CN112554982A - 一种超临界二氧化碳热电联产系统及运行方法 - Google Patents

一种超临界二氧化碳热电联产系统及运行方法 Download PDF

Info

Publication number
CN112554982A
CN112554982A CN202011337781.5A CN202011337781A CN112554982A CN 112554982 A CN112554982 A CN 112554982A CN 202011337781 A CN202011337781 A CN 202011337781A CN 112554982 A CN112554982 A CN 112554982A
Authority
CN
China
Prior art keywords
heat regenerator
carbon dioxide
heat
working medium
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011337781.5A
Other languages
English (en)
Other versions
CN112554982B (zh
Inventor
刘明
杨凯旋
孙瑞强
刘继平
邢秦安
严俊杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202011337781.5A priority Critical patent/CN112554982B/zh
Publication of CN112554982A publication Critical patent/CN112554982A/zh
Application granted granted Critical
Publication of CN112554982B publication Critical patent/CN112554982B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • F01K25/103Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/02Using steam or condensate extracted or exhausted from steam engine plant for heating purposes, e.g. industrial, domestic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/06Returning energy of steam, in exchanged form, to process, e.g. use of exhaust steam for drying solid fuel or plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/32Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines using steam of critical or overcritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/345Control or safety-means particular thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/38Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating the engines being of turbine type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

本发明公开了一种超临界二氧化碳热电联产系统及运行方法,采用超临界二氧化碳循环为热电联产动力循环,耦合抽气供热系统,同时为用户提供热、电两种能源;通过热端‑回热‑供热过程的耦合优化,本发明可大幅度提高超临界二氧化碳动力系统的能量利用率。本发明系统针对抽气进行合理能级匹配,将供热抽气与回热系统进行耦合,减小系统中的换热不可逆损失,可以通过调整回热系统二氧化碳分流比例,满足不同的供热负荷需求,提高机组的运行灵活性;也可以使系统在满足供热温度的同时,提高进入锅炉的工质温度,降低热端换热温差,减少不可逆损失,提高机组发电效率。

