CN112540381A - Non-vision field single-in multi-out three-dimensional reconstruction method based on non-uniform fast Fourier transform - Google Patents
Non-vision field single-in multi-out three-dimensional reconstruction method based on non-uniform fast Fourier transform Download PDFInfo
- Publication number
- CN112540381A CN112540381A CN202011288854.6A CN202011288854A CN112540381A CN 112540381 A CN112540381 A CN 112540381A CN 202011288854 A CN202011288854 A CN 202011288854A CN 112540381 A CN112540381 A CN 112540381A
- Authority
- CN
- China
- Prior art keywords
- time
- fourier transform
- fast fourier
- spectrum
- uniform
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000001228 spectrum Methods 0.000 claims abstract description 64
- 230000000007 visual effect Effects 0.000 claims abstract description 12
- 238000005457 optimization Methods 0.000 claims abstract description 9
- 238000007781 pre-processing Methods 0.000 claims abstract description 6
- 239000011159 matrix material Substances 0.000 claims description 25
- 238000004364 calculation method Methods 0.000 claims description 8
- 239000006185 dispersion Substances 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims description 3
- 238000003384 imaging method Methods 0.000 abstract description 27
- 238000002592 echocardiography Methods 0.000 abstract description 4
- 230000003287 optical effect Effects 0.000 description 8
- 238000005070 sampling Methods 0.000 description 6
- 238000013507 mapping Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 240000007711 Peperomia pellucida Species 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010226 confocal imaging Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001161 time-correlated single photon counting Methods 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/89—Lidar systems specially adapted for specific applications for mapping or imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/4802—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/491—Details of non-pulse systems
- G01S7/4912—Receivers
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Electromagnetism (AREA)
- Image Analysis (AREA)
Abstract
本发明公开一种非均匀快速傅里叶变换的非视域单进多出三维重建方法。在非视域成像领域首次引入单进多出技术,利用现有系统,通过非均匀快速傅里叶变换,对于非视域场景进行快速成像。包括以下步骤:采用激光器非均匀扫描反射中介面,并用探测器接收回波的时间‑光子直方图,对于接收数据进行预处理,将接收到的时间‑光子数据转化为时间‑幅值数据;对于预处理后数据利用优化算法,通过空间维度的二维非均匀快速傅里叶变换关系,求解最优时间‑波数谱,再对时间‑波数谱进行时间维度上的一维快速傅里叶变换;利用单进多出频域算法对变换后频谱进行插值处理;对于插值处理后的频谱进行逆快速傅里叶变换,得到非视域场景三维重建结果。
The invention discloses a non-visual field single-input multiple-output three-dimensional reconstruction method of non-uniform fast Fourier transform. The single-in-multiple-out technology was introduced for the first time in the field of non-view-of-sight imaging, and the non-uniform fast Fourier transform was used to perform fast imaging of non-view-of-sight scenes by using the existing system. It includes the following steps: using a laser to non-uniformly scan the reflective intermediate surface, and using a detector to receive a time-photon histogram of echoes, preprocessing the received data, and converting the received time-photon data into time-amplitude data; for The preprocessed data uses an optimization algorithm to solve the optimal time-wavenumber spectrum through the two-dimensional non-uniform fast Fourier transform relationship in the space dimension, and then performs a one-dimensional fast Fourier transform on the time dimension on the time-wavenumber spectrum; The single-input multiple-output frequency domain algorithm is used to interpolate the transformed spectrum; the inverse fast Fourier transform is performed on the interpolated spectrum to obtain the 3D reconstruction result of the non-view domain scene.
Description
技术领域technical field
本发明属于激光非视域成像领域,具体涉及一种基于非均匀快速傅里叶变换与单进多出技术的非视域三维重建方法。The invention belongs to the field of laser non-visual field imaging, and in particular relates to a non-visual field three-dimensional reconstruction method based on non-uniform fast Fourier transform and single-in-multiple-out technology.
背景技术Background technique
近年来,非视域成像技术快速发展,它是对观察者可视区域之外的场景进行二维或三维重建的新型成像技术,在复杂区域探测、车辆驾驶辅助、医学影像方面有着良好的发展前景;非视域成像主要利用感兴趣探测区域二次回波的飞行时间数据,对隐藏目标物体进行重建。In recent years, non-horizontal imaging technology has developed rapidly. It is a new imaging technology for 2D or 3D reconstruction of scenes outside the observer's visible area. It has a good development in complex area detection, vehicle driving assistance, and medical imaging. Foreground; non-horizontal imaging mainly uses the time-of-flight data of the secondary echoes of the detection area of interest to reconstruct the hidden target object.
非视域成像的发展历经几个阶段,从Kirmani等人首次提出基于飞行时间以恢复隐藏物体的概念,Velten等人利用条纹相机作为探测器,采用滤波反投影算法首次展示非视域场景的三维实验重建结果,后至Buttafava等人将单光子雪崩二极管作为非视域重建的探测器,这些前期非视域成像算法,依赖非共焦系统实现,存在计算复杂度过高O(N5),重建精度不高等问题。The development of non-horizontal imaging has gone through several stages. From Kirmani et al. first proposed the concept of time-of-flight to recover hidden objects, Velten et al. used a streak camera as a detector, and used a filtered back-projection algorithm to demonstrate the 3D non-horizontal scene for the first time. According to the experimental reconstruction results, Buttafava et al. used the single-photon avalanche diode as the detector for non-horizontal reconstruction. These early non-horizontal imaging algorithms depended on non-confocal system implementation, and the computational complexity was too high O(N 5 ), The reconstruction accuracy is not high.
