CN112552497A - High-hydroxyl-value polyester resin for extinction type powder coating and preparation method and application thereof - Google Patents

High-hydroxyl-value polyester resin for extinction type powder coating and preparation method and application thereof Download PDF

Info

Publication number
CN112552497A
CN112552497A CN202011455599.XA CN202011455599A CN112552497A CN 112552497 A CN112552497 A CN 112552497A CN 202011455599 A CN202011455599 A CN 202011455599A CN 112552497 A CN112552497 A CN 112552497A
Authority
CN
China
Prior art keywords
polyester resin
powder coating
reaction
hydroxyl value
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011455599.XA
Other languages
Chinese (zh)
Other versions
CN112552497B (en
Inventor
江建明
胡泽湘
江兴科
吴湧泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huangshan Zhengjie New Materials Co ltd
Original Assignee
Huangshan Zhengjie New Materials Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huangshan Zhengjie New Materials Co ltd filed Critical Huangshan Zhengjie New Materials Co ltd
Priority to CN202011455599.XA priority Critical patent/CN112552497B/en
Publication of CN112552497A publication Critical patent/CN112552497A/en
Application granted granted Critical
Publication of CN112552497B publication Critical patent/CN112552497B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/03Powdery paints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2150/00Compositions for coatings
    • C08G2150/20Compositions for powder coatings

Abstract

The invention belongs to the technical field of powder coating curing agents, and particularly relates to a high-hydroxyl-value polyester resin for a delustering powder coating, and further discloses a preparation method and application thereof. The high hydroxyl value polyester resin for the extinction type powder coating is obtained by polymerizing m-phthalic acid, biphenyldicarboxylic acid, adipic acid, neopentyl glycol, sorbitol, 1, 4-cyclohexane dimethanol, triglycidyl trimellitate and 12-hydroxystearic acid serving as raw materials. The polyester resin of the invention increases the variety and the difference of active hydroxyl, realizes the reduction of the hydroxyl value of the polyester resin without influencing the extinction effect, thereby overcoming the defects of high hygroscopicity and high cost brought by the polyester resin product with ultrahigh hydroxyl value and having higher application value.

