CN112553509A - 一种用于动力转向泵支架的合金铸造工艺 - Google Patents

一种用于动力转向泵支架的合金铸造工艺 Download PDF

Info

Publication number
CN112553509A
CN112553509A CN202011269374.5A CN202011269374A CN112553509A CN 112553509 A CN112553509 A CN 112553509A CN 202011269374 A CN202011269374 A CN 202011269374A CN 112553509 A CN112553509 A CN 112553509A
Authority
CN
China
Prior art keywords
alloy
power steering
steering pump
casting process
pump bracket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011269374.5A
Other languages
English (en)
Inventor
李壮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taizhou Tianyu Traffic Equipment Co ltd
Original Assignee
Taizhou Tianyu Traffic Equipment Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taizhou Tianyu Traffic Equipment Co ltd filed Critical Taizhou Tianyu Traffic Equipment Co ltd
Priority to CN202011269374.5A priority Critical patent/CN112553509A/zh
Publication of CN112553509A publication Critical patent/CN112553509A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/02Investigating or analyzing materials by the use of thermal means by investigating changes of state or changes of phase; by investigating sintering
    • G01N25/04Investigating or analyzing materials by the use of thermal means by investigating changes of state or changes of phase; by investigating sintering of melting point; of freezing point; of softening point
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8477Investigating crystals, e.g. liquid crystals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0067Fracture or rupture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0298Manufacturing or preparing specimens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0682Spatial dimension, e.g. length, area, angle

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Mechanical Engineering (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本发明公开了一种用于动力转向泵支架的合金铸造工艺,包括以下步骤;步骤一;成分设计,查阅资料设计合金的成分比例按比例投放原料,将原料熔炼并铸成合金金属块;步骤三;将合金金属块压铸制成动力转向泵支架;步骤四;对产品进行热处理实验,步骤五;对产品进行组织检验和性能检验;步骤六;进行工业试生产,本发明涉及合金铸造技术领域。该用于动力转向泵支架的合金铸造工艺完成发电机支架总成和动力转向泵支架车用压铸Al‑10Si‑0.3Mg合金组织、缺陷与力学性能研究,通过合金成分优化、压铸工艺改善、热处理等方法提升合金的塑性、强度和抗腐蚀性并在生产中进行应用。