直至2018年,O’toole等人改进成像系统为共焦模式,提出光锥变换算法获得了较高精度的重建,算法复杂度也降至O(N3logN);Lindell等人利用相同原理的共焦系统,引入地震波的频率波数(f-k)算法,同样算法复杂度为O(N3logN),并获得较高精度的重建;此外,还有Liu等人在非视域领域引入虚拟波概念进行较高精度的重建。Until 2018, O'toole et al. improved the imaging system to confocal mode, and proposed a light cone transformation algorithm to obtain higher-precision reconstruction, and the algorithm complexity was reduced to O(N 3 logN); Lindell et al. In the confocal system, the frequency wavenumber (fk) algorithm of seismic waves is introduced, and the algorithm complexity is also O(N 3 logN), and high-precision reconstruction is obtained; in addition, Liu et al. Perform higher-precision reconstructions.
所谓“共焦系统”,指的是成像过程中探测器的接收光路与激光器的发射光路相同,激光照射点与探测器接收点并置;共焦系统的引入简化了成像光路,继而简化了模型,成像过程中探测器的接收光路与激光器的发射光路相同,一般采用分光镜实现,但是存在以下问题:接收能量明显衰减;光路设计复杂;由于直接回波能量往往显著大于包含重建目标数据的二次回波能量,共焦设计会使得这一现象更加明显,会对测量数据造成干扰。The so-called "confocal system" means that the receiving optical path of the detector is the same as the transmitting optical path of the laser during the imaging process, and the laser irradiation point is juxtaposed with the receiving point of the detector; the introduction of the confocal system simplifies the imaging optical path, which in turn simplifies the model. In the imaging process, the receiving optical path of the detector is the same as the transmitting optical path of the laser, which is generally realized by a beam splitter, but there are the following problems: the received energy is obviously attenuated; the optical path design is complicated; because the direct echo energy is often significantly larger than the two containing the reconstructed target data. The secondary echo energy, confocal design will make this phenomenon more obvious, which will interfere with the measurement data.
发明内容SUMMARY OF THE INVENTION
针对现有非视域成像算法,依赖非共焦系统实现,存在的计算复杂度过高,重建精度不高等问题,以及依赖共焦系统实现,存在的光路设计复杂、测量数据易受二次回波能量干扰等问题,本发明提供一种非均匀快速傅里叶变换的非视域单进多出三维重建方法,该方法能够利用非共焦系统对于非视域场景高精度的简单快速重建。In view of the existing non-visual field imaging algorithms, which rely on non-confocal systems to implement, there are problems such as high computational complexity and low reconstruction accuracy, and relying on confocal systems to implement, the existing optical path design is complex, and the measurement data is susceptible to secondary echoes Energy interference and other problems, the present invention provides a non-visual field single-in-multiple-out three-dimensional reconstruction method based on non-uniform fast Fourier transform, which can utilize non-confocal system for high-precision simple and fast reconstruction of non-visual field scenes.
本发明的技术方案是提供一种基于非均匀快速傅里叶变换的非视域单进多出三维重建方法,其特殊之处在于,包括以下步骤:The technical solution of the present invention is to provide a non-view-domain single-in-multiple-out three-dimensional reconstruction method based on non-uniform fast Fourier transform, which is special in that it includes the following steps:
步骤1、数据预处理;
采用激光器多点非均匀扫描反射中介面,扫描点个数为M,得到多点非均匀扫描坐标集合并用探测器单点接收回波的时间-光子直方图数据,设定xR为接收点XOY空间坐标,对时间-光子直方图数据预处理,将其转化为时间-幅值数据{θj[t]}j=0:M-1;其中,xT为扫描点XOY空间坐标,{.}j=0:M-1表示M个元素构成的集合,元素下标j表示第j个扫描点(xT)j对应的数据;由于扫描点个数为M,j的取值范围为0至M-1的整数;The multi-point non-uniform laser scanning of the reflection intermediate surface is used, and the number of scanning points is M, and the multi-point non-uniform scanning coordinate set is obtained. And use the time-photon histogram data of the echo received by the detector at a single point, set x R as the XOY space coordinate of the receiving point, preprocess the time-photon histogram data, and convert it into time-amplitude data {θ j [ t]} j=0:M-1 ; wherein, x T is the XOY space coordinate of the scanning point, {.} j=0:M-1 represents the set formed by M elements, and the element subscript j represents the jth scanning point (x T ) data corresponding to j ; since the number of scanning points is M, the value range of j is an integer from 0 to M-1;
步骤2、对于预处理后数据利用优化算法,通过空间维度的二维非均匀快速傅里叶变换关系,求解最优时间-波数谱,再对最优时间-波数谱进行时间维度上的一维快速傅里叶变换,获得最优频率-波数谱;
步骤2.1、对于步骤1获得的时间-幅值数据{θj[t]}j=0:M-1,设定重建空间分辨率,通过扫描坐标集合χ与时间-幅值数据{θj[t]}j=0:M-1,获得空间维度上的二维非均匀快速傅里叶变换关系,以及对应矩阵化算子V、F、S;求解最优时间-波数谱Φ[t,kx,ky],使最优时间-波数谱与真实时间-波数谱之间的差值最小;其中t表示时间,kx、ky表示二维XOY空间分别在X、Y维度上的波数;Step 2.1. For the time-amplitude data {θ j [t]} j=0:M-1 obtained in
步骤2.2、采用步骤2.1变换后的最优时间-波数谱Φ[t,kx,ky]进行时间维度上的一维快速傅里叶变换,获得最优频率-波数谱Φ[f,kx,ky],其中f表示时间维度上的频率;Step 2.2. Use the optimal time-wavenumber spectrum Φ[t,k x ,k y ] transformed in step 2.1 to perform one-dimensional fast Fourier transform in the time dimension to obtain the optimal frequency-wavenumber spectrum Φ[f,k x , k y ], where f represents the frequency in the time dimension;
步骤3、利用单进多出频域算法对最优频率-波数谱Φ[f,kx,ky]进行插值处理,补偿后获得频谱Ψ[kz,kx,ky];其中kz表示Z轴方向上的波数;
步骤3.1、利用由色散关系推导而来的频率-波数关系采用单进多出方法对最优频率-波数谱Φ[f,kx,ky]进行插值计算,获得插值计算后的频谱 Step 3.1. Use the frequency-wavenumber relationship derived from the dispersion relationship to perform interpolation calculation on the optimal frequency-wavenumber spectrum Φ[f, k x , k y ] using the single-input multiple-output method to obtain the spectrum after the interpolation calculation
步骤3.2、对插值计算后的频谱添加补偿项,进行相位补偿,获得相位补偿后的频谱Ψ[kz,kx,ky];Step 3.2, the spectrum after interpolation calculation Add a compensation term, perform phase compensation, and obtain the phase-compensated spectrum Ψ[k z , k x , ky ];
步骤4、对于相位补偿后的频谱Ψ[kz,kx,ky]进行逆快速傅里叶变换,得到非视域场景三维重建结果。
进一步地,步骤3.1中:Further, in step 3.1:
步骤3.2中:In step 3.2:
式中,Z0表示反射中介面的Z轴坐标位置。In the formula, Z 0 represents the Z-coordinate position of the reflection intermediate surface.