Description

High-hydroxyl-value polyester resin for extinction type powder coating and preparation method and application thereof
Technical Field
The invention belongs to the technical field of powder coating curing agents, and particularly relates to a high-hydroxyl-value polyester resin for a delustering powder coating, and further discloses a preparation method and application thereof.
Background
The powder coating is 100% solid powder without organic solvent, which is different from oil-based coating and water-based coating, and the powder coating is a novel environment-friendly coating which does not use solvent or water as a dispersion medium but uses air as a dispersion medium, is uniformly coated on the surface of a workpiece and forms a coating film with special purpose after being heated. The powder coating has the advantages of no solvent, no VOC, recoverability, environmental protection, energy conservation, high construction efficiency, high mechanical strength of a coating film, wide application range and the like, and gradually replaces organic solvent type coatings with the advantages of economy, environmental protection, high efficiency, excellent performance and the like, becomes an important development direction in the coating industry, keeps a faster growth rate all the time, and is widely applied in the field of metal surface coating particularly. The polyester powder coating is widely applied to the coating field due to the characteristics of excellent durability, decoration, processing formability and the like.
The polyurethane powder coating is prepared by curing hydroxyl polyester serving as a main raw material and a curing agent containing-NCO groups. Currently, the most commonly used curing agent for polyurethane powder coatings is the B1530 curing system of Degussa (Degussa), which has excellent hardness, leveling property and scratch resistance, but the matting difficulty of the powder coating is large, and it is difficult to obtain a coating film with low gloss such as 10-20%, which also has limited the wide application of polyurethane powder coatings.
At present, the most effective method for solving the extinction problem of the compound of the system is to use the polyester resin with the ultra-high hydroxyl value (hydroxyl value of 280-300mgKOH/g) and the polyester resin with the ultra-low hydroxyl value (hydroxyl value of 30-50mgKOH/g) to realize the extinction by a one-step extrusion method, i.e. the extinction is realized by using the curing activity difference between the hydroxyl groups of the polyester resin with the ultra-high hydroxyl value (such as the hydroxyl value of 280-300mgKOH/g in the Chinese patent CN 103467714A) and the polyester resin with the ultra-low hydroxyl value and the curing agent B1530.
However, because the process method needs to use the polyester resin with the ultrahigh hydroxyl value (hydroxyl value of 280-300mgKOH/g), the moisture absorption capacity is too strong due to the overhigh hydroxyl content, and the prepared finished powder coating is easy to agglomerate during storage, thereby influencing the downstream application; moreover, when the ultrahigh hydroxyl value polyester resin is fully cured, a large amount of B1530 curing agent is required, and the B1530 curing agent is almost imported products at present and has extremely high price, so that the cost and the downstream application potential of the matt powder coating are directly influenced. Therefore, how to effectively reduce the hydroxyl value of the polyester resin used to overcome the above defects while ensuring the extinction capability of the powder coating product is always a problem to be solved in the industry, and has a positive significance.
Disclosure of Invention
Therefore, the technical problem to be solved by the invention is to provide a high hydroxyl value polyester resin for a delustering powder coating, which can effectively reduce the hydroxyl value of a product to improve the product performance on the basis of meeting the performance requirement of the delustering powder coating;
the second technical problem to be solved by the invention is to improve the preparation method and application of the high hydroxyl value polyester resin for the delustering powder coating.
In order to solve the technical problems, the preparation raw materials of the high hydroxyl value polyester resin for the extinction type powder coating comprise the following components in parts by mole:
Figure BDA0002828658120000021
Figure BDA0002828658120000031
specifically, the high hydroxyl value polyester resin for the delustering powder coating further comprises a polymerization catalyst, wherein the polymerization catalyst comprises monobutyl tin oxide;
the amount of the polymerization catalyst is 0.08-0.2 mol% of the total molar amount of the raw materials for preparation.
Specifically, the high hydroxyl value polyester resin for the delustering powder coating further comprises an antioxidant, wherein the antioxidant comprises tetra [ methyl-beta- (3, 5-di-tert-butyl-4-hydroxyphenyl) propionate ] pentaerythritol ester;
the dosage of the antioxidant is 0.2-0.5 mol% of the total molar weight of the raw materials.
The invention also discloses a method for preparing the high hydroxyl value polyester resin for the delustering powder coating, which comprises the following steps:
(1) uniformly mixing the neopentyl glycol and the sorbitol according to the formula amount, and heating and melting for later use; then adding the isophthalic acid, the biphenyldicarboxylic acid, the adipic acid and the catalyst into the mixed material according to the formula ratio, carrying out heat preservation reaction at the temperature of 200-210 ℃ in a protective atmosphere, and stopping the reaction when the acid value of the system is reduced to 120-150 mgKOH/g;