Description

一种用于动力转向泵支架的合金铸造工艺
技术领域
本发明涉及合金铸造技术领域,具体为一种用于动力转向泵支架的合金铸造工艺。
背景技术
采用ADC12压铸铝合金生产的气门室罩盖、空调支架、发电机支架总成和动力转向泵支架等零件,结合真空MFT压铸技术,经热处理后其塑性可达14%,具有优良的应用潜能。
但目前关于该合金的公开系统研究较为缺乏,且热处理态下的真空压铸Aural2铸件塑性存在较大散度,严重降低了材料稳定性,已有研究表明,这与合金中的铸造缺陷有着密切的联系。
发明内容
针对现有技术的不足,本发明提供了一种用于动力转向泵支架的合金铸造工艺。
为实现以上目的,本发明通过以下技术方案予以实现:一种用于动力转向泵支架的合金铸造工艺,一种用于动力转向泵支架的合金铸造工艺,包括以下步骤;
步骤一;成分设计,查阅资料设计合金的成分比例;
步骤二;按比例投放原料,将原料熔炼并铸成合金金属块;
步骤三;将合金金属块压铸制成动力转向泵支架;
步骤四;对产品进行热处理实验,
步骤五;对产品进行组织检验和性能检验;
步骤六;进行工业试生产。
优选的:所述步骤三具体为,根据实际产品需求尺寸,制造模具,并且通过模具将合金金属块压铸成动力转向泵支架。
优选的:所述步骤四具体为采用CWF通用型马弗炉,温度设定为450℃,当炉温达到设定温度时装入样品,使用热电偶温度计记录样品温度随时间变化,待样品温度达到固溶温度时开始计时,固溶时间为1.5h,保温后水冷。
优选的:所述步骤五中对产品进行组织检验具体为,制备金相试样和透射电镜样品,并通过光学显微镜观察和扫描电子显微镜观察样品的组织表征和孔隙表征。
优选的:所述步骤五中性能检测具体为硬度测试和拉伸测试;硬度测试具体为将相对面角为一百三十六度的正四棱锥体以一定的负荷压入被测材料表面,并保持一定的时间,卸载后测量压痕对角线的长度,并通过一定公式计算其维氏硬度。
优选的:所述拉伸测试具体为利用图像采集器,拍摄变形前后待测物图像,经计算机系统运算后即可获得3D或2D全场位移和应变数据分布,并采用TescanMira3扫描电镜对所有拉伸测试后的样品断口进行观察分析,包括断口缺陷面积测量、夹杂物EDS分析、断裂机理分析等。
有益效果
本发明提供了一种用于动力转向泵支架的合金铸造工艺。具备以下有益效果:
(1)、该用于动力转向泵支架的合金铸造工艺,完成发电机支架总成和动力转向泵支架车用压铸Al-10Si-0.3Mg合金组织、缺陷与力学性能研究,通过合金成分优化、压铸工艺改善、热处理等方法提升合金的塑性、强度和抗腐蚀性并在生产中进行应用。
附图说明
图1为本发明的工艺流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,本发明提供一种技术方案:一种用于动力转向泵支架的合金铸造工艺,一种用于动力转向泵支架的合金铸造工艺,包括以下步骤;
步骤一;成分设计,查阅资料设计合金的成分比例;
步骤二;按比例投放原料,将原料熔炼并铸成合金金属块;
步骤三;将合金金属块压铸制成动力转向泵支架,具体为,根据产品需求尺寸,制造模具,并且通过模具将合金金属块压铸成动力转向泵支架;
步骤四;对产品进行热处理实验;
步骤五;对产品进行组织检验和性能检验,制备金相试样和透射电镜样品,并通过光学显微镜观察和扫描电子显微镜观察样品的组织表征和孔隙表征;
性能检测具体为硬度测试和拉伸测试;硬度测试具体为将相对面角为一百三十六度的正四棱锥体以一定的负荷压入被测材料表面,并保持一定的时间,卸载后测量压痕对角线的长度,并通过一定公式计算其维氏硬度;拉伸测试具体为利用图像采集器,拍摄变形前后待测物图像,经计算机系统运算后即可获得3D或2D全场位移和应变数据分布,并采用TescanMira3扫描电镜对所有拉伸测试后的样品断口进行观察分析,包括断口缺陷面积测量、夹杂物EDS分析、断裂机理分析等
步骤六;进行工业试生产。
实施例;合金的典型铸态组织主要由α-Al基体、硬脆共晶组织以及块状AlSiFeMn以及少量针状AlMgSi相构成,其中α-Al基体包括在金属液进入型腔之前已经形核长大的枝晶状粗大ESC及在型腔内迅速形核长大的等轴状细晶;
热处理使铸态下α-Al基体中过饱和的Si在以硅弥散颗粒形式析出,连续珊瑚状共晶Si颗粒熔断且球化,Si对基体的固溶强化作用以及共晶Si对合金的强化作用减弱,但Si颗粒的析出和时效强化作用使得屈服强度升高,二者相互抵消使屈服强度变化不大;
而热处理后合金的加工硬化能力显著降低,抗拉强度大大降低;共晶Si颗粒和AlSiFeMn相是合金断裂时的主要裂纹源,由于熔断并球化的共晶Si颗粒变形时产生的应力集中程度大大减小,以及固溶处理使得Si元素对基体位错的运动阻力减小,使得热处理后的合金塑性显著升高;断口上缺陷的尺寸与材料延伸率具有十分明显的负相关关系,当断口中含有尺寸较大或冷隔类缺陷时,延伸率大大降低,且随着缺陷尺寸的增加,其对延伸率的危害越大;而当样品中不含尺寸较大的缩孔或冷隔类缺陷时,此时缺陷由于尺寸较小且弥散分布,对样品的危害较小,延伸率较高,则可能有其他因素列如细小缺陷的团簇、第二相与ESC晶粒的不均匀分布等共同影响材料的断裂行为和塑性。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (6)

1.一种用于动力转向泵支架的合金铸造工艺,包括以下步骤;
步骤一;成分设计,查阅资料设计合金的成分比例;
步骤二;按比例投放原料,将原料熔炼并铸成合金金属块;
步骤三;将合金金属块压铸制成动力转向泵支架;
步骤四;对产品进行热处理实验,
步骤五;对产品进行组织检验和性能检验;
步骤六;进行工业试生产。
2.根据权利要求1所述的一种用于动力转向泵支架的合金铸造工艺,其特征在于:所述步骤三具体为根据实际产品需求尺寸,制造模具,并且通过模具将合金金属块压铸成动力转向泵支架。
3.根据权利要求1所述的一种用于动力转向泵支架的合金铸造工艺,其特征在于:所述步骤四通过热电偶温度计记录样品温度随时间变化。
4.根据权利要求1所述的一种用于动力转向泵支架的合金铸造工艺,其特征在于:所述步骤五中对产品进行组织检验具体为,制备金相试样和透射电镜样品,并通过光学显微镜观察和扫描电子显微镜观察样品的组织表征和孔隙表征。
5.根据权利要求1所述的一种用于动力转向泵支架的合金铸造工艺,其特征在于:所述步骤五中性能检测具体为硬度测试和拉伸测试,硬度测试具体为将相对面角为一百三十六度的正四棱锥体以负荷压入被测材料表面,保持一定的时间,卸载后测量压痕对角线的长度,并通过一定公式计算其维氏硬度。
6.根据权利要求5所述的一种用于动力转向泵支架的合金铸造工艺,其特征在于:所述拉伸测试具体为利用图像采集器,拍摄变形前后待测物图像,经计算机系统运算后即可获得3D或2D全场位移和应变数据分布,并采用TescanMira3扫描电镜对所有拉伸测试后的样品断口进行观察分析。
CN202011269374.5A 2020-11-13 2020-11-13 一种用于动力转向泵支架的合金铸造工艺 Pending CN112553509A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011269374.5A CN112553509A (zh) 2020-11-13 2020-11-13 一种用于动力转向泵支架的合金铸造工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011269374.5A CN112553509A (zh) 2020-11-13 2020-11-13 一种用于动力转向泵支架的合金铸造工艺