进一步地,步骤1具体包括:Further,
步骤1.1、设置世界坐标系;其中,XOY平面与反射中介面重合,Z轴垂直于XOY平面,Z轴正方向指向非视域场景;Step 1.1. Set the world coordinate system; among them, the XOY plane coincides with the reflection intermediate plane, the Z axis is perpendicular to the XOY plane, and the positive direction of the Z axis points to the non-view field scene;
步骤1.2、设置激光器的多点非均匀扫描坐标,获得多点非均匀扫描坐标集合其中,(xT)j为第j个扫描点XOY空间坐标;设置接收点空间坐标xR,处于扫描区域的中心;Step 1.2. Set the multi-point non-uniform scanning coordinates of the laser to obtain a multi-point non-uniform scanning coordinate set Wherein, (x T ) j is the XOY spatial coordinate of the jth scanning point; set the spatial coordinate x R of the receiving point, which is in the center of the scanning area;
步骤1.3、对于不同的扫描点,探测器累积接收得到对应的时间-光子直方图数据集合{τj[t]}j=0:M-1;Step 1.3, for different scanning points, the detector accumulatively receives the corresponding time-photon histogram data set {τ j [t]} j=0:M-1 ;
其中,{.}j=0:M-1表示M个元素构成的集合,元素下标j表示第j个扫描点(xT)j对应的数据,由于扫描点个数为M,j的取值范围为0至M-1的整数;τj[t]表示处于第j个扫描点即(xT)j,t时刻时,探测器接收到的光子数,用来与探测器接收到的时间-光子直方图对应数据;下标T表示扫描点,对应于接收点的下标R;Among them, {.} j=0:M-1 represents a set composed of M elements, and the element subscript j represents the data corresponding to the jth scan point (x T ) j . Since the number of scan points is M, the value of j The value range is an integer from 0 to M-1; τ j [t] represents the number of photons received by the detector at the j-th scanning point, namely (x T ) j , at time t, which is used to compare with the number of photons received by the detector. The time-photon histogram corresponds to the data; the subscript T represents the scanning point, which corresponds to the subscript R of the receiving point;
步骤1.4、对时间-光子直方图数据集合预处理;Step 1.4, preprocessing the time-photon histogram data set;
式中,θj[t]表示对应扫描点(xT)j在t时刻的时间-幅值数据。In the formula, θ j [t] represents the time-amplitude data of the corresponding scanning point (x T ) j at time t.
进一步地,步骤2.1中通过下式获得空间维度上的二维非均匀快速傅里叶变换:Further, in step 2.1, the two-dimensional non-uniform fast Fourier transform in the spatial dimension is obtained by the following formula:
式中,表示空间维度上的二维伴随非均匀快速傅里叶变换;Θ[t,kx,ky]为非均匀快速傅里叶变换后的时间-波数谱;In the formula, represents the two-dimensional adjoint non-uniform fast Fourier transform in the spatial dimension; Θ[t,k x , k y ] is the time-wavenumber spectrum after the non-uniform fast Fourier transform;
上式矩阵化后的表达式:The matrixed expression of the above formula:
Θ=SHFHVHθΘ=S H F H V H θ
V、F、S为非均匀快速傅里叶变换对应矩阵化算子,V为插值矩阵;F表示快速傅里叶变换矩阵;S为增采样矩阵;H表示矩阵的埃尔米特转置;V, F, S are the matrix operators corresponding to the non-uniform fast Fourier transform, V is the interpolation matrix; F is the fast Fourier transform matrix; S is the up-sampling matrix; H is the Hermitian transpose of the matrix;
利用共轭梯度优化算法求解最优时间-波数谱Φ即Φ[t,kx,ky],求解目标式如下:Using the conjugate gradient optimization algorithm to solve the optimal time-wavenumber spectrum Φ, namely Φ[t,k x ,k y ], the objective formula is as follows:
表示的最优化估计,是的矩阵化表示,与最优时间-波数Φ有如下关系: express The optimal estimate of , Yes The matrix representation of , It is related to the optimal time-wave number Φ as follows:
式中,S+表示矩阵S的逆或伪逆。where S + represents the inverse or pseudo-inverse of the matrix S.
本发明的有益效果是:The beneficial effects of the present invention are:
1、本发明比较合成孔径雷达模型与非视域模型之间的相似性,将非视域重建引入了虚拟波的特性,将单进多出算法引入新领域,进行非视域成像计算,通过对于测量数据频域上的插值处理,避免了复杂繁琐的反投影重建,使得成像速率与精度大大提升;非视域领域由于处于起步阶段,没有通用的提升成像速率的手段;而提升精度手段较为单一,对于已重建的结果进行三维拉普拉斯滤波这一手段较为常用,但本发明无需这一滤波操作,即可获得清晰的成像结果。1. The present invention compares the similarity between the synthetic aperture radar model and the non-visual field model, introduces the non-visual field reconstruction into the characteristics of the virtual wave, introduces the single-in-multiple-out algorithm into a new field, and performs non-visual field imaging calculation through For the interpolation processing in the frequency domain of the measurement data, the complicated and cumbersome back-projection reconstruction is avoided, which greatly improves the imaging rate and accuracy; because the non-view field is in its infancy, there is no general means to improve the imaging rate; and the means to improve the accuracy are relatively Single, it is common to perform three-dimensional Laplace filtering on the reconstructed result, but the present invention can obtain a clear imaging result without this filtering operation.