(2) continuously adding the 1, 4-cyclohexanedimethanol with the formula amount, uniformly mixing, carrying out polymerization reaction at 230 ℃ at 220-;
(3) cooling the system to 140-150 ℃, adding the triglycidyl trimellitate in the formula amount to continue to perform the end-capping reaction, adding the 12-hydroxystearic acid in the formula amount when the acid value of the reactant is less than 5mgKOH/g, and continuing to perform the epoxy ring-opening grafting reaction at 140-150 ℃; when the acid value of the system reactant is less than 3mgKOH/g, adding the water with the formula amount, and continuing to perform the epoxy ring-opening reaction at the temperature of 140-; stopping the reaction when the epoxy equivalent of the reactant is more than 3000g/mol and the hydroxyl value is 150-180 mgKOH/g;
(4) collecting reactants, removing water in the system, discharging at high temperature while the reactants are hot, cooling, crushing and granulating to obtain the catalyst.
Specifically, in the step (1), in the heat preservation reaction step, the whole system is controlled to gradually raise the temperature at 8-10 ℃/h to 200-210 ℃ for reaction.
Specifically, in the step (2), in the polymerization reaction step, the whole system is controlled to gradually increase the temperature at 6-8 ℃/h to 230 ℃ for reaction.
Specifically, in the step (2), the vacuum degree in the vacuum polycondensation step is-0.097 to-0.099 Mpa.
The invention also discloses application of the high hydroxyl value polyester resin for the delustering powder coating to preparation of a B1530 curing system polyurethane powder coating.
The invention also discloses a B1530 curing system polyurethane powder coating, namely the polyester resin for preparing the powder coating comprises the high hydroxyl value polyester resin and the low hydroxyl value polyester resin.
Specifically, the hydroxyl value of the low-hydroxyl-value polyester resin is 30-50 mgKOH/g.
The high hydroxyl value polyester resin for the delustering powder coating is obtained by polymerizing isophthalic acid, diphenic acid, adipic acid, neopentyl glycol, sorbitol, 1, 4-cyclohexanedimethanol, triglycidyl trimellitate and 12-hydroxystearic acid serving as raw materials, wherein the hydroxyl value of the polyester resin product is controlled to be 150-180mgKOH/g, the epoxy equivalent is more than 3000g/mol, and the acid value is lower than 5 mgKOH/g. Aiming at the extinction problem of B1530 system powder coating, the high hydroxyl value polyester resin for the extinction type powder coating is designed and synthesized from the aspect of introducing different hydroxyl structures, such as vicinal diol hydroxyl left by sorbitol, cyclic branched chain hydroxyl brought by 1, 4-cyclohexanedimethanol, vicinal hydroxyl containing long branched chain hydroxyl brought by 12-hydroxystearic acid and vicinal hydroxyl brought by triglycidyl trimellitate and opened by poaching glycidyl ester to open a ring, so that the polyester product contains active hydroxyl with large activity difference. Therefore, although the hydroxyl value range of the polyester resin product is reduced, the hydroxyl group structure of the polyester resin product is different, the curing activity of the polyester resin product is greatly different from that of the B1530 curing agent, the hydroxyl activity difference is further increased after the polyester resin product is mixed with the ultra-low hydroxyl value polyester resin (the hydroxyl value is 30-50mgKOH/g), in addition, the compatibility of two polyester resin systems is poor, the activity and the dispersibility of the polyester resin functional groups are not uniform, the compatibility is strong, the gloss of the coating film after the polyester resin product is cured with the isocyanate curing agent B1530 is low, a low-gloss coating film with the gloss of 10-20% is easily obtained, and other properties of the coating film can completely meet various requirements of powder coatings. The polyester resin of the invention increases the variety and the difference of active hydroxyl, realizes the reduction of the hydroxyl value of the polyester resin without influencing the extinction effect, thereby overcoming the defects of high hygroscopicity and high cost brought by the polyester resin product with ultrahigh hydroxyl value and having higher application value.
Detailed Description
Example 1
The high hydroxyl value polyester resin for the extinction type powder coating comprises the following components in parts by mole:
Figure BDA0002828658120000051
monobutyltin oxide in an amount of 0.08 mol% based on the total molar amount of the starting materials;
antioxidant 1010 in an amount of 0.1 mol% based on the total molar amount of the raw materials for preparation.
The preparation method of the high hydroxyl value polyester resin for the delustering powder coating comprises the following steps:
(1) uniformly mixing the neopentyl glycol and the sorbitol according to the formula amount, and heating and melting at 130 ℃ for later use; adding the isophthalic acid, the biphenyldicarboxylic acid, the adipic acid and the catalyst into the mixed material according to the formula ratio, gradually heating to 210 ℃ at a speed of 8 ℃/h under a protective atmosphere for carrying out heat preservation reaction, and stopping the reaction when the acid value of the system is reduced to 122 mgKOH/g;
(2) continuously adding the 1, 4-cyclohexanedimethanol with the formula amount, uniformly mixing, gradually heating to 225 ℃ at 6 ℃/h for polymerization reaction, adding the antioxidant with the formula amount when the acid value of the system is reduced to 71mgKOH/g, starting a vacuum system, controlling the vacuum degree to be-0.098 Mpa for vacuum polycondensation reaction, stopping the reaction when the acid value of the reactant is 25mgKOH/g, and closing the vacuum system;
(3) cooling the system to 145 ℃, adding the triglycidyl trimellitate in a formula amount to continue to carry out end capping reaction, adding the 12-hydroxystearic acid in the formula amount when the acid value of a reactant is less than 5mgKOH/g, and continuing to carry out epoxy ring-opening grafting reaction at 145 ℃; when the acid value of the system reactant is less than 3mgKOH/g, adding the distilled water with the formula amount, and continuing to perform an epoxy ring-opening reaction at 145 ℃; stopping the reaction when the epoxy equivalent of the reactant is more than 3000g/mol and the hydroxyl value is 155 mgKOH/g;
(4) and then, fully removing water in the system under the condition of decompression (vacuum degree of-0.097 Mpa) at 145 ℃, discharging at high temperature when the water content is lower than 0.5%, cooling the polyester resin by using a steel belt with condensed water, crushing and granulating to obtain the polyester resin.
Through detection, the polyester resin prepared in the embodiment is colorless transparent particles, the hydroxyl value of the product is 153mgKOH/g, and the softening point is 101 ℃.
Example 2
The high hydroxyl value polyester resin for the extinction type powder coating comprises the following components in parts by mole:
Figure BDA0002828658120000061
Figure BDA0002828658120000071
monobutyltin oxide in an amount of 0.2 mol% based on the total molar amount of the starting materials;
antioxidant 1010 in an amount of 0.2 mol% based on the total molar amount of the raw materials for preparation.
The preparation method of the high hydroxyl value polyester resin for the delustering powder coating comprises the following steps:
(1) uniformly mixing the neopentyl glycol and the sorbitol according to the formula amount, and heating and melting at the temperature of below 130 ℃ for later use; adding the isophthalic acid, the biphenyldicarboxylic acid, the adipic acid and the catalyst into the mixed material according to the formula ratio, gradually heating to react to 205 ℃ at a speed of 10 ℃/h under a protective atmosphere to perform a heat preservation reaction, and stopping the reaction when the acid value of the system is reduced to 130 mgKOH/g;
(2) continuously adding the 1, 4-cyclohexanedimethanol with the formula amount, uniformly mixing, gradually heating to 220 ℃ at 8 ℃/h for polymerization reaction, adding the antioxidant with the formula amount when the acid value of the system is reduced to 76mgKOH/g, starting a vacuum system, controlling the vacuum degree to be-0.098 Mpa for vacuum polycondensation reaction, stopping the reaction when the acid value of the reactant is 29mgKOH/g, and closing the vacuum system;
(3) cooling the system to 140 ℃, adding the triglycidyl trimellitate in a formula amount to continue to perform end capping reaction for 1-3h, adding the 12-hydroxystearic acid in the formula amount when the acid value of the reactant is less than 5mgKOH/g, and continuing to perform epoxy ring-opening grafting reaction at 140 ℃; when the acid value of the system reactant is less than 3mgKOH/g, adding the distilled water with the formula amount, and continuing to perform an epoxy ring-opening reaction at 140 ℃; stopping the reaction when the epoxy equivalent of the reactant is more than 3000g/mol and the hydroxyl value is 170 mgKOH/g;
(4) collecting reactant, fully removing water in the system under the condition of decompression (vacuum degree of-0.098 Mpa) at 140 ℃, discharging at high temperature when the water content is lower than 0.5%, cooling the polyester resin by a steel belt with condensed water, crushing and granulating to obtain the polyester resin.
Through detection, the polyester resin prepared in the embodiment is colorless transparent particles, the hydroxyl value of the product is 170mgKOH/g, and the softening point is 110 ℃.
Example 3
The high hydroxyl value polyester resin for the extinction type powder coating comprises the following components in parts by mole:
Figure BDA0002828658120000081
monobutyl tin oxide, the amount of which is 0.15 mol% of the total molar amount of the preparation raw materials;
antioxidant 1010 in an amount of 0.15 mol% based on the total molar amount of the raw materials for preparation.
The preparation method of the high hydroxyl value polyester resin for the delustering powder coating comprises the following steps:
(1) uniformly mixing the neopentyl glycol and the sorbitol according to the formula amount, and heating and melting at the temperature of below 130 ℃ for later use; adding the isophthalic acid, the diphenic acid, the adipic acid and the catalyst into the mixed material according to the formula ratio, gradually heating to 200 ℃ at a speed of 9 ℃/h under a protective atmosphere for carrying out heat preservation reaction, and stopping the reaction when the acid value of the system is reduced to 148 mgKOH/g;
(2) continuously adding the 1, 4-cyclohexanedimethanol with the formula amount, uniformly mixing, gradually heating to 230 ℃ at the speed of 7 ℃/h for polymerization reaction, adding the antioxidant with the formula amount when the acid value of the system is reduced to 80mgKOH/g, starting a vacuum system, controlling the vacuum degree to be-0.099 Mpa for vacuum polycondensation reaction, stopping the reaction when the acid value of a reactant is 22mgKOH/g, and closing the vacuum system;
(3) cooling the system to 150 ℃, adding the triglycidyl trimellitate in a formula amount to continue to carry out end capping reaction, adding the 12-hydroxystearic acid in the formula amount when the acid value of a reactant is less than 5mgKOH/g, and continuing to carry out epoxy ring-opening grafting reaction at 150 ℃; when the acid value of the system reactant is less than 3mgKOH/g, adding the distilled water with the formula amount, and continuing to perform an epoxy ring-opening reaction at 150 ℃; stopping the reaction when the epoxy equivalent of the reactant is more than 3000g/mol and the hydroxyl value is 178 mgKOH/g;
(4) collecting reactant, removing water in the system under reduced pressure (vacuum degree-0.099 Mpa) at 150 deg.C, discharging at high temperature when water content is less than 0.5%, cooling polyester resin with steel belt with condensed water, crushing, and granulating.
Through detection, the polyester resin product prepared by the embodiment is colorless transparent particles, the hydroxyl value is 178mgKOH/g, and the softening point is 115 ℃.
Example 4
The high hydroxyl value polyester resin for the extinction type powder coating comprises the following components in parts by mole:
Figure BDA0002828658120000091
monobutyltin oxide in an amount of 0.12 mol% based on the total molar amount of the starting materials;
antioxidant 1010 in an amount of 0.2 mol% based on the total molar amount of the raw materials for preparation.
The preparation method of the high hydroxyl value polyester resin for the delustering powder coating comprises the following steps:
(1) uniformly mixing the neopentyl glycol and the sorbitol according to the formula amount, and heating and melting at the temperature of below 130 ℃ for later use; adding the isophthalic acid, the diphenic acid, the adipic acid and the catalyst into the mixed material according to the formula ratio, gradually heating to 204 ℃ at a speed of 9 ℃/h under a protective atmosphere for carrying out heat preservation reaction, and stopping the reaction when the acid value of the system is reduced to 135 mgKOH/g;
(2) continuously adding the 1, 4-cyclohexanedimethanol with the formula amount, uniformly mixing, gradually heating to 230 ℃ at the speed of 7 ℃/h for polymerization reaction, adding the antioxidant with the formula amount when the acid value of the system is reduced to 74mgKOH/g, starting a vacuum system, controlling the vacuum degree to be-0.098 Mpa for vacuum polycondensation reaction, stopping the reaction when the acid value of the reactant is 27mgKOH/g, and closing the vacuum system;
(3) cooling the system to 142 ℃, adding the triglycidyl trimellitate in a formula amount to continue to carry out end capping reaction, adding the 12-hydroxystearic acid in the formula amount when the acid value of a reactant is less than 5mgKOH/g, and continuing to carry out epoxy ring-opening grafting reaction at 142 ℃; when the acid value of the system reactant is less than 3mgKOH/g, adding the distilled water with the formula amount, and continuing to perform an epoxy ring-opening reaction at 142 ℃; stopping the reaction when the epoxy equivalent of the reactant is more than 3000g/mol and the hydroxyl value is 161 mgKOH/g;
(4) collecting reactant, removing water in the system under reduced pressure (vacuum degree-0.099 Mpa) at 142 deg.C, discharging at high temperature when water content is less than 0.5%, cooling polyester resin with steel belt with condensed water, crushing, and granulating.
Through detection, the polyester resin product prepared in the embodiment is colorless transparent particles, the hydroxyl value is 161mgKOH/g, and the softening point is 114 ℃.
Example 5
The high hydroxyl value polyester resin for the extinction type powder coating comprises the following components in parts by mole:
Figure BDA0002828658120000111
monobutyltin oxide in an amount of 0.18 mol% based on the total molar amount of the starting materials;
antioxidant 1010 in an amount of 0.3 mol% based on the total molar amount of the raw materials for preparation.
The preparation method of the high hydroxyl value polyester resin for the delustering powder coating comprises the following steps:
(1) uniformly mixing the neopentyl glycol and the sorbitol according to the formula amount, and heating and melting at the temperature of below 130 ℃ for later use; adding the isophthalic acid, the diphenic acid, the adipic acid and the catalyst into the mixed material according to the formula ratio, gradually heating to react to 208 ℃ at a speed of 10 ℃/h under a protective atmosphere to perform heat preservation reaction, and stopping the reaction when the acid value of the system is reduced to 126 mgKOH/g;
(2) continuously adding the 1, 4-cyclohexanedimethanol with the formula amount, uniformly mixing, gradually heating to 223 ℃ at 8 ℃/h for polymerization reaction, adding the antioxidant with the formula amount when the acid value of the system is reduced to 78mgKOH/g, starting a vacuum system, controlling the vacuum degree to be-0.097 Mpa for vacuum polycondensation reaction, stopping the reaction when the acid value of the reactant is 25mgKOH/g, and closing the vacuum system;
(3) cooling the system to 146 ℃, adding the triglycidyl trimellitate in a formula amount to continue to perform end capping reaction, adding the 12-hydroxystearic acid in the formula amount when the acid value of the reactant is less than 5mgKOH/g, and continuing to perform epoxy ring-opening grafting reaction at 146 ℃; when the acid value of the system reactant is less than 3mgKOH/g, adding the distilled water with the formula amount, and continuing to perform an epoxy ring-opening reaction at 146 ℃; stopping the reaction when the epoxy equivalent of the reactant is more than 3000g/mol and the hydroxyl value is 164 mgKOH/g;
(4) collecting reactant, removing water in the system under the condition of decompression (vacuum degree of-0.097 Mpa) at 146 ℃, discharging at high temperature when the water content is lower than 0.5%, cooling polyester resin with steel belt with condensed water, crushing and granulating to obtain the product.
Through detection, the polyester resin product prepared by the embodiment is colorless transparent particles, the hydroxyl value is 164mgKOH/g, and the softening point is 108 ℃.
Comparative example 1
The polyester resin of the comparative example is the polyester resin obtained according to example 1 in Chinese patent CN103467714A, and the hydroxyl value of the product is 295 mgKOH/g.
Comparative example 2
The polyester resin of this comparative example was the polyester resin obtained in example 1 of Chinese patent CN103467714A and had a hydroxyl value of 295mgKOH/g, but the amount of B1530 curing agent was increased from 130g to 200g in the powder coating formulation of the following experimental example.
Examples of the experiments
The polyester resins prepared in examples 1 to 5 above, respectively, were formulated according to the existing powder coating formulations, generally as follows in parts by weight:
Figure BDA0002828658120000121
Figure BDA0002828658120000131
wherein the ultra-low hydroxyl value polyester resin is a product of Anhui Shenjian New materials GmbH, model SJ1140, and the hydroxyl value of the product is 42 mgKOH/g; b1530 the curing agent adopts the product of Yingchuangdegusan.
And the polyester resin obtained in example 1 (product hydroxyl value: 295mgKOH/g) in accordance with CN103467714A as a comparative example, B1530 was used in an amount of 130g in comparative example 1 and 200g in comparative example 2 as described in the foregoing comparative examples 1-2.
Preparing a coating layer: mixing the materials according to the formula of the powder coating, extruding, tabletting and crushing by using a double-screw extruder, and then crushing and sieving the tablets to prepare the powder coating. The powder coating is sprayed on the galvanized iron substrate after surface treatment by an electrostatic spray gun, the film thickness is 50-60 mu m, and the powder coating is solidified at 200 ℃/15min to obtain the coating.
The detection basis of the coating indexes is as follows: GB/T21776 + 2008 "powder coating and detection standard guideline for coating thereof", the test standard of adhesion is carried out according to GB/T9286 + 1998 "grid test of paint film and varnish", and the moisture absorption performance is carried out according to the method of GB/T20312 + 2012 "determination of moisture absorption performance of moisture and heat performance of building materials and products", 30g of sample is taken (the moisture content of the sample before test is lower than 0.5%, the appearance is loose powder and no agglomeration phenomenon), and the sample is uniformly spread on a glass dish to be tested, wherein the temperature of a constant temperature and humidity box is 30 ℃, the humidity is 45%, and the time is 7 days.
The results of the film properties test are shown in table 1 below.
TABLE 1 product film coating Performance and moisture absorption Performance results of the finished powder coating
Figure BDA0002828658120000132
Figure BDA0002828658120000141
Therefore, the powder coating product prepared by mixing the high-hydroxyl polyester resin and the commercially available low-hydroxyl polyester resin has better overall performance, a smooth coating film and lower gloss which is 10-20%, and the B1530 curing agent in the formula has less usage amount, so that the whole powder coating formula has lower cost; meanwhile, the hydroxyl group of the polyester resin with the ultrahigh hydroxyl value is reduced, so that the performance is relatively excellent in a moisture absorption test for 7 days, and no agglomeration phenomenon exists.
The scheme of the comparative example 1 adopts the traditional polyester resin with the ultrahigh hydroxyl value, and because of excessive hydroxyl, in the powder coating formula of the experimental example, because the B1530 curing agent is insufficient, the curing is incomplete, the appearance and the impact resistance of a coating film are poor, the gloss cannot be effectively reduced to be below 30 percent, the phenomenon of severe light loss occurs after water boiling, and the phenomenon of slight agglomeration occurs because of high moisture absorption rate in a moisture absorption test for 7 days.
The traditional polyester resin with the ultrahigh hydroxyl value is adopted in the comparative example 2, compared with the scheme in the comparative example 1, the dosage of the curing agent B1530 is increased, although the curing can be completed, the appearance and the impact resistance of the coating film meet the requirements, the gloss reaches 22 percent, and the boiling in water is not obviously changed; however, slight caking occurred in the 7-day hygroscopicity test because the hygroscopicity was still high. Therefore, the performance of the product has great influence on the storage period, and is not beneficial to daily transportation and storage.
It should be understood that the above examples are only for clarity of illustration and are not intended to limit the embodiments. Other variations and modifications will be apparent to persons skilled in the art in light of the above description. And are neither required nor exhaustive of all embodiments. And obvious variations or modifications therefrom are within the scope of the invention.

Claims (10)

1. The high hydroxyl value polyester resin for the extinction type powder coating is characterized by comprising the following components in parts by mole:
Figure FDA0002828658110000011
2. a high hydroxyl number polyester resin for a matted powder coating according to claim 1 further comprising a polymerization catalyst comprising monobutyl tin oxide;
the amount of the polymerization catalyst is 0.08-0.2 mol% of the total molar amount of the raw materials for preparation.
3. A high hydroxyl value polyester resin for a matted powder coating according to claim 1 or 2, further comprising an antioxidant comprising tetrakis [ methyl- β - (3, 5-di-t-butyl-4-hydroxyphenyl) propionate ] pentaerythritol ester, antioxidant 1010;
the dosage of the antioxidant is 0.1-0.2 mol% of the total molar weight of the raw materials.
4. A process for preparing a high hydroxyl number polyester resin for flatting powder coatings according to any one of claims 1 to 3, comprising the steps of:
(1) uniformly mixing the neopentyl glycol and the sorbitol according to the formula amount, and heating and melting for later use; then adding the isophthalic acid, the biphenyldicarboxylic acid, the adipic acid and the catalyst into the mixed material according to the formula ratio, carrying out heat preservation reaction at the temperature of 200-210 ℃ in a protective atmosphere, and stopping the reaction when the acid value of the system is reduced to 120-150 mgKOH/g;
(2) continuously adding the 1, 4-cyclohexanedimethanol with the formula amount, uniformly mixing, carrying out polymerization reaction at 230 ℃ at 220-;
(3) cooling the system to 140-150 ℃, adding the triglycidyl trimellitate in the formula amount to continue to perform the end-capping reaction, adding the 12-hydroxystearic acid in the formula amount when the acid value of the reactant is less than 5mgKOH/g, and continuing to perform the epoxy ring-opening grafting reaction at 140-150 ℃; when the acid value of the system reactant is less than 3mgKOH/g, adding the water with the formula amount, and continuing to perform the epoxy ring-opening reaction at the temperature of 140-; stopping the reaction when the epoxy equivalent of the reactant is more than 3000g/mol and the hydroxyl value is 150-180 mgKOH/g;
(4) collecting reactants, removing water in the system, discharging at high temperature while the reactants are hot, cooling, crushing and granulating to obtain the catalyst.
5. The method for preparing a high hydroxyl value polyester resin for a matting powder coating according to claim 4, wherein in the step (1), the whole system is controlled to gradually increase the temperature at 8-10 ℃/h to 200-210 ℃ for reaction in the step of the heat preservation reaction.
6. A preparation method of high hydroxyl value polyester resin for extinction type powder coating according to claim 4 or 5, characterized in that in the step (2), the whole system is controlled to gradually raise the temperature at 6-8 ℃/h to 220-230 ℃ for reaction in the polymerization reaction step.
7. A process for preparing a high hydroxyl value polyester resin for a flatting powder coating according to any one of claims 4 to 6, wherein in the step (2), the degree of vacuum in the vacuum polycondensation step is from-0.097 to-0.099 MPa.
8. Use of a high hydroxyl number polyester resin for flatting powder coatings according to any of claims 1 to 3 for the preparation of B1530 curing system polyurethane powder coatings.
9. A B1530 cure system polyurethane powder coating wherein the polyester resin from which the powder coating is made comprises the high hydroxyl polyester resin of any of claims 1-3, and a low hydroxyl polyester resin.
10. The B1530 curing system polyurethane powder coating of claim 9, wherein the low hydroxyl polyester resin has a hydroxyl value of 30 to 50 mgKOH/g.
CN202011455599.XA 2020-12-10 2020-12-10 High-hydroxyl-value polyester resin for extinction type powder coating and preparation method and application thereof Active CN112552497B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011455599.XA CN112552497B (en) 2020-12-10 2020-12-10 High-hydroxyl-value polyester resin for extinction type powder coating and preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011455599.XA CN112552497B (en) 2020-12-10 2020-12-10 High-hydroxyl-value polyester resin for extinction type powder coating and preparation method and application thereof

Publications (2)

Publication Number Publication Date
CN112552497A true CN112552497A (en) 2021-03-26
CN112552497B CN112552497B (en) 2023-03-31

Family

ID=75061889

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011455599.XA Active CN112552497B (en) 2020-12-10 2020-12-10 High-hydroxyl-value polyester resin for extinction type powder coating and preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN112552497B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114349942A (en) * 2021-12-13 2022-04-15 安徽神剑新材料股份有限公司 Bifunctional polyester resin, preparation method thereof and extinction powder coating
CN115572376A (en) * 2022-11-11 2023-01-06 黄山正杰新材料有限公司 Polyester resin for high-gloss and high-storage-stability powder coating and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119561A (en) * 1998-10-16 2000-04-25 Toagosei Co Ltd Polyester-based powdered paint composition and its production
JP2001226630A (en) * 2000-02-17 2001-08-21 Dainippon Ink & Chem Inc Composition for powdered paint and method of forming coating film
WO2004069896A1 (en) * 2003-02-06 2004-08-19 Surface Specialties, S.A. Process for producing neopentyl-glycol based polyesters
CN101560292A (en) * 2009-05-21 2009-10-21 杭州中法化学有限公司 Saturated polyester resin with high hydroxyl value for polyurethane powder coating and synthetic method thereof
CN104448266A (en) * 2014-11-25 2015-03-25 安徽神剑新材料股份有限公司 Terminal hydroxyl polyester resin for co-extrusion extinction powder coating and preparation method of terminal hydroxyl polyester resin
CN110283306A (en) * 2019-07-01 2019-09-27 黄山正杰新材料有限公司 A kind of semi-matte polyester resin for powder coating and the preparation method and application thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119561A (en) * 1998-10-16 2000-04-25 Toagosei Co Ltd Polyester-based powdered paint composition and its production
JP2001226630A (en) * 2000-02-17 2001-08-21 Dainippon Ink & Chem Inc Composition for powdered paint and method of forming coating film
WO2004069896A1 (en) * 2003-02-06 2004-08-19 Surface Specialties, S.A. Process for producing neopentyl-glycol based polyesters
CN101560292A (en) * 2009-05-21 2009-10-21 杭州中法化学有限公司 Saturated polyester resin with high hydroxyl value for polyurethane powder coating and synthetic method thereof
CN104448266A (en) * 2014-11-25 2015-03-25 安徽神剑新材料股份有限公司 Terminal hydroxyl polyester resin for co-extrusion extinction powder coating and preparation method of terminal hydroxyl polyester resin
CN110283306A (en) * 2019-07-01 2019-09-27 黄山正杰新材料有限公司 A kind of semi-matte polyester resin for powder coating and the preparation method and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114349942A (en) * 2021-12-13 2022-04-15 安徽神剑新材料股份有限公司 Bifunctional polyester resin, preparation method thereof and extinction powder coating
CN115572376A (en) * 2022-11-11 2023-01-06 黄山正杰新材料有限公司 Polyester resin for high-gloss and high-storage-stability powder coating and preparation method thereof
CN115572376B (en) * 2022-11-11 2023-08-08 黄山正杰新材料有限公司 Polyester resin for powder coating with high gloss and high storage stability and preparation method thereof

Also Published As

Publication number Publication date
CN112552497B (en) 2023-03-31

Similar Documents

Publication Publication Date Title
CN109180922B (en) Low-temperature curing type polyester resin and preparation method and application thereof
CN112552497B (en) High-hydroxyl-value polyester resin for extinction type powder coating and preparation method and application thereof
CN109207030B (en) Polyester resin for high-gloss powder coating and preparation method and application thereof
CN109880072B (en) Self-catalyzed fast-curing pure polyester resin and preparation method and application thereof
CN110283306B (en) Polyester resin for semi-matte powder coating and preparation method and application thereof
CN107814895A (en) A kind of rare earth metal coordination modified aqueous polyurethane luminous resin and preparation method thereof
CN108484894B (en) High-leveling polyester resin and preparation method and application thereof
CN113549208B (en) Polyester resin for self-leveling powder coating and preparation method thereof
CN109942801B (en) A high leveling property 50 for MDF materials: 50 polyester resin and preparation method and application thereof
CN109206599B (en) Polyester resin for high-leveling powder coating and preparation method and application thereof
CN112625223B (en) Solvent-free saturated polyester resin for coil steel finish paint and preparation method thereof
CN114015023B (en) Low-cost polyester resin with excellent surface fineness and preparation method thereof
CN112521591A (en) Polyester resin with lasting high temperature resistance and excellent hardness for powder coating and preparation method thereof
CN114181384B (en) Polyester resin for low-cost, pinhole-resistant and high-hardness HAA system and preparation method thereof
CN109180925B (en) Hydroxyl polyester resin for high-gloss powder coating and preparation method and application thereof
CN114149575B (en) High-leveling and durable high-temperature-resistant polyester resin and preparation method thereof
CN112048207B (en) Matting agent for low-dosage TGIC system powder coating and preparation method and application thereof
CN111393960B (en) Special powder coating for high-leveling agricultural carriage and preparation method thereof
CN109111783B (en) Curing agent for pure polyester powder coating system and preparation method thereof
CN109575259B (en) Flame-retardant polyester resin for HAA system and preparation method and application thereof
CN109503823B (en) Low-temperature curing type polyester resin and preparation method and application thereof
CN110183617B (en) A transparent powder with excellent wear resistance is prepared from (A) 50: 50 polyester resin and preparation method and application thereof
CN111607075A (en) High-pressure-resistant poached and acidic-salt-fog-resistant polyester resin for powder and preparation method thereof
CN112322155B (en) Polyester resin with low TGIC consumption and excellent low-temperature resistance for powder coating and preparation method thereof
CN115505112B (en) Low-cost low-light type polyester resin for powder coating and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A high hydroxyl value polyester resin for dull powder coatings and its preparation method and application

Effective date of registration: 20231023

Granted publication date: 20230331

Pledgee: China Postal Savings Bank Limited by Share Ltd. Shexian branch

Pledgor: HUANGSHAN ZHENGJIE NEW MATERIALS Co.,Ltd.

Registration number: Y2023980062268