Description

一种超临界二氧化碳热电联产系统及运行方法
技术领域
本发明属于热电联产领域,具体涉及一种超临界二氧化碳热电联产系统及运行方法。
背景技术
我国经济的稳定增长离不开强大能源系统的支撑。我国化石能源结构不平衡,煤炭是我国一次能源消费的主体,短时间内燃煤发电仍是我国主要发电方式。火电机组作为我国煤炭的消费大户,每年的煤炭消费量约占全国煤炭消费总量的50%。
我国火电技术进步从提高初参数、蒸汽再热等方式向全工况运行、余热深度利用等方向转变。同时,北方地区开展集中供热,减少小型供热锅炉污染物的排放,改善冬季北方雾霾多发的环境问题。因此,火电机组进行热电联产对我国节能减排工作具有重要意义。
超临界二氧化碳动力循环具有能量密度大、系统结构紧凑、循环效率高、可基于现有的材料实现、系统部件尺寸较小、结构紧凑,等诸多优点。因此,超临界二氧化碳动力循环有望取代蒸汽动力循环。
目前我国北方地区热电联产机组多采用高背压供热或者汽轮机抽气供热,但是超临界二氧化碳系统中,透平乏汽压力多在10MPa以下,此时工质温度大于60℃时,放热缓慢,低于60℃时,放热曲线难以匹配,容易产生较大的不可逆损失,供热所需余热多在50℃-140℃,此温度区间乏汽利用难度大,所以超临界二氧化碳燃煤发电系统供热区别与传统的高背压供热机组,合理匹配能级,满足供热温度、负荷要求是超临界二氧化碳动力循环所需要解决的问题。
发明内容
为了克服上述现有技术存在的问题,本发明的目的在于提供一种超临界二氧化碳热电联产系统及运行方法,该系统采用超临界二氧化碳循环为热电联产动力循环,同时为用户提供热、电两种能源。通过热端-回热-供热过程的耦合优化,本发明可大幅度提高超临界二氧化碳动力系统的能量利用率。
为了达到上述目的,本发明采用如下技术方案:
一种超临界二氧化碳热电联产系统,包括锅炉1,锅炉1工质出口与透平2工质入口相连,透平2排气口与1号回热器31、2号回热器32、3号回热器33和4号回热器34热侧依次相连,4号回热器34出口与1号预冷器71工质入口相连,1号预冷器71工质出口与主压缩机4入口相连,主压缩机4出口依次与4号回热器34、3号回热器33、2号回热器32和1号回热器31冷侧依次相连,1号回热器31冷侧出口与锅炉1入口相连;
透平2工质抽气口与5号回热器35、热网加热器8、2号预冷器72工质热侧依次相连,预冷器72工质热侧出口与供热压缩机6入口相连,供热压缩机6出口连接在3号回热器33冷侧入口、4号回热器34冷侧出口间,3号回热器33冷侧出口与5号回热器35冷侧入口相连,5号回热器35冷侧出口与锅炉1入口相连;
热网加热器8冷却水进出口与热网相连,1号预冷器71、2号预冷器72冷却水进出口与冷却水系统相连。
4号回热器34出口还与再压缩机5工质入口相连,再压缩机5工质出口与1号回热器31冷侧入口相连。
透平2排气口压力为7.7MPa-8.5MPa。
透平2抽气口压力为10MPa-15.0MPa。
1号预冷器71、2号预冷器72预冷器工质出口温度为33℃-38℃。
供热压缩机6出口温度与4号回热器34出口温度偏差小于5℃。
2号预冷器72工质热侧入口温度为45℃-75℃。
所述的一种超临界二氧化碳热电联产系统的运行方法,超临界二氧化碳在主压缩机4中升压后,依次在4号回热器34、3号回热器33、2号回热器32、1号回热器31、锅炉1吸热后成为高温高压二氧化碳,然后高温高压二氧化碳进入透平2做功,透平2排气又依次在1号回热器31、2号回热器32、3号回热器33、4号回热器34放热后分成两股,一股经再压缩机5升压后汇入1号回热器31入口,另一股在预冷器7中冷却后进入主压缩机1,完成闭合循环;
高温高压二氧化碳进入透平2做功后,部分从透平2抽气口抽出,依次在5号回热器35、热网回热器8、2号预冷器72放热后,经供热压缩机6升压后汇入3号回热器33冷工质入口;
3号回热器33冷侧出口分流部分工质经5号回热器35加热后汇入1号回热器31冷侧工质出口,通过调整此部分抽气比例,调整进入热网加热器8的超临界二氧化碳工质温度,满足不同供热负荷需求,提高机组运行灵活性。
和现有技术相比较,本发明具有如下优点:
(1)本发明采用超临界二氧化碳循环为热电联产动力循环,耦合抽气供热系统,同时为用户提供热、电两种能源,通过热端-回热-供热过程的耦合优化,可大幅度提高超临界二氧化碳动力系统的能量利用率;
(2)本发明采用多级回热分流再压缩超临界二氧化碳动力循环,系统循环效率较高;
(3)本发明可以以通过调整回热系统二氧化碳分流比例,满足不同的供热负荷需求,提高机组的运行灵活性;
(4)本发明可以使系统在满足供热温度的同时,提高进入锅炉的工质温度,降低热端换热温差,减少不可逆损失,提高机组发电效率。
附图说明
图1为二氧化碳不同压力下焓值随温度变化曲线图。
图2为本发明超临界二氧化碳热电联产系统示意图。