2、本发明基于非共焦系统即可实现,不依赖于共焦的成像系统设计,提升了成像的灵活性。2. The present invention can be implemented based on a non-confocal system, and does not depend on the design of a confocal imaging system, which improves the flexibility of imaging.
3、本发明利用非均匀傅里叶变换以及相应的共轭梯度算法,可以利用降采样的非均匀数据,快速且足够有效的恢复出接近真实数据的频谱;可以显著减少扫描点个数,减少算法采集数据时间。3. The present invention uses the non-uniform Fourier transform and the corresponding conjugate gradient algorithm, and can use the down-sampled non-uniform data to quickly and effectively restore the frequency spectrum close to the real data; it can significantly reduce the number of scanning points, reduce The time the algorithm collects data.
4、本发明利用非均匀傅里叶变换以及相应的共轭梯度算法,可以着重采集感兴趣区域,获得着重采集感兴趣区域后非均匀数据,充分获得感兴趣区域数据信息,进一步提升成像灵活性。而现有非视域成像算法有着成像速度过慢(如滤波反投影算法、虚拟波算法)或依赖于均匀数据(如光锥变换算法、共焦系统的频率波数(f-k)算法)的缺点,成像速度与数据采样方式二者很难兼顾。4. The present invention utilizes the non-uniform Fourier transform and the corresponding conjugate gradient algorithm, which can focus on collecting the region of interest, obtain non-uniform data after focusing on collecting the region of interest, fully obtain the data information of the region of interest, and further improve the imaging flexibility . However, the existing non-horizontal imaging algorithms have the shortcomings of slow imaging speed (such as filtered back projection algorithm, virtual wave algorithm) or relying on uniform data (such as light cone transformation algorithm, frequency wavenumber (f-k) algorithm of confocal system), It is difficult to balance the imaging speed and the data sampling method.
附图说明Description of drawings
图1为本发明实施例提供的一种非共焦系统示意图。FIG. 1 is a schematic diagram of a non-confocal system according to an embodiment of the present invention.
图2为本发明提供的一种非均匀快速傅里叶变换的非视域单进多出三维重建方法流程图。FIG. 2 is a flowchart of a non-view domain single-input multiple-output three-dimensional reconstruction method provided by a non-uniform fast Fourier transform according to the present invention.
图3为本发明一个实施例中优化所得频谱逆傅里叶变换后部分时间-空间数据与原数据对比图。FIG. 3 is a comparison diagram of part of the time-space data after inverse Fourier transform of the spectrum obtained by optimization and original data in an embodiment of the present invention.
图4为根据本发明一个实施例的非视域成像结果的示意图。FIG. 4 is a schematic diagram of a non-field of view imaging result according to an embodiment of the present invention.
图中附图标记为:1-脉冲激光器,2-单光子探测器SPAD,3-时间相关计数模块TCSPC,4-反射中介面,5-目标物体,6-扫描系统。The reference numbers in the figure are: 1-pulse laser, 2-single photon detector SPAD, 3-time correlation counting module TCSPC, 4-reflection intermediate surface, 5-target object, 6-scanning system.
具体实施方式Detailed ways
以下通过附图及具体实施例对本发明做进一步地描述,以下实施例旨在用于解释本发明,而不能理解为对本发明的限制;需要说明的是,为便于描述,附图中仅示出了与有关发明相关的部分,在不冲突的情况下,本申请中的实施方式及实施方式中的特征可以相互组合。The present invention will be further described below through the accompanying drawings and specific embodiments. The following embodiments are intended to be used to explain the present invention, but should not be construed as limitations of the present invention; it should be noted that, for the convenience of description, the accompanying drawings only show The embodiments of the present application and the features of the embodiments can be combined with each other without conflicting with the parts related to the related invention.
本发明的一种非视域成像算法,用于激光非共焦系统的快速高精度成像;A non-visual field imaging algorithm of the present invention is used for fast and high-precision imaging of a laser non-confocal system;
图1为本发明实施例提供的一种激光非共焦系统包含的非视域成像系统要素有:脉冲激光器1、单光子探测器SPAD2、时间相关计数模块TCSPC3、反射中介面4、目标物体5及扫描系统6;其中激光器以高频率发射等能量的脉冲信号,用以经过扫描系统6、发射光学系统照射反射中介面4上的指定位置点;反射中介面一般为漫反射体,产生第一次漫反射,照亮目标物体5;目标物体5正对于扫描区域,接收到第一次反射的光子信号,并产生第二次反射;第二次反射的光子信号回传至反射中介面,并在中介面上产生第三次反射;单光子探测器SPAD2采用选通模式,只接受第三次反射传来的光子信号,即所谓的第二次回波数据;通过累积,采用时间相关计数模块TCSPC3,生成回波的时间-光子直方图。1 is a non-field of view imaging system elements included in a laser non-confocal system provided by an embodiment of the present invention: a
图2为本发明实施例提供的一种基于非共焦系统非均匀快速傅里叶变换的非视域三维场景的重建方法流程图,包括以下步骤:2 is a flowchart of a method for reconstructing a non-view 3D scene based on a non-confocal system non-uniform fast Fourier transform provided by an embodiment of the present invention, including the following steps:
步骤一、采用激光器多点非均匀扫描反射中介面,并用探测器单点接收回波的时间-光子直方图,对于接收数据进行预处理,将接收到的时间-光子数据转化为时间-幅值数据;如图1中,“×”表示激光扫描点,“●”表示探测器接收点。Step 1: Use the laser to non-uniformly scan the reflection intermediate surface at multiple points, and use the detector to receive the time-photon histogram of the echo at a single point, preprocess the received data, and convert the received time-photon data into time-amplitude Data; in Figure 1, "×" represents the laser scanning point, and "●" represents the detector receiving point.