Publications (1)

Publication Number Publication Date
CN112553509A true CN112553509A (zh) 2021-03-26

Family

ID=75042190

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011269374.5A Pending CN112553509A (zh) 2020-11-13 2020-11-13 一种用于动力转向泵支架的合金铸造工艺

Country Status (1)

Country Link
CN (1) CN112553509A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2944030A1 (fr) * 2009-04-02 2010-10-08 Peugeot Citroen Automobiles Sa Procede de traitement thermique et piece en alliage d'aluminium coulee sous-pression
CN106636788A (zh) * 2016-11-15 2017-05-10 扬州嵘泰工业发展有限公司 铝硅合金车身支架及其高压真空压铸制备方法
CN109763080A (zh) * 2019-03-25 2019-05-17 中北大学 一种压铸铝合金的熔炼低温固溶热处理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2944030A1 (fr) * 2009-04-02 2010-10-08 Peugeot Citroen Automobiles Sa Procede de traitement thermique et piece en alliage d'aluminium coulee sous-pression
CN106636788A (zh) * 2016-11-15 2017-05-10 扬州嵘泰工业发展有限公司 铝硅合金车身支架及其高压真空压铸制备方法
CN109763080A (zh) * 2019-03-25 2019-05-17 中北大学 一种压铸铝合金的熔炼低温固溶热处理方法

Similar Documents

Publication Publication Date Title
Kumar et al. Overcoming the paradox of strength and ductility in ultrafine-grained materials at low temperatures
Hu et al. Microstructure and mechanical properties of high strength die-casting Al–Mg–Si–Mn alloy
Yang et al. Enhanced superplasticity in friction stir processed Mg–Gd–Y–Zr alloy
RU2492260C2 (ru) Рекристаллизованные алюминиевые сплавы с текстурой латуни и способы их получения
Ghorbanpour et al. Low‐cycle fatigue behavior of rolled WE43‐T5 magnesium alloy
Li et al. High cycle fatigue behavior of additively manufactured Ti-6Al-4V alloy with HIP treatment at elevated temperatures
Yamamoto et al. Influence of process conditions on microstructures and mechanical properties of T5-treated 357 aluminum alloys
Sun et al. Effect of Mg 2 Si phase on extrusion of AA6005 aluminum alloy
Bertolino et al. Influence of the crack-tip hydride concentration on the fracture toughness of Zircaloy-4
Li et al. Effect of mechanical properties, microstructure and residual stress on the bending springback behavior of high-strength Al–Mg–Si–Cu alloy tubes
CN112553509A (zh) 一种用于动力转向泵支架的合金铸造工艺
Liu et al. An electron-backscattered diffraction study of the texture evolution in a coarse-grained AZ31 magnesium alloy deformed in tension at elevated temperatures
Le et al. Effect of HIPing and degassing on the low cycle fatigue behavior of A319 cast alloy
Cao et al. Modeling of deformation energy at elevated temperatures and its application in Mg–Li–Al–Y alloy
Lin et al. Effect of hot deformation on the microstructure of spray-formed 7055 aluminum alloy extruded plate
Jackson et al. Isothermal subtransus forging of Ti–6Al–2Sn–4Zr–6Mo
CN112501480A (zh) 一种用于制造气门室罩盖的强度合金材料
Kitazono et al. Microstructural evolution through uniaxial hot pressing before age hardening of AZ91D alloy
CN113283067A (zh) 铝合金加工工艺优化方法及其应用
Porter et al. Microstructural conditions contributing to fatigue variability in P/M nickel-base superalloys
Park et al. Comparison of compressive deformation of ultrafine-grained 5083 Al alloy at 77 and 298 K
Nishi et al. Effect of HIP temperature on microstructure and low cycle fatigue strength of CuCrZr alloy
Menachery et al. Investigation of mechanical properties and grain structure of 5xxx aluminium alloys under precisely controlled annealed conditions
Irfan et al. On the compression properties and erosion-corrosion behaviour of Al 6061/15% sicp composite
Angeloni et al. Fatigue Life Assessment of A356 Aluminum Alloy used for Engine Cylinder Head

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210326

RJ01 Rejection of invention patent application after publication