图3为换热过程工质温度-焓值变化趋势曲线图。
图中:1为锅炉、2为透平、31为1号回热器、32为2号回热器、33为3号回热器、34为4号回热器、35为5号回热器、4为主压缩机、5为再压缩机、6为供热压缩机、71为1号预冷器、72为2号预冷器、8为热网加热器。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细说明。
工作原理
二氧化碳工质在不同压力下焓值与温度变化曲线如图1所示,超临界二氧化碳系统中,透平乏汽压力多在10MPa以下,此时工质温度大于60℃时,放热缓慢,低于60℃时,放热曲线难以匹配,容易产生较大的不可逆损失,供热所需余热多在50℃-140℃,此温度区间乏汽利用难度大,所以超临界二氧化碳燃煤发电系统供热区别与传统的高背压供热机组。在二氧化碳压力较高时,放热曲线线性较好,容易匹配,所以通过透平抽气获得较高压力工质供热是相对比较合理且系统简单的方式。超临界二氧化碳系统透平抽气温度较高,所以抽气供热需要解决抽气热量的梯级利用问题。
如图2所示,本发明一种超临界二氧化碳热电联产系统,包括锅炉1,锅炉1工质出口与透平2工质入口相连,透平2排气口与1号回热器31、2号回热器32、3号回热器33和4号回热器34热侧依次相连,4号回热器34出口与1号预冷器71工质入口相连,1号预冷器71工质出口与主压缩机4入口相连,主压缩机4出口依次与4号回热器34、3号回热器33、2号回热器32和1号回热器31冷侧依次相连,1号回热器31冷侧出口与锅炉1入口相连;透平2工质抽气口与5号回热器35、热网加热器8、2号预冷器72工质热侧依次相连,预冷器72工质热侧出口与供热压缩机6入口相连,供热压缩机6出口连接在3号回热器33冷侧入口、4号回热器34冷侧出口间,3号回热器33冷侧出口与5号回热器35冷侧入口相连,5号回热器35冷侧出口与锅炉1入口相连;热网加热器8冷却水进出口与热网相连,1号预冷器71、2号预冷器72冷却水进出口与冷却水系统相连。
作为本发明的优选实施方式,4号回热器34出口还与再压缩机5工质入口相连,再压缩机5工质出口与1号回热器31冷侧入口相连,采用分流再压缩的方式,系统循环效率更高。
作为本发明的优选实施方式,透平2排气口压力为7.7MPa-8.5MPa,这样可以维持透平2有较高的输出功率,又可以保证二氧化碳工质在整个循环中保持超临界状态。
作为本发明的优选实施方式,透平2抽气口压力为10MPa-15.0MPa,这样可以满足热网加热器8所需压力。
作为本发明的优选实施方式,1号预冷器71、2号预冷器72预冷器工质出口温度为33℃-38℃,这样循环的平均放热温度较低,保证系统较高的循环效率。
作为本发明的优选实施方式,供热压缩机6出口温度与4号回热器34出口温度偏差小于5℃,这样可以减少两股工质汇集产生的不可逆损失。
2号预冷器72工质热侧入口温度为45℃-75℃,这样可以保证热网加热器8冷端有合理的换热端差。
本发明所述的一种超临界二氧化碳热电联产系统的运行方法,超临界二氧化碳在主压缩机4中升压后,依次在4号回热器34、3号回热器33、2号回热器32、1号回热器31、锅炉1吸热后成为高温高压二氧化碳,然后高温高压二氧化碳进入透平2做功,透平2排气又依次在1号回热器31、2号回热器32、3号回热器33、4号回热器34放热后分成两股,一股经再压缩机5升压后汇入1号回热器31入口,另一股在预冷器7中冷却后进入主压缩机1,完成闭合循环;
高温高压二氧化碳进入透平2做功后,部分从透平2抽气口抽出,依次在5号回热器35、热网回热器8、2号预冷器72放热后,经供热压缩机6升压后汇入3号回热器33冷工质入口;
3号回热器33冷侧出口分流部分工质经5号回热器35加热后汇入1号回热器31冷侧工质出口,通过调整此部分抽气比例,调整进入热网加热器8的超临界二氧化碳工质温度,满足不同供热负荷需求,提高机组运行灵活性。
本发明公开了一种超临界二氧化碳热电联产系统及运行方法,采用超临界二氧化碳循环为热电联产动力循环,耦合抽气供热系统,同时为用户提供热、电两种能源。通过热端-回热-供热过程的耦合优化,本发明可大幅度提高超临界二氧化碳动力系统的能量利用率。由于超临界二氧化碳在压力较低时放热过程温度变化,在低温段难以进行合理的温度匹配,所以超临界二氧化碳燃煤发电系统供热与传统的高背压供热机组区别明显,通过透平抽气获得较高压力工质供热是相对比较合理且系统简单的方式。换热器换热过程工质温度-焓值变化趋势曲线如图3所示,本系统针对抽气进行合理能级匹配,将供热抽气与回热系统进行耦合,减小系统中的换热不可逆损失,可以通过调整回热系统二氧化碳分流比例,满足不同的供热负荷需求,提高机组的运行灵活性;也可以使系统在满足供热温度的同时,提高进入锅炉的工质温度,降低热端换热温差,减少不可逆损失,提高机组发电效率。