1.1)、设置XYZ世界坐标系;其中,XOY平面与反射中介面重合,Z轴垂直于XOY平面,Z轴正方向指向非视域场景;1.1), set the XYZ world coordinate system; in which, the XOY plane coincides with the reflection intermediate plane, the Z axis is perpendicular to the XOY plane, and the positive direction of the Z axis points to the non-view field scene;
1.2)、设置激光器的多点非均匀扫描坐标集合 采样自XOY二维空间设置探测器接收点坐标xT为扫描点XOY空间坐标;xR为接收点XOY空间坐标,处于扫描区域的中心,xR=(0,0);1.2), set the multi-point non-uniform scanning coordinate set of the laser Sampling from XOY two-dimensional space Set the coordinates of the detector receiving point x T is the XOY space coordinate of the scanning point; x R is the XOY space coordinate of the receiving point, which is in the center of the scanning area, x R =(0,0);
1.3)、对于不同的扫描点,接收器接收累积得到对应的时间-光子直方图集合,记作:1.3) For different scanning points, the receiver receives and accumulates to obtain the corresponding time-photon histogram set, which is recorded as:
T:={τj[t]}j=0:M-1 T:={τ j [t]} j=0:M-1
式中,τj[t]表示扫描点处于(xT)j,t时刻时,探测器接收到的光子数,看作关于时间t的一个函数;对于每个直方图τj[t],时刻t=0对应激光脉冲第一次抵达扫描点(xT)j的时刻;其中,时间维度t上的长度为Nt;In the formula, τ j [t] represents the number of photons received by the detector when the scanning point is at (x T ) j , time t, which is regarded as a function of time t; for each histogram τ j [t], Time t=0 corresponds to the time when the laser pulse reaches the scanning point (x T ) j for the first time; wherein, the length on the time dimension t is N t ;
1.4)、对于每个直方图数据进行预处理,如下:1.4), perform preprocessing for each histogram data, as follows:
具体的,在采用激光器进行扫面前,预先设置非均匀扫描模式,扫描点个数为M个,其位置可以为随机或经过设计的;接收到的数据是“时间-光子个数”数据,也就是“时间-强度”数据,因而要对于接收数据进行预处理,使之变为“时间-幅值”数据,将其看作一种虚拟波。Specifically, before the laser is used for scanning, a non-uniform scanning mode is set in advance, the number of scanning points is M, and their positions can be random or designed; the received data is the "time-photon number" data, which is also It is the "time-intensity" data, so the received data should be preprocessed to become "time-amplitude" data, which is regarded as a kind of virtual wave.
步骤二、对于步骤一预处理后数据进行空间维度的二维非均匀快速傅里叶变换与时间维度上的一维快速傅里叶变换,包括:Step 2: Perform a two-dimensional non-uniform fast Fourier transform in the spatial dimension and a one-dimensional fast Fourier transform in the time dimension on the data preprocessed in the first step, including:
2.1)、设定重建空间分辨率,采用多点非均匀扫描坐标集合χ以及步骤1.4处理后的数据{θj[t]}j=0:M-1,获得空间维度上的二维非均匀快速傅里叶变换对应矩阵化算子V、F、S,利用共轭梯度优化算法求解空间维度笛卡尔坐标系上均匀分布的最优时间-波数谱Φ[t,kx,ky];2.1), set the reconstruction spatial resolution, use the multi-point non-uniform scanning coordinate set χ and the processed data in step 1.4 {θ j [t]} j=0:M-1 to obtain the two-dimensional non-uniformity in the spatial dimension. The fast Fourier transform corresponds to the matrix operators V, F, and S, and the conjugate gradient optimization algorithm is used to solve the optimal time-wavenumber spectrum Φ[t,k x ,k y ] uniformly distributed on the space dimension Cartesian coordinate system;
空间维度上的二维非均匀快速傅里叶变换关系有:The two-dimensional non-uniform fast Fourier transform relationship in the spatial dimension is:
式中,表示空间维度的二维伴随非均匀快速傅里叶变换;Θ[t,kx,ky]表示非均匀快速傅里叶变换后得到的时间-波数谱;其中t表示时间,kx、ky表示二维XOY空间分别在X、Y维度上的波数;In the formula, Represents the two-dimensional adjoint non-uniform fast Fourier transform of the spatial dimension; Θ[t, k x , k y ] represents the time-wavenumber spectrum obtained after the non-uniform fast Fourier transform; where t represents time, k x , k y represents the wavenumber of the two-dimensional XOY space in the X and Y dimensions respectively;
其中,表示空间维度的二维伴随非均匀快速傅里叶变换,是二维非均匀快速傅里叶变换的逆过程;in, The two-dimensional adjoint non-uniform fast Fourier transform representing the spatial dimension is the inverse process of the two-dimensional non-uniform fast Fourier transform;
二维非均匀快速傅里叶变换用于解决均匀数据向非均匀数据进行傅里叶变换的问题,有以下步骤:增采样步骤,选取基函数,平滑非均匀数据;快速傅里叶变换步骤,对于平滑后的采样数据进行快速傅里叶变换;插值步骤,对变换结果除去基函数影响。上述过程关系可以表示为矩阵化的线性运算的组合:Two-dimensional non-uniform fast Fourier transform is used to solve the problem of Fourier transform from uniform data to non-uniform data. Fast Fourier transform is performed on the smoothed sample data; the interpolation step removes the influence of the basis function on the transform result. The above process relationship can be expressed as a combination of matrixed linear operations:
Θ=VFSΘΘ=VFSΘ
式中,V为插值矩阵;F表示快速傅里叶变换矩阵;S为增采样矩阵;θ是{θj[t]}j=0:M-1的向量化表示;Θ是Θ[t,kx,ky]的矩阵化表示;上式表示,由空间非均匀扫描点χ而得到的数据集{θj[t]}j=0:M-1,可以认为是均匀时间-波数谱Θ[t,kx,ky]根据非均匀扫描点χ,经过二维非均匀快速傅里叶变换而得到。In the formula, V is the interpolation matrix; F is the fast Fourier transform matrix; S is the up-sampling matrix; θ is the vectorized representation of {θ j [t]} j=0:M-1 ; Θ is Θ[t, The matrix representation of k x , k y ]; the above formula expresses that the data set {θ j [t]} j=0:M-1 obtained from the spatially non-uniform scanning point χ can be considered as a uniform time-wavenumber spectrum Θ[t, k x , ky ] is obtained by two-dimensional non-uniform fast Fourier transform according to the non-uniform scanning point χ.
而二维伴随非均匀快速傅里叶变换,是二维非均匀快速傅里叶变换的逆过程,用于解决非均匀数据向均匀数据进行傅里叶变换的问题,其过程同样可以表示为矩阵化的线性运算的组合:The two-dimensional accompanying non-uniform fast Fourier transform is the inverse process of the two-dimensional non-uniform fast Fourier transform. It is used to solve the problem of Fourier transform from non-uniform data to uniform data. The process can also be expressed as a matrix Combination of linearized operations:
Θ=SHFHVHθΘ=S H F H V H θ
上式为使用数据集{θj[t]}j=0:M-1采用二维伴随非均匀快速傅里叶变换求解获得均匀时间-波数谱Θ[t,kx,ky]的过程;矩阵符号右上角的H表示矩阵的埃尔米特转置。The above formula is the process of obtaining the uniform time-wavenumber spectrum Θ[t, k x , k y ] by using the data set {θ j [t]} j=0:M-1 using the two-dimensional adjoint non-uniform fast Fourier transform to solve ; The H in the upper right corner of the matrix symbol represents the Hermitian transpose of the matrix.
但是由于非均匀扫描点获取数据的不完备,特别当降采样重建的时候,直接使用伴随非均匀快速傅里叶变换的结果不够理想。因而,一般不会直接使用伴随非均匀快速傅里叶变换的结果Θ(即Θ[t,kx,ky]),通常要利用非均匀傅里叶变换关系,通过最优化算法求解与真实频谱之间的差值最小化的最优时间-波数谱Φ[t,kx,ky];最优重建时间-波数谱Φ[t,kx,ky]的矩阵化表示为Φ,通过共轭梯度算法求解目标式如下:However, due to the incompleteness of the data obtained from the non-uniform scanning points, especially when down-sampling reconstruction, the result of directly using the accompanying non-uniform fast Fourier transform is not ideal. Therefore, the result Θ (ie, Θ[t, k x , k y ]) of the accompanying non-uniform fast Fourier transform is generally not directly used, and the non-uniform Fourier transform relationship is usually used to solve the real The optimal time-wavenumber spectrum Φ[t,k x , ky ] that minimizes the difference between the spectra; the matrix of the optimal reconstructed time-wavenumber spectrum Φ[t,k x , ky ] is expressed as Φ, The objective formula is solved by the conjugate gradient algorithm as follows:
表示的最优化估计,是的矩阵化表示,是计算过程的中间变量,与求解估计的最优时间-波数Φ有如下关系: express The optimal estimate of , Yes The matrix representation of , is the intermediate variable of the calculation process, It is related to the optimal time-wavenumber Φ for solving the estimation as follows:
式中,S+表示矩阵S的逆或伪逆;In the formula, S + represents the inverse or pseudo-inverse of the matrix S;
2.2)、对于最优时间-波数谱Φ[t,kx,ky]进行时间维度上的一维快速傅里叶变换:2.2), perform a one-dimensional fast Fourier transform in the time dimension for the optimal time-wavenumber spectrum Φ[t,k x , ky ]:
式中,表示时间维度t上的一维快速傅里叶变换;其中f表示时间维度上的频率;In the formula, represents the one-dimensional fast Fourier transform in the time dimension t; where f represents the frequency in the time dimension;
步骤三、利用单进多出技术对变换后频谱进行插值处理:Step 3: Interpolate the transformed spectrum by using the single-in-multiple-out technology:
3.1)重建三维波数谱与测量数据频率-波数谱Φ[kz,kx,ky]的映射关系:3.1) Reconstructing the 3D wavenumber spectrum Mapping relationship with measured data frequency-wavenumber spectrum Φ[k z ,k x ,k y ]:
上式映射关系由单进多出频域算法而得,根据上述映射关系插值得到的波数空间上均匀分布的重建谱kz表示Z轴方向上的波数;The mapping relationship of the above formula is obtained by the single-input multiple-output frequency domain algorithm, and the reconstructed spectrum uniformly distributed in the wavenumber space obtained by interpolation according to the above mapping relationship k z represents the wave number in the Z-axis direction;
3.2)添加补偿项,进行相位补偿:3.2) Add a compensation item to perform phase compensation:
式中,Z0表示反射中介面的Z轴坐标位置;Ψ表示添加补偿项后的频谱数据;In the formula, Z 0 represents the Z-axis coordinate position of the reflection intermediate surface; Ψ represents the spectral data after adding the compensation term;
具体的,色散关系所推得非共焦情况下的频率-波数关系: 重建三维波数谱与测量数据频率-波数谱Φ的映射关系由上述关系推导而得;由重建三维波数谱与测量数据频率-波数谱Φ的映射关系可知,所需要的频率-波数谱Φ的值,通过而得,所需频率f在笛卡尔坐标系上并非均匀分布,因而要通过插值计算得到;Specifically, the frequency-wavenumber relationship in the non-confocal case derived from the dispersion relationship: Reconstructed 3D wavenumber spectrum Mapping relationship with measured data frequency-wavenumber spectrum Φ is derived from the above relationship; from the reconstructed three-dimensional wavenumber spectrum The mapping relationship with the frequency-wavenumber spectrum Φ of the measured data shows that the required value of the frequency-wavenumber spectrum Φ can be obtained by Therefore, the required frequency f is not uniformly distributed in the Cartesian coordinate system, so it needs to be calculated by interpolation;
步骤四、对于插值处理后的频谱进行逆快速傅里叶变换,得到非视域场景三维重建结果:Step 4: Perform an inverse fast Fourier transform on the interpolated spectrum to obtain a three-dimensional reconstruction result of the non-view field scene:
4.1)逆傅里叶变换变换:4.1) Inverse Fourier Transform Transform:
式中,ψ三维表示逆傅里叶变换后得到的空间域数据;In the formula, ψ three-dimensional represents the spatial domain data obtained after inverse Fourier transform;
4.2)获得非视域重建结果|ψ(z,x,y)|2 4.2) Obtain the non-view reconstruction result |ψ(z, x, y)| 2
以下结合具体实施例对本发明做进一步地描述。The present invention will be further described below with reference to specific embodiments.
步骤一、采用如图1所示的成像系统,采用激光器非均匀扫描反射中介面,采用随机选取扫描点的方式扫描,扫描点数M=2000,并用探测器接收回波的时间-光子直方图,对于接收数据进行预处理,将接收到的时间-光子数据转化为时间-幅值数据;设置重建目标为斯坦福兔子;Step 1: Using the imaging system shown in Figure 1, the laser is used to non-uniformly scan the reflection intermediate surface, and the scanning point is randomly selected to scan, the number of scanning points is M=2000, and the time-photon histogram of the echo is received by the detector, Preprocess the received data, convert the received time-photon data into time-amplitude data; set the reconstruction target as Stanford Rabbit;
步骤二、对于预处理后数据进行时间维度上的一维快速傅里叶变换与空间维度的二维非均匀快速傅里叶变换,设置非均匀快速傅里叶变换的波数域分辨率为256×256,最后重建恢复数据图像的分辨率为128×128,即采样率为12.2%;利用共轭梯度优化算法求解空间维度笛卡尔坐标系上均匀分布的最优时间-波数谱;将最优时间-波数谱二维逆傅里叶变换后,所得部分时间-空间数据与原数据对比如图3所示,可以看到回波数据明显补全,回波的形状、趋势、能量分布等细节情况较之前有着明显改善;对时间-波数谱进行时间维度的快速傅里叶变换,最后得到用于步骤三的频率-波数谱;Step 2: Perform a one-dimensional fast Fourier transform in the time dimension and a two-dimensional non-uniform fast Fourier transform in the space dimension on the preprocessed data, and set the wavenumber domain resolution of the non-uniform fast Fourier transform to 256× 256, the resolution of the final reconstructed and restored data image is 128×128, that is, the sampling rate is 12.2%; the conjugate gradient optimization algorithm is used to solve the optimal time-wavenumber spectrum uniformly distributed on the space dimension Cartesian coordinate system; - After the two-dimensional inverse Fourier transform of the wavenumber spectrum, the obtained part of the time-space data is compared with the original data as shown in Figure 3. It can be seen that the echo data is obviously complemented, and the details of the echo shape, trend, energy distribution, etc. Compared with the previous one, it is obviously improved; the fast Fourier transform of the time dimension is performed on the time-wavenumber spectrum, and finally the frequency-wavenumber spectrum for
步骤三、利用单进多出技术对变换后频谱进行插值处理;
步骤四、对于插值处理后的频谱进行逆快速傅里叶变换,得到非视域场景三维重建结果;重建结果如图4所示,可以看到重建结果为斯坦佛兔子,清晰可辨识,没有明显的错误重建,在反射条件较好的区域,如接近反射中介面的兔子大腿处,重建结果细腻;在反射条件较差的区域,如远离反射中介面的兔子耳朵处,重建结果依然有着相应轮廓。Step 4: Perform inverse fast Fourier transform on the interpolated spectrum to obtain the 3D reconstruction result of the non-view field scene; In the area with better reflection conditions, such as the rabbit thigh near the reflection intermediate surface, the reconstruction result is fine; in the area with poor reflection conditions, such as the rabbit ear far away from the reflection intermediate surface, the reconstruction result still has the corresponding contour .
本发明的上述实施例仅是为清楚说明本发明所作的举例,而非是对本发明实施方法的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有实施方式予以穷举。凡是在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。The above-mentioned embodiments of the present invention are only examples for clearly illustrating the present invention, rather than limiting the implementation method of the present invention. For those of ordinary skill in the art, changes or modifications in other different forms can also be made on the basis of the above description. There is no need and cannot be exhaustive of all implementations here. Any modifications, equivalent replacements and improvements made within the spirit and principle of the present invention shall be included within the protection scope of the claims of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011288854.6A CN112540381B (en) | 2020-11-17 | 2020-11-17 | Non-vision field single-in multi-out three-dimensional reconstruction method based on non-uniform fast Fourier transform |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011288854.6A CN112540381B (en) | 2020-11-17 | 2020-11-17 | Non-vision field single-in multi-out three-dimensional reconstruction method based on non-uniform fast Fourier transform |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112540381A true CN112540381A (en) | 2021-03-23 |
CN112540381B CN112540381B (en) | 2023-02-10 |
Family
ID=75014257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011288854.6A Active CN112540381B (en) | 2020-11-17 | 2020-11-17 | Non-vision field single-in multi-out three-dimensional reconstruction method based on non-uniform fast Fourier transform |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112540381B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113820726A (en) * | 2021-09-30 | 2021-12-21 | 中国科学院光电技术研究所 | A Noise Suppression Method Based on Multi-dimensional Filtering in Non-Sight Target Detection |
CN113837969A (en) * | 2021-09-28 | 2021-12-24 | 宁波未感半导体科技有限公司 | Non-line-of-sight image reconstruction method, device, system and computer readable storage medium |
CN115079203A (en) * | 2022-05-19 | 2022-09-20 | 中国科学院西安光学精密机械研究所 | Non-vision field imaging system and imaging method |
CN119199886A (en) * | 2024-08-30 | 2024-12-27 | 无锡卓华智光科技有限公司 | Non-line-of-sight imaging method, device and system based on spectrum domain |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106054183A (en) * | 2016-04-29 | 2016-10-26 | 深圳市太赫兹科技创新研究院有限公司 | Three-dimensional image reconstruction method and device based on synthetic aperture radar imaging |
CN106338732A (en) * | 2016-08-23 | 2017-01-18 | 华讯方舟科技有限公司 | Millimeter wave 3D holographic imaging method and millimeter wave 3D holographic imaging system |
CN108957450A (en) * | 2018-07-10 | 2018-12-07 | 西安恒帆电子科技有限公司 | A kind of millimetre-wave radar GPU real time three-dimensional imaging method |
US20190346545A1 (en) * | 2016-12-13 | 2019-11-14 | Duke University | Single-frequency dynamic metasurface microwave imaging systems and methods of use |
-
2020
- 2020-11-17 CN CN202011288854.6A patent/CN112540381B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106054183A (en) * | 2016-04-29 | 2016-10-26 | 深圳市太赫兹科技创新研究院有限公司 | Three-dimensional image reconstruction method and device based on synthetic aperture radar imaging |
CN106338732A (en) * | 2016-08-23 | 2017-01-18 | 华讯方舟科技有限公司 | Millimeter wave 3D holographic imaging method and millimeter wave 3D holographic imaging system |
US20190346545A1 (en) * | 2016-12-13 | 2019-11-14 | Duke University | Single-frequency dynamic metasurface microwave imaging systems and methods of use |
CN108957450A (en) * | 2018-07-10 | 2018-12-07 | 西安恒帆电子科技有限公司 | A kind of millimetre-wave radar GPU real time three-dimensional imaging method |
Non-Patent Citations (2)
Title |
---|
孟小红等: "基于非均匀快速傅里叶变换的最小二乘反演地震数据重建", 《地球物理学报》 * |
李乔等: "基于近似波数域算法的干涉合成孔径显微技术", 《中国激光》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113837969A (en) * | 2021-09-28 | 2021-12-24 | 宁波未感半导体科技有限公司 | Non-line-of-sight image reconstruction method, device, system and computer readable storage medium |
CN113837969B (en) * | 2021-09-28 | 2024-05-10 | 宁波未感半导体科技有限公司 | Non-line-of-sight image reconstruction method, device, system and computer readable storage medium |
CN113820726A (en) * | 2021-09-30 | 2021-12-21 | 中国科学院光电技术研究所 | A Noise Suppression Method Based on Multi-dimensional Filtering in Non-Sight Target Detection |
CN113820726B (en) * | 2021-09-30 | 2023-06-13 | 中国科学院光电技术研究所 | Noise suppression method based on multidimensional filtering in non-visual field target detection |
CN115079203A (en) * | 2022-05-19 | 2022-09-20 | 中国科学院西安光学精密机械研究所 | Non-vision field imaging system and imaging method |
CN115079203B (en) * | 2022-05-19 | 2024-04-12 | 中国科学院西安光学精密机械研究所 | Non-line-of-sight imaging system and imaging method |
CN119199886A (en) * | 2024-08-30 | 2024-12-27 | 无锡卓华智光科技有限公司 | Non-line-of-sight imaging method, device and system based on spectrum domain |
CN119199886B (en) * | 2024-08-30 | 2025-04-08 | 无锡卓华智光科技有限公司 | Non-visual field imaging method, device and system based on spectrum field |
Also Published As
Publication number | Publication date |
---|---|
CN112540381B (en) | 2023-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112540381B (en) | Non-vision field single-in multi-out three-dimensional reconstruction method based on non-uniform fast Fourier transform | |
Lindell et al. | Acoustic non-line-of-sight imaging | |
Chen et al. | A backprojection-based imaging for circular synthetic aperture radar | |
Gough et al. | Imaging algorithms for a strip-map synthetic aperture sonar: Minimizing the effects of aperture errors and aperture undersampling | |
Levin et al. | Linear view synthesis using a dimensionality gap light field prior | |
EP1740972B1 (en) | Sub-aperture sidelobe and alias mitigation techniques | |
CN112904368B (en) | Non-visual field three-dimensional reconstruction method and system based on analytic signal and compensation reference function | |
JP2016136142A (en) | Method and system for creating three-dimensional image | |
CN102920438A (en) | High-resolution optical scanning holographic slice imaging method based on variable pupils | |
Gishkori et al. | Imaging moving targets for a forward-scanning automotive SAR | |
US12254592B2 (en) | Direct structured illumination microscopy reconstruction method | |
CN112506019B (en) | Off-axis digital holographic imaging reconstruction method based on Kronecker product interpolation | |
CN102805613A (en) | High-resolution optical scanning holographic slice imaging method based on two-time scanning | |
Lou et al. | A prior 2-D autofocus algorithm with ground Cartesian BP imaging for curved trajectory SAR | |
CN113009801B (en) | High-speed multi-directional line confocal digital holographic three-dimensional microscopic imaging method and device | |
Popescu et al. | Point spread function estimation for a terahertz imaging system | |
US10042325B2 (en) | Image processing method | |
Vaillant et al. | 3-D wave-equation imaging of a North Sea dataset: common-azimuth migration+ residual migration | |
CN115587953A (en) | A non-line-of-sight imaging method based on mid-frequency domain Wiener filtering | |
de Heering et al. | A deconvolution algorithm for broadband synthetic aperture data processing | |
CN101358879A (en) | Interpolation method with variable interpolation interval in Fourier domain optical coherence tomography | |
Zhou et al. | Non-line-of-sight imaging with adaptive artifact cancellation | |
Borden | Regularization of noisy ISAR images containing extended features | |
CN118518591B (en) | Deconvolution optimization-based undersampled non-view imaging method | |
Jiang et al. | Generalized BP-InSAR processing with high-squint geometry |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |