此外,本系统设定有检测图像时间间隔,如15s;则每隔检测图像时间间隔时,将获取摄 像头图像数据并进行图像处理后检测,将检测结果存入防误差干扰检测队列。每当防误差检 测队列满队后,在队列中采取多数投票获取该时间段检测结果。例如:该防误差干扰检测队 列里存入有5个检测结果,其中两个识别判断结果为非黑水排放状态,其中三个识别判断结 果为黑水排放状态,则以少数服从多数原则,去综合地认定该次状态为黑水排放状态。基于 该投票判定的应用,能有效地提高识别准确率,避免误告警的情况。
对于上述的SqueezeNet架构应用,它是由若干个Fire模块结合卷积网络中卷积层,降采 样层,全连接等层组成的。一个Fire模块由Squeeze部分和Expand部分组,Squeeze部分是 一组连续的1*1卷积进行降维,Expand部分则是由一组连续的1*1卷积和一组连续的3*3卷 积组合升维,File模块的核心架构如图9所示。
由于采用树莓派进行部署在节省了大量带宽的同时对树莓派的计算速度会有比较高要 求,所以在训练后的模型上使用模型量化进行加速,量化方式使用混合FLOAT16和INT8精 度进行量化,采用量化是因为模型属于同一层的参数值会分布在一个较小的区间内,比如[-20, 50]之间,我们可以记下这个最小值和最大值,采用8位或16位数量化的情况下,例如INT8 量化把同一层的参数都做线性映射,从区间[-20,50]到区间[0,255],例如-20映射到0,50映射 到255,那么原始区间中10.0就变为取整(10-(-20))*255/(50-(-20))得109,FLOAT16量 化与INT8量化采用方法一样,FLOAT16将32位浮点数映射到16位浮点数,以减少量化的 模型准确率损失,我们采用混合量化的方式,对浮点部分小数位数大于3的部分用FLOAT16 量化。量化在模型中逐层进行的,其中单层整数量化流程图如图10所示。
映射量化后整数计算的时间远小于浮点数,模型量化后速度提高了2倍,在树莓派下运 行该模型可以达到3FPS的检测速度,该应用可有效地满足当前场景下黑水检测的速度需求。
当所得识别结果确认为黑水排放状态时,该图像识别模型将发送有告警信息至服务器终 端;并同时上传相应的检测图像与其截图前后30秒的视频视像,以用于终端工作人员进行远 程的复核确认,为管理者、现场执法人员提供有力辅助工具。通过复核确认的过程,以有效 地确认是真实黑水排放还是误报,实现了检测和复核的实时在线监管。更加方便管理部门的 远程管理、远程复核,提高了监测效率。
以上所述仅为本发明的优选实施方式,对于本技术领域的技术人员,在不脱离本发明的 实施原理前提下,依然可以对所述实施例进行修改,而相应修改方案也应视为本发明的保护 范围。

Claims (8)

1.河流黑水排放检测方法,其特征在于,包括以下步骤:
S1、获取有检测图像;
S2、对所述检测图像进行图像预处理,获取有标准图像;所述图像预处理过程包括去反光处理步骤;
S3、对所得标准图像进行图像识别处理,以获取有识别结果;
S4、当所得识别结果确认为存在黑水排放状态时,发送有告警信息。
2.如权利要求1所述的河流黑水排放检测方法,其特征在于,于步骤S2,所述去反光处理步骤包括:
S2-1、光照区域颜色特征分析,得到有光照区域颜色特征;
S2-2、通过K-Means聚类算法进行聚类,得到有K个聚类中心;
S2-3、根据所得光照区域颜色特征,将K个聚类中心中rgb像素值最高的类别判断为反光区域,并使用反光区域附近的像素进行填补替换。
3.如权利要求1所述的河流黑水排放检测方法,其特征在于,于步骤S2,所述图像预处理过程还包括图像去噪处理步骤,所述图像去噪处理步骤应用有Non-Local Means降噪算法进行去噪。
4.如权利要求1所述的河流黑水排放检测方法,其特征在于,于步骤S3,所述图像识别处理过程包括颜色特征区别识别步骤。
5.如权利要求4所述的河流黑水排放检测方法,其特征在于,所述颜色特征区别识别步骤包括以下步骤:
S3-1、获取有历史颜色特征区别数据,并以此设定有水源基准颜色范围特征及排放黑水基准颜色范围特征;
S3-2、根据所得标准图像进行相应的颜色范围参照认定,以历史颜色特征区别数据为依据,当所述标准图像中的颜色特征与所述水源基准颜色范围特征及黑水基准颜色范围特征吻合时,该识别结果判断为存在黑水排放状态。
6.如权利要求4或5所述的河流黑水排放检测方法,其特征在于,所述图像识别处理过程,包括以该颜色特征区别识别步骤为基准进行有训练集图片的选取;并以该训练集图片进行有基于SqueezeNet架构的图像识别模型训练,将训练所得的图像识别模型进行有识别处理。
7.如权利要求6所述的河流黑水排放检测方法,其特征在于,于步骤S3,所述图像识别处理过程,其包括采用投票队列对检测结果进行投票处理。
8.用于河流黑水排放识别的识别系统,其特征在于,应用有如权利要求1至7任一所述的河流黑水排放检测方法进行河流黑水排放的检测识别。
CN202011187933.8A 2020-10-30 2020-10-30 河流黑水排放检测方法及应用其的识别系统 Pending CN112560574A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011187933.8A CN112560574A (zh) 2020-10-30 2020-10-30 河流黑水排放检测方法及应用其的识别系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011187933.8A CN112560574A (zh) 2020-10-30 2020-10-30 河流黑水排放检测方法及应用其的识别系统

Publications (1)

Publication Number Publication Date
CN112560574A true CN112560574A (zh) 2021-03-26

Family

ID=75042643

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011187933.8A Pending CN112560574A (zh) 2020-10-30 2020-10-30 河流黑水排放检测方法及应用其的识别系统

Country Status (1)

Country Link
CN (1) CN112560574A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113361914A (zh) * 2021-06-04 2021-09-07 南京大学 一种危险废物运输风险管控预警的方法与系统
CN113920471A (zh) * 2021-10-13 2022-01-11 平安国际智慧城市科技股份有限公司 生产废物的远程监控方法、装置、计算机设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105675623A (zh) * 2016-01-29 2016-06-15 重庆扬讯软件技术有限公司 一种基于污水口视频的污水颜色与流量检测的实时分析方法
CN106650794A (zh) * 2016-11-24 2017-05-10 北京理工大学 一种受物体表面高光反射影响的图像高光消除方法及系统
US20180260974A1 (en) * 2017-03-09 2018-09-13 Hewlett Packard Enterprise Development Lp Color recognition through learned color clusters
CN110866900A (zh) * 2019-11-05 2020-03-06 江河瑞通(北京)技术有限公司 水体颜色识别方法及装置
CN111339907A (zh) * 2020-02-24 2020-06-26 江河瑞通(北京)技术有限公司 一种基于图像识别技术的排污识别方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105675623A (zh) * 2016-01-29 2016-06-15 重庆扬讯软件技术有限公司 一种基于污水口视频的污水颜色与流量检测的实时分析方法
CN106650794A (zh) * 2016-11-24 2017-05-10 北京理工大学 一种受物体表面高光反射影响的图像高光消除方法及系统
US20180260974A1 (en) * 2017-03-09 2018-09-13 Hewlett Packard Enterprise Development Lp Color recognition through learned color clusters
CN110866900A (zh) * 2019-11-05 2020-03-06 江河瑞通(北京)技术有限公司 水体颜色识别方法及装置
CN111339907A (zh) * 2020-02-24 2020-06-26 江河瑞通(北京)技术有限公司 一种基于图像识别技术的排污识别方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈喜胜 等: ""最大类间方差法在污水排放图像处理中的应用研究"", 《现代计算机(专业版)》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113361914A (zh) * 2021-06-04 2021-09-07 南京大学 一种危险废物运输风险管控预警的方法与系统
CN113920471A (zh) * 2021-10-13 2022-01-11 平安国际智慧城市科技股份有限公司 生产废物的远程监控方法、装置、计算机设备及存储介质

Similar Documents

Publication Publication Date Title
CN113139521B (zh) 一种用于电力监控的行人越界标监测方法
WO2022099598A1 (zh) 一种基于图像像素相对统计特征的视频动态目标检测的方法
CN111368771A (zh) 一种基于图像处理的隧道火灾预警方法、装置、计算机设备以及计算机可读存储介质
CN113887412B (zh) 污染排放的检测方法、检测终端、监控系统及存储介质
US9418426B1 (en) Model-less background estimation for foreground detection in video sequences
CN112149543B (zh) 一种基于计算机视觉的建筑扬尘识别系统与方法
CN113537099A (zh) 一种公路隧道火灾烟雾动态检测方法
CN113903081A (zh) 一种水电厂图像视觉识别人工智能报警方法及装置
CN111723773B (zh) 遗留物检测方法、装置、电子设备及可读存储介质
CN112560574A (zh) 河流黑水排放检测方法及应用其的识别系统
CN110880184B (zh) 一种基于光流场进行摄像头自动巡检的方法及装置
CN108921857A (zh) 一种面向监视场景的视频图像焦点区域分割方法
Nejati et al. License plate recognition based on edge histogram analysis and classifier ensemble
CN111460964A (zh) 一种广电传输机房低照度条件下运动目标检测方法
CN111461076A (zh) 帧差法与神经网络结合的烟雾检测方法和检测系统
CN111709305A (zh) 一种基于局部图像块的人脸年龄识别方法
CN113936252A (zh) 基于视频监控的电瓶车智能管理系统及方法
CN110569764A (zh) 一种基于卷积神经网络的手机型号识别方法
CN117593499A (zh) 一种基于分布式巡检策略的水电站机电设备故障识别方法
Ye et al. Moving object detection with background subtraction and shadow removal
CN114677667A (zh) 一种基于深度学习的变电站电气设备红外故障识别方法
CN113947563A (zh) 一种基于深度学习的电缆工艺质量动态缺陷检测方法
CN116958707B (zh) 一种基于球机监控设备的图像分类方法、装置及相关介质
Jadav et al. Shadow Extraction and Elimination of Moving Vehicles for Tracking Vehicles
CN116883661B (zh) 一种基于目标识别与图像处理的动火作业检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210326

RJ01 Rejection of invention patent application after publication