Claims (8)

1.一种超临界二氧化碳热电联产系统,其特征在于:包括锅炉(1),锅炉(1)工质出口与透平(2)工质入口相连,透平(2)排气口与1号回热器(31)、2号回热器(32)、3号回热器(33)和4号回热器(34)热侧依次相连,4号回热器(34)出口与1号预冷器(71)工质入口相连,1号预冷器(71)工质出口与主压缩机(4)入口相连,主压缩机(4)出口依次与4号回热器(34)、3号回热器(33)、2号回热器(32)和1号回热器(31)冷侧依次相连,1号回热器(31)冷侧出口与锅炉(1)入口相连;
透平(2)工质抽气口与5号回热器(35)、热网加热器(8)、2号预冷器(72)工质热侧依次相连,预冷器(72)工质热侧出口与供热压缩机(6)入口相连,供热压缩机(6)出口连接在3号回热器(33)冷侧入口、4号回热器(34)冷侧出口间,3号回热器(33)冷侧出口与5号回热器(35)冷侧入口相连,5号回热器(35)冷侧出口与锅炉(1)入口相连;
热网加热器(8)冷却水进出口与热网相连,1号预冷器(71)、2号预冷器(72)冷却水进出口与冷却水系统相连。
2.根据权利要求1所述的一种超临界二氧化碳热电联产系统,其特征在于:4号回热器(34)出口还与再压缩机(5)工质入口相连,再压缩机(5)工质出口与1号回热器(31)冷侧入口相连。
3.根据权利要求1所述的一种超临界二氧化碳热电联产系统,其特征在于:透平(2)排气口压力为7.7MPa-8.5MPa。
4.根据权利要求1所述的一种超临界二氧化碳热电联产系统,其特征在于:透平(2)抽气口压力为10MPa-15.0MPa。
5.根据权利要求1所述的一种超临界二氧化碳热电联产系统,其特征在于:1号预冷器(71)、2号预冷器(72)预冷器工质出口温度为33℃-38℃。
6.根据权利要求1所述的一种超临界二氧化碳热电联产系统,其特征在于:供热压缩机(6)出口温度与4号回热器(34)出口温度偏差小于5℃。
7.根据权利要求1所述的一种超临界二氧化碳热电联产系统,其特征在于:2号预冷器(72)工质热侧入口温度为45℃-75℃。
8.权利要求1至7任一项所述的一种超临界二氧化碳热电联产系统的运行方法,其特征在于:超临界二氧化碳在主压缩机(4)中升压后,依次在4号回热器(34)、3号回热器(33)、2号回热器(32)、1号回热器(31)、锅炉(1)吸热后成为高温高压二氧化碳,然后高温高压二氧化碳进入透平(2)做功,透平(2)排气又依次在1号回热器(31)、2号回热器(32)、3号回热器(33)、4号回热器(34)放热后分成两股,一股经再压缩机(5)升压后汇入1号回热器(31)入口,另一股在预冷器(7)中冷却后进入主压缩机(1),完成闭合循环;
高温高压二氧化碳进入透平(2)做功后,部分从透平(2)抽气口抽出,依次在5号回热器(35)、热网回热器(8)、2号预冷器(72)放热后,经供热压缩机(6)升压后汇入3号回热器(33)冷工质入口;
3号回热器(33)冷侧出口分流部分工质经5号回热器(35)加热后汇入1号回热器(31)冷侧工质出口,通过调整此部分抽气比例,调整进入热网加热器(8)的超临界二氧化碳工质温度,满足不同供热负荷需求,提高机组运行灵活性。
CN202011337781.5A 2020-11-25 2020-11-25 一种超临界二氧化碳热电联产系统及运行方法 Active CN112554982B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011337781.5A CN112554982B (zh) 2020-11-25 2020-11-25 一种超临界二氧化碳热电联产系统及运行方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011337781.5A CN112554982B (zh) 2020-11-25 2020-11-25 一种超临界二氧化碳热电联产系统及运行方法

Publications (2)

Publication Number Publication Date
CN112554982A true CN112554982A (zh) 2021-03-26
CN112554982B CN112554982B (zh) 2022-04-05

Family

ID=75043583

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011337781.5A Active CN112554982B (zh) 2020-11-25 2020-11-25 一种超临界二氧化碳热电联产系统及运行方法

Country Status (1)

Country Link
CN (1) CN112554982B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058486A (ja) * 2009-09-08 2011-03-24 Korea Electric Power Corp 熱ポンプを利用した発電所の熱回収装置
US20120096865A1 (en) * 2010-10-22 2012-04-26 Kabushiki Kaisha Toshiba Carbon dioxide recovery method and carbon-dioxide-recovery-type steam power generation system
CN103629860A (zh) * 2013-12-04 2014-03-12 重庆大学 跨临界co2冷热电联合循环系统
JP5791616B2 (ja) * 2009-09-29 2015-10-07 アルストム テクノロジー リミテッドALSTOM Technology Ltd 発電装置、捕捉対応発電装置およびその運転方法
US10072531B2 (en) * 2015-04-16 2018-09-11 Doosan Heavy Industries & Construction Co., Ltd. Hybrid power generation system using supercritical CO2 cycle
CN109555569A (zh) * 2018-12-25 2019-04-02 西安交通大学 超临界二氧化碳循环冷端余热回收发电系统及运行方法
CN109763948A (zh) * 2018-12-25 2019-05-17 西安交通大学 一种超临界二氧化碳太阳能热发电系统及运行方法
CN110887278A (zh) * 2019-11-05 2020-03-17 江苏科技大学 用于低品味热源的能量自给型二氧化碳冷热电联产系统
CN111322660A (zh) * 2020-03-11 2020-06-23 西安热工研究院有限公司 一种集成吸收式热泵的超临界二氧化碳循环热电联产系统及方法
CN111810260A (zh) * 2020-06-30 2020-10-23 上海发电设备成套设计研究院有限责任公司 一种超临界二氧化碳分流再压缩循环发电系统
CN111810297A (zh) * 2020-08-11 2020-10-23 西安热工研究院有限公司 一种基于lng冷源的燃气超临界二氧化碳联合循环发电系统及运行方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058486A (ja) * 2009-09-08 2011-03-24 Korea Electric Power Corp 熱ポンプを利用した発電所の熱回収装置
JP5791616B2 (ja) * 2009-09-29 2015-10-07 アルストム テクノロジー リミテッドALSTOM Technology Ltd 発電装置、捕捉対応発電装置およびその運転方法
US20120096865A1 (en) * 2010-10-22 2012-04-26 Kabushiki Kaisha Toshiba Carbon dioxide recovery method and carbon-dioxide-recovery-type steam power generation system
CN103629860A (zh) * 2013-12-04 2014-03-12 重庆大学 跨临界co2冷热电联合循环系统
US10072531B2 (en) * 2015-04-16 2018-09-11 Doosan Heavy Industries & Construction Co., Ltd. Hybrid power generation system using supercritical CO2 cycle
CN109555569A (zh) * 2018-12-25 2019-04-02 西安交通大学 超临界二氧化碳循环冷端余热回收发电系统及运行方法
CN109763948A (zh) * 2018-12-25 2019-05-17 西安交通大学 一种超临界二氧化碳太阳能热发电系统及运行方法
CN110887278A (zh) * 2019-11-05 2020-03-17 江苏科技大学 用于低品味热源的能量自给型二氧化碳冷热电联产系统
CN111322660A (zh) * 2020-03-11 2020-06-23 西安热工研究院有限公司 一种集成吸收式热泵的超临界二氧化碳循环热电联产系统及方法
CN111810260A (zh) * 2020-06-30 2020-10-23 上海发电设备成套设计研究院有限责任公司 一种超临界二氧化碳分流再压缩循环发电系统
CN111810297A (zh) * 2020-08-11 2020-10-23 西安热工研究院有限公司 一种基于lng冷源的燃气超临界二氧化碳联合循环发电系统及运行方法

Also Published As

Publication number Publication date
CN112554982B (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
CN111022138B (zh) 一种基于吸收式热泵余热回收的超临界二氧化碳发电系统
CN108035776B (zh) 一种热电解耦系统及运行方法
WO2022056990A1 (zh) 一种火电厂耦合高效压缩式热泵储能调峰系统及方法
CN106870037A (zh) 一种超临界二氧化碳布雷顿循环系统
CN108843418A (zh) 一种双压高效燃气超临界二氧化碳联合循环发电系统
CN112832879A (zh) 一种可切换高压缸的汽轮机发电系统
CN214741510U (zh) 超临界二氧化碳循环冷端余热辅助加热凝结水系统
CN110761859A (zh) 一种基于低压加热回路的斜温层储热调峰系统及调峰方法
CN112554980B (zh) 一种双背压超临界二氧化碳多联产系统及运行方法
CN211781359U (zh) 一种集成吸收式热泵的超临界二氧化碳循环热电联产系统
CN113090509A (zh) 一种压缩空气储能耦合火电机组深度调峰系统及方法
CN111322660B (zh) 集成吸收式热泵超临界二氧化碳循环热电联产系统及方法
CN109139147B (zh) 一种分流再压缩超临界二氧化碳热电联产系统及运行方法
CN102278205A (zh) 可用于分布式的空气及燃料湿化燃气轮机联合循环方法
CN201723313U (zh) 可用于分布式的空气及燃料湿化燃气轮机联合循环装置
CN109296413B (zh) 一种利用深层海水冷却的旁路二次再热发电装置及方法
CN101788141B (zh) 一种吸收式回热器在电厂回热循环系统中的应用
CN208380648U (zh) 一种带双压超临界二氧化碳余热锅炉的联合循环发电系统
CN114776411B (zh) 一种集成储热的燃煤发电系统及工作方法
CN112554982B (zh) 一种超临界二氧化碳热电联产系统及运行方法
CN113280390B (zh) 基于热泵升压再热的深度调峰供热品位提升系统及方法
CN110579041B (zh) 一种基于吸收式热泵的热电解耦系统及运行方法
CN112554981B (zh) 一种供工业蒸汽超临界二氧化碳动力系统及运行方法
CN208831056U (zh) 一种分流再压缩超临界二氧化碳热电联产系统
CN219433368U (zh) 一种燃气蒸汽联合循环乏汽供热